Efficient Optimal Learning for Contextual Bandits

Miroslav Dudik[†], Daniel Hsu[‡], Satyen Kale[†], Nikos Karampatziakis^{*}, John Langford[†], Lev Reyzin[‡], Tong Zhang^þ Yahoo! Research[†], Microsoft Research[‡], Cornell University^{*}, Georgia Institute of Technology[‡], Rutgers University^þ

Contextual bandit setting

For round $t = 1, 2, \ldots$

- 1. World presents context information as features $x_t \in \mathcal{X}$ from a feature space \mathcal{X} .
- 2. Learner chooses action $a_t \in A \doteq \{1, \dots, K\}$ from among K possible actions.
- 3. World presents reward $r_t \in [0, 1]$ for the chosen action a_t .

Note: learner does *not* see rewards for other actions $a \neq a_t$ in round t. The goal of the learner is to maximize its cumulative reward $\sum_{t=1}^{T} r_t$ over T rounds.

I.I.D. setting. Assume context and actions' rewards (x, \vec{r}) for each round are drawn independently from a fixed distribution D over $\mathcal{X} \times [0,1]^K$.

Regret to a policy class. Fix a set of N policies Π mapping contexts $x \in \mathcal{X}$ to actions $a \in A$. The best policy π_{max} maximizes the expected instantaneous reward

 $\eta_D(\pi) = \mathbb{E}_{(x,\vec{r})\sim D}[r(\pi(x))]$ over all $\pi \in \Pi$. The *regret* to the expected performance of the best policy over T rounds is $\sum_{t=1}^{T} (\eta_D(\pi_{\max}) - r_t)$. The regret of the learner over T rounds is bounded by ϵ with probability at least $1-\delta$ if

$$\Pr\left[\sum_{t=1}^{T} (\eta_D(\pi_{\max}) - r_t) \le \epsilon\right] \ge 1 - \delta$$

where the probability is taken over the random pairs $(x_t, \vec{r_t}) \sim D$ for t = 1, ..., T, and any internal randomness used by the learner.

Drawbacks of previous approaches

Previous algorithms for this setting are either measure based (hence, computationally inefficient in general), or regret-suboptimal (i.e., regret bound after T time steps is $\omega(\sqrt{T})$.

Exp4/Exp4.P [1, 2] maintain weights for each policy based on an importance weighted estimate of its cumulative reward. Regret bound is $O(\sqrt{TK \log(N/\delta)})$ w.p. $\geq 1 - \delta$, but the computation is $\Omega(N)$ in general.

 ϵ -greedy/epoch-greedy [4] are efficient given a cost-sensitive learning algorithm, but have suboptimal regret bound of $O(T^{2/3})$.

New algorithmic contributions

- 1. Algorithm PolicyElimination for contextual bandits achieving optimal regret bound $O(\sqrt{TK}\log(N/\delta))$; intuitively based on a *non*constructive minimax argument for choosing a distribution over policies such that the reward estimates for each policy have low variance.
- 2. Algorithm RANDOMIZEDUCB, also achieving optimal regret bound $\tilde{O}(\sqrt{TK \log(N/\delta)})$; selection of distribution over policies in each round t can be computed in poly(t, log(N))time, given a cost-sensitive classification learning algorithm for policy class Π .

Algorithm 1: POLICYELIMINATION

POLICYELIMINATION maintains a candidate set of policies, throwing out policies that are proved, using confidence intervals, to be suboptimal. Confidence interval for a policy π 's reward is centered around an importance-weighted estimator

$$\eta_t(\pi) \doteq \frac{1}{t} \sum_{(x_\tau, a_\tau, r_\tau, p_\tau) \in h_t} \frac{r_\tau}{p_\tau} \cdot \mathbb{I}\{\pi(x_\tau) = a_\tau\}$$

based on the history after t rounds (i.e., scale reward of selected action a_{τ} in round τ by $1/p_{\tau}$, set reward for other actions in round τ to zero).

For a distribution P over policies Π , let

$$W_P(x,a) \doteq \sum_{\pi \in \Pi} P(\pi) \cdot \mathbb{I}\{\pi(x) = a\}$$

denote the induced distribution over actions $a \in A$ given the context x.

Inputs: Π , δ , K, $D_{\mathcal{X}}$ (marginal of D over \mathcal{X}). Initialize: $\Pi_0 \doteq \Pi$ and history $h_0 \doteq \emptyset$.

Define:
$$\delta_t \doteq \delta / 4Nt^2$$
, $b_t \doteq 2\sqrt{\frac{2K \ln(1/\delta_t)}{t}}$, $\mu_t \doteq \min\{\frac{1}{2K}, \sqrt{\frac{\ln(1/\delta_t)}{2Kt}}\}$.

For each round t = 1, ..., T, observe x_t and do:

1. Choose distribution P_t over Π_{t-1} s.t. $\forall \pi \in$ Π_{t-1} :

$$\mathbb{E}_{x \sim D_X} \left[\frac{1}{(1 - K\mu_t) W_{P_t}(x, \pi(x)) + \mu_t} \right] \le 2K.$$

- 2. Let $W'_t(a) \doteq (1 K\mu_t)W_{P_t}(x_t, a) + \mu_t$ for all $a \in A$.
- 3. Randomly choose action $a_t \sim W'_t$.
- 4. Observe reward r_t .
- 5. Let $\Pi_t \doteq \{ \pi \in \Pi_{t-1} :$ $\eta_t(\pi) \ge \left(\max_{\pi' \in \Pi_{t-1}} \eta_t(\pi') \right) - 2b_t \right\}.$ 6. Let $h_t \doteq h_{t-1} \cup (x_t, a_t, r_t, W'_t(a_t)).$

Algorithm 2: RANDOMIZEDUCB

RANDOMIZEDUCB selects a distribution P_t over policies Π by minimizing an estimate of the instantaneous regret, subject to a constraint that bounds the variance of future reward estimates. Differences from POLICYELIMINATION: (i) chooses distribution P_t over all of Π via convex optimization, (ii) variance constraints use empirical estimate of marginal distribution $D_{\mathcal{X}}$ over \mathcal{X} , and are more slack for policies with larger regret.

For any policy $\pi \in \Pi$ and round t, let

$$\Delta_t(\pi) \doteq \max_{\pi' \in \Pi} \eta_t(\pi') - \eta_t(\pi)$$

denote the importance-weighted empirical instantaneous regret to (empirically) best policy through round t, and let $\Delta_t(W_Q) \doteq \mathbb{E}_{\pi \sim Q}[\Delta_t(\pi)]$ for any distribution Q over Π .

Inputs: Π , δ , K.

Initialize: history $h_0 \doteq \emptyset$.

Define: $C_t \doteq 2\log(Nt/\delta)$, $\mu_t \doteq \min\{\frac{1}{2K}, \sqrt{\frac{C_t}{2Kt}}\}$. For each round t = 1, ..., T, observe x_t and do:

1. Let P_t be a distribution over Π that approximately solves the optimization problem

$$\min_{P} \sum_{\pi \in \Pi} P(\pi) \Delta_{t-1}(\pi)$$

for all distributions Q over Π :

$$\mathbb{E}_{\pi \sim Q} \widehat{\mathbb{E}}_{x_i \sim h_{t-1}} \left[\frac{1}{(1 - K\mu_t) W_P(x_i, \pi(x_i)) + \mu_t} \right]$$

$$\leq \max \left\{ 4K, \frac{(t - 1)\Delta_{t-1}(W_Q)^2}{180C_{t-1}} \right\}.$$

- 2. Let $W'_t(a) \doteq (1 K\mu_t)W_{P_t}(x_t, a) + \mu_t$ for all $a \in A$.
- 3. Randomly choose action $a_t \sim W'_t$.
- 4. Observe reward r_t .
- 5. Let $h_t \doteq h_{t-1} \cup (x_t, a_t, r_t, W'_t(a_t))$.

Minimax argument

View policies $\pi \in \Pi$ as functions in $\mathcal{X} \times A \to [0, 1]$, with $\pi(x,a) \doteq \mathbb{I}\{\pi(x) = a\}$. For any distribution P over policies Π , W_P (a randomized policy) is a point in the convex hull of Π .

Lemma 1 Let C be a compact and convex set of randomized policies (functions $W: \mathcal{X} \times A \rightarrow [0,1]$ s.t. $\sum_{a \in A} W(x, a) = 1$ for all $x \in \mathcal{X}$). Let $\mu \in$ (0,1/K], and for any $W \in \mathcal{C}$, let $W'(x,a) \doteq (1 K\mu)W(x,a) + \mu.$

For all distributions $D_{\mathcal{X}}$ over \mathcal{X} ,

$$\min_{W \in \mathcal{C}} \max_{Z \in \mathcal{C}} \mathbb{E}_{x \sim D_X} \mathbb{E}_{a \sim Z(x, \cdot)} \left[\frac{1}{W'(x, a)} \right] \leq \frac{K}{1 - K\mu}.$$

This lemma guarantees that the set of distributions over Π_{t-1} satisfying the constraints in Step 1 of POLICYELIMINATION is non-empty, and hence P_t is well-defined. The induced distribution W'_t over actions is a mixture of W_{P_t} with the uniform distribution over actions that guarantees bounded variance for the importance-weighted reward estimates of policies in Π_t .

Using an arg max oracle

RANDOMIZEDUCB can be implemented using an arg max oracle (\mathcal{AMO}) for the policy class Π (*i.e.*, a cost-sensitive learner for Π [3]): given a sequence $((x_{\tau}, \vec{r_{\tau}}))_{\tau=1}^t$ in $\mathcal{X} \times \mathbb{R}_+^K$, the \mathcal{AMO} returns

$$\arg\max_{\pi\in\Pi}\sum_{\tau=1}^{t}r_{\tau}(\pi(x_{\tau})).$$

Specifically, the optimization problem in Step 1 of RANDOMIZEDUCB can be solved by the ellipsoid method using a separation oracle implemented with the AMO.

References

- [1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit problem. SIAM J. of Comp., 2002
- [2] A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. E. Schapire. Contextual bandit algorithms with supervised learning guarantees. In AISTATS, 2011.
- [3] A. Beygelzimer, J. Langford, and P. Ravikumar. Error correcting tournaments. In ALT, 2009.
- [4] J. Langford and T. Zhang. The epoch-greedy algorithm for contextual multi-armed bandits. In NIPS, 2007.