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Abstract

In this paper we address the problem of combining mul-
tiple clusterings without access to the underlying features of
the data. This process is known in the literature as cluster-
ing ensembles, clustering aggregation, or consensus cluster-
ing. Consensus clustering yields a stable and robust final
clustering that is in agreement with multiple clusterings. We
find that an iterative EM-like method is remarkably effective
for this problem. We present an iterative algorithm and its
variations for finding clustering consensus. An extensive em-
pirical study compares our proposed algorithms with eleven
other consensus clustering methods on four data sets using
three different clustering performance metrics. The experi-
mental results show that the new ensemble clustering meth-
ods produce clusterings that are as good as, and often better
than, these other methods.

1. Introduction

Clustering often is a first step in data analysis. Many dif-
ferent clustering methods have been developed [9, 19] such
as hierarchical agglomerative clustering, mixture densities,
graph partitioning, and spectral clustering. Most clustering
methods focus on finding a single optimal or near-optimal
clustering according to some specific clustering criterion.
Consensus clustering can provide benefits beyond what a
single clustering algorithm can achieve. Consensus cluster-
ing algorithms often: generate better clusterings; find a com-
bined clustering unattainable by any single clustering algo-
rithm; are less sensitive to noise, outliers or sample varia-
tions; and are able to integrate solutions from multiple dis-
tributed sources of data or attributes.

In addition to the benefits outlined above, consensus clus-
tering can be useful in a variety of domains. For example,
clustering categorical data (where it is more difficult to de-
fine useful distance metrics) can be considered as a consen-
sus clustering problem where each discrete feature is viewed
as a simple clustering of the data. Then the consensus clus-
tering algorithm can be applied to the ensemble of all clus-
terings produced by discrete features of the data set. An ex-

ample of categorical data is a Movie database where some of
discrete attributes are Director, Actor, Actress, Genre, Year,
etc. As another example, consensus clustering can be em-
ployed in “privacy-preserving” scenarios where it is not pos-
sible to centrally collect all of the underlying features for
all data points, but only how the data points are grouped to-
gether. Such a situation might arise when different compa-
nies or governmental agencies have information about indi-
viduals that they can not share, but still need to find high-
quality clusters of individuals. For such cases, the consen-
sus clustering algorithm offers a natural model for clustering
the data maintained in separate sites in a privacy-preserving
manner, that is, without the need for different sites to fully-
reveal their data to each other, and without the need for rely-
ing on a trusted authority.

In this paper, we propose an EM-like consensus cluster-
ing algorithm and its variations which utilize a feature map
constructed from the set of base level clusterings. Our ex-
periments show that the proposed algorithms produce results
as good as or better than other existing consensus clustering
algorithms. The paper is structured as follows: in section 2
we introduce the consensus clustering framework; in section
3 we give a brief description of related works in this area; in
section 4 we discuss drawbacks of current consensus clus-
tering algorithms and advantages of EM-like approach; in
section 5 we describe in detail our proposed algorithms; in
section 6 and 7 we present the evaluation criteria and data
sets; and the experimental results, analysis and conclusion
are given in section 8, 9 and 10.

2. Consensus Clustering Framework

We are given a set of N data points X = {x1, x2, ..., xN}
and a set of C clusterings Π = {π1, π2, ..., πC} of the data
points in X. Each clustering πi is a mapping from X to
{1, ..., nπi

} where nπi
is the number of clusters in πi. The

problem of clustering consensus is to find a new clustering
π∗ of the data X that best summarizes the clustering ensem-
ble Π.

Similar to the approach of [18], our proposed algorithms
utilize the space of constructed features induced by the en-
semble of clusterings Π. For each data point x, we construct



a corresponding C-dimensional feature vector y, where the
ith feature is simply the cluster label from the clustering
πi. The set of vectors Y = {y1, y2, ..., yN} where yi =
〈π1(xi), π2(xi), ..., πC(xi)〉, is exploited in our proposed al-
gorithms to find the consensus clustering.

3. Related Work

Consensus clustering has recently attracted the interest of
a number of researchers in the machine learning community.
This section provides a brief summary of the work in this
area. (This is by no means a complete survey of consensus
clusterings.)

3.1. Pairwise Similarity Approach

In this approach, a measure of similarity between a pair
of data points can be estimated as the ratio of the number
of clusterings in which the two data points are in the same
clusters to the total number of clusterings in the ensemble.
More precisely, the similarity between two data points xi and
xj is defined as,

Sij = S(xi, xj) =
1
C

C∑
c=1

I(πc(xi) = πc(xj)), (1)

where I is the indicator function. Thus, any similarity-based
clustering algorithm can be applied to the similarity matrix
S to find a consensus clustering of the ensemble.

We experiment with two similarity-based clustering algo-
rithms: Furthest Consensus (FC) [7] and Hierarchical Ag-
glomerative Clustering Consensus (HAC) [5, 6, 12]. In both
of these algorithms, the matrix S is used as the similarity
measure.

Furthest Consensus (FC): The goal of the algorithm is to
find K cluster centers that are furthest from each other. The
algorithm starts with finding a pair of data points that are
furthest apart, and assigning them as cluster centers. Then
it repeatedly finds a next cluster center that is furthest apart
from previous found centers. At the end, all data points are
assigned to its closest center.

Hierarchical Agglomerative Clustering Consensus
(HAC): HAC algorithm is a standard bottom-up algorithm
for the correlation clustering problem. It starts by placing all
data points into singleton clusters. Then it repeatedly merges
two clusters that have the largest averaged similarity mea-
sure which is given in the similarity matrix S. The algorithm
stops when there are K remaining clusters.

3.2. Graph-based Approach

In [16] the authors propose three consensus clustering al-
gorithms: Cluster-based Similarity Partitioning Algorithm
(CSPA), HyperGraph Partitioning Algorithm (HGPA), and

Meta-Clustering Algorithm (MCLA). All algorithms first
transform the ensemble of clusterings into a graph represen-
tation.

CSPA: First, the similarity matrix is computed as in eq. 1.
Then, a induced similarity graph, where vertices correspond
to data points and edges’ weights to similarity measures, is
partitioned into K clusters using METIS [11].

HGPA: The hypergraph is construct using the ensemble
of C clusterings, Π = {π1, π2, ..., πC}, where vertices cor-
respond to data points and each hyperedge is represented by
a cluster from one of the clusterings in the ensemble. All
hyperedges have the same weight. This algorithm looks for
a hyperedge separator that partitions the hypergraph into K
unconnected components of approximately the same size.
The hypergraph partitioning package HMETIS [10] is used
to perform the partitioning.

MCLA: This algorithm is based on clustering clusters
where each cluster is also represented as a hyperedge. The
algorithm groups and collapses related hyperedges into K
clusters; and then assigns each data point to the collapsed
hyperedge in which it participates most strongly.

3.3. Mutual Information Approach

In [17], an objective function is formulated as the mu-
tual information between the target consensus clustering and
the clustering ensemble. Then the quadratic mutual infor-
mation is maximized via an EM algorithm in the space of
constructed features as define in Section 2 to find the target
consensus function. This algorithm usually requires multi-
ple restarts in order to avoid convergence to low quality local
minima.

3.4. Mixture Model Approach

In [18], the authors propose a probabilistic model of con-
sensus using a finite mixture of multinomial distributions in a
space of constructed features as defined in Section 2. A com-
bined clustering is found as a solution to the corresponding
maximum likelihood problem using the EM algorithm.

3.5. Cluster Correspondence Approaches

In [2], the authors first solve the problem of finding the
correspondence between clusters of different clusterings in
the ensemble either by constrained and unconstrained search
via optimizing a linear programming formulation (CCC and
CCU), or with Singular Value Decomposition (CCSVD).
Then a simple voting procedure is applied to assign data
points into clusters.



3.6. Objective Dependence Approach

The representative example of this approach is the BEST
algorithm [7]. Given an objective function, BEST chooses
among all clusterings in the ensemble the one that maximizes
the objective function.

In our experiments, we compare the proposed new al-
gorithms with these eleven algorithms: Furthest Consen-
sus (FC), Hierarchical Agglomerative Clustering Consen-
sus (HAC), Cluster-based Similarity Partitioning Algorithm
(CSPA), HyperGraph Partitioning Algorithm (HGPA), Meta-
Clustering Algorithm (MCLA), Quadratic Mutual Informa-
tion Algorithm (QMI), EM Mixture Model Algorithm(EM),
BEST, Cluster Correspondence Constrained Search (CCC),
Cluster Correspondence Unconstrained Search (CCU), and
Cluster Correspondence SVD (CCSVD).

4. Motivations

In this section, we point out some drawbacks of consensus
clusterings algorithms and advantages of EM-like approach
to consensus clustering problem. In the consensus cluster-
ing setting, pairwise similarity often does not reflect a good
measure of similarity between data points, especially when
the number of base-clusterings are limited. Consider a 5-
items data set, {xi}5i=1, where the ground-truth partition of
the data is {(x1, x2, x3), (x4, x5, x6)}. The four clusterings
of the data set and the similarity matrix are shown in Fig-
ure 1. We notice that similarity-based clustering algorithms
will not be able recover the ground-truth partition of the
data set since the similarities of the pairs {(x1, x6), (x3, x6)}
have the highest values. However, an EM-like approach (de-
scribed in the next section) can recover the ground-truth par-
tition since it is a local minimum in the EM process.

Figure 1. Example of Consensus Clustering

Most of the current consensus clustering algorithms re-
turn a single consensus clustering as the final result. EM-
like approaches have an advantage over these because they
can generate multiple consensus clusterings with different
restarts, and the best consensus clustering with respect the
evaluation criteria can be selected.

5. Consensus Clustering Algorithms
In this section we present in detail our EM-like consen-

sus clustering algorithms. Our proposed algorithms can be

applied to any group of clusterings, including clusterings in
which each individual clustering may have different num-
bers of clusters. In addition, our new algorithms conform
to two constraints which most other consensus clustering al-
gorithms follow. The first constraint is that the number of
clusters K in the target clustering π∗ is given. We are not
trying to solve the difficult problem of determining the cor-
rect number of clusters. The second constraint is to only use
the information provided by the ensemble of clusterings, i.e.
Π = {π1, π2, ..., πC}, without any access to the underlying
features of data points in X.

In the following sections, we describe in details the itera-
tive consensus clustering algorithm and its variations.

5.1. Iterative Voting Consensus (IVC)

The algorithm is an iterative process which utilizes the
constructed feature-vectors Y = {y1, y2, ..., yN} where
yi = 〈π1(xi), π2(xi), ..., πC(xi)〉 induced by the ensemble
of clusterings Π. Each cluster in the target consensus cluster-
ing has a cluster center which is also aC-dimensional vector.

Each iteration of the algorithm involves two steps: the
first step computes the cluster center of each cluster in the
target consensus clustering, and the second step reassigns
each data point to its closest cluster center. In the first step,
the ith feature of the cluster center vector is just the major-
ity values of all ith features of data points belonging to the
considered cluster. This is possible since all ith features of
data points are coming from the same clustering πi in the
clustering ensemble. In the second step, we assign each data
point to its closest center by finding the center of the mini-
mum distance to the considered data point. The distance of
a point to a cluster center is just the Hamming distance be-
tween the two vector representations. The pseudo-code of
the IVC algorithm is described in Algorithm 1.

5.2. Variations of IVC

We have experimented with two variations of IVC algo-
rithm, Iterative Probabilistic Voting Consensus (IPVC) and
Iterative Pairwise Consensus (IPC). The main difference be-
tween IVC and its variations is how to compute the distance
between a point and a cluster. Due to lack of space, the de-
tailed description of IPVC and IPC is omitted.1

6. Evaluation Criteria

Evaluating the quality of a clustering is a nontrivial and
ill-posed task [15]. In supervised learning, model perfor-
mance is assessed by comparing model predictions to tar-
gets. In clustering we do not have targets and usually do not

1See the complete version at http: \\www.cs.cornell.edu\ ∼nhnguyen
\consensus longversion.pdf



Algorithm 1 Iterative Voting Consensus
Input: a set of N data points X = {x1, x2, ..., xN}

a set of C clusterings Π = {π1, π2, ..., πC}
K is a desired number of clusters

Output: a consensus clustering π∗ with K clusters

Initialize π∗

repeat
Let Pi = {y | π∗(y) = i} be the ith cluster

Compute the representation of each cluster: yPi
=

〈majority{(Pi)1}, ...,majority{(Pi)C}〉 , where (Pi)j
is the set of the jth features of all data points in Pi

for y in Y do
Re-assign π∗(y) ← argminiD(y, yPi

), where
D(y, yPi

) =
∑C
j=1 I((y)j 6= (yPi

)j)
end for

until π∗ does not change

know a priori what groupings of the data are best. This hin-
ders discerning when one clustering is better than another, or
when one clustering algorithm outperforms another. In gen-
eral, there are two main approaches to evaluate consensus
clusterings: consensus criteria measure how the target con-
sensus clustering is in agreement with all clusterings in the
ensemble, and clustering criteria measure how well the target
consensus clustering performs on the underlying features of
the data points X, possibly with respect to hidden true labels
on these points.

6.1. Consensus Criteria

Given an ensemble of clusterings Π = {π1, π2, ..., πC}
and a target consensus clustering π∗, the consensus perfor-
mance is computed as

Perf(π∗,Π) =
1
C

C∑
i=1

Rand(π∗, πi), (2)

where Rand(π∗, πi) is a measure of how dissimilar the two
clusterings are.

The Rand distance is based on counting pairs of points
on which two clusterings agree or disagree. The (adjusted)
Rand distance was introduced by [8] of Rand’s [14] criterion,

f(π, π′) =
N10 +N01

N11 +N10 +N01 +N00
, (3)

where N11 and N00 are the number of point pairs that are in
the same cluster, in the different clusters respectively under
both π and π′; N10 and N01 are the number of point pairs
that are in the same cluster under π but not under π′, and the
same cluster under π′ but not under π respectively.

6.2. Clustering Criteria

In addition to evaluate a clustering based on how well it
combines multiple clusterings in the ensemble, there are also
two additional clustering criteria to measure how well a clus-
tering partitions the data into its natural groupings. In our ex-
periment, we examine two clustering criteria: compactness
and accuracy. Compactness measures the average pairwise
distances between points in the same cluster:

Compactness(π) =
1
N

K∑
k=1

nk(

∑
xi,xj∈Ck

d(xi, xj)

nk(nk − 1)/2
),

(4)
where d(xi, xj) is the distance between xi and xj .

All of our test data sets have external true labels which
are not used by the clustering process. The second cluster-
ing criterion is accuracy, which measures how well the target
clustering perform in comparison to the external true labels
of the data points:

Accuracy(π) =
∑K
k=1majority(Ck|Lk)

N
, (5)

where majority(Ck|Lk) is the number of points with the
plurality label in the Ck cluster (if label l appeared in cluster
k more often than any other label, then majority(Ck|Lk) is
the number of points in Ck with label l).

7. Data Sets

Data Set features cases classes clusters
Australia 17 245 10 10

Bergmark 254 1000 25 25
Covertype 49 1000 7 15

Letters 617 514 7 10

Table 1. Description of Data Sets
We evaluate our consensus clustering algorithms on four

data sets: Australia, Bergmark, Covertype, and Letter. The
Australia Coastal data is a subset of the data available
from the Biogeoinformatics of Hexacorals environmental
database [1]. The Bergmark data was collected using 25
focused web crawls, each with a different keyword. The
variables are counts in a bags-of-words model describing the
web pages. The Covertype data is from the UCI Machine
Learning Repository [13]. It contains cartographic variables
sampled at 30× 30 meter grid cells in four wilderness areas
in Roosevelt National Forest in northern Colorado. The let-
ters data is a subset of the isolet spoken letter data set from
the UCI Machine Learning Repository [13].

In our experiments, different clusterings of each data set
have the same number of clusters, and the same number of
clusters is chosen for the target consensus clusterings as well.
The clusterings that will be combined are generated for the



Figure 2. Two different accuracy distributions
(dotted line: Feature Weighting K-means,
solid line: K-means) of four data sets.

data sets using two of the methods described in [3]: fea-
ture weighting k-means and k-means with different random
restarts. The accuracy distributions of these two methods
are quite different as shown in Figure 2. The clusterings of
the feature weighting k-means category are generated by ap-
plying a Zipf feature weighting method and tend to spread
out from low accuracy to high accuracy. The clusterings of
the k-means category are generated by applying the k-means
algorithm with different random initializations and usually
concentrate on the high range of accuracy.

8. Experiments

Similar to k-means our proposed algorithms are sensitive
to the initial partition of the data. Hence, for each ensemble
of clusterings our algorithms are repeated with 100 different
initializations. The initial partition is randomly selected as
one of the clusterings in the ensemble. (We tried initializing
the new algorithms both with random partitions of the data
as well as with clusterings from the base level clusterings.
We observe that better initializations usually lead to better
results, so the random partition initialization does not work
as well as initializing with a base-level clustering.)

In the experiment, the number of clusterings in the en-
semble is 200. All consensus clustering algorithms are eval-
uated with respect to three different performance criteria as
described in Section 6. For the Rand distance and compact-
ness, lower values indicate better performance. For accuracy,
higher values indicate better performance. Since the results
under the two ensemble distributions (i.e. k-means and fea-
ture weighting k-means) are very similar, we simplify the
presentation of results by showing the averaged scores.

Figure 3 shows the performance of 14 consensus cluster-

ing methods on the three metrics averaged across the four
problems and two ensemble distributions. The three new
algorithms perform comparably to each other. Across the
three different performance criteria, the new algorithms pro-
duce results that usually are equal to, and often better than,
other algorithms. Of the existing methods, the graph-based
approach tends to have the worst performance compared to
others, especially the HyperGraph Partitioning Algorithm
(HGPA). In addition, we notice that the HAC and CCSVD
algorithms sometimes are competitive in comparison to the
new algorithms on some performance metrics with some data
sets. However, none of the existing algorithms consistently
produce results as good as the new methods across the dif-
ferent performance metrics and different data sets.

9. Complexity Analysis

Similar to k-means, the space complexity of IVC and
IPVC is O(NC) where N is the number of data points and
C is the number of base-level clusterings. The space com-
plexity of IPC is O(N2) since it needs to keep track of all
pair-wise distances.

Since our proposed algorithms are EM algorithms, the
number of iterations that the algorithms update the target
clustering before getting to a local minima is varied and de-
pends on the data sets. In our experiments, we observe that
the algorithms always terminate with less than 40 iterations.
There are many speed-up techniques (i.e. using inequality
triangle to accelerate k-means [4]) developed for k-means
which may also be applied to our algorithms to improve run-
ning time.

10. Conclusion

We present three EM-like algorithms for the consensus
clustering problem. An extensive empirical study shows that
the proposed algorithms yield results as good as, and usually
better than, eleven other clustering consensus methods. Our
proposed algorithms are in essence variations of k-means al-
gorithm using different distance measures applied to the vec-
tor of base-level clusterings. The results indicate that this ap-
proach works well for consensus clustering. It is interesting
that this simple, and somewhat obvious, approach performs
better than other more complicated methods in the literature.

In future work, we intend to enhance the new algorithms
by relaxing the two constraints of the new algorithms men-
tioned in Section 5. First, we want to use consensus to deter-
mine the best number of clusters in the consensus clustering.
Second, we will develop methods to leverage the underlying
features of the original data.
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Figure 3. Consensus clustering results for different evaluation criteria.
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