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Abstract

Algorithms make predictions about people constantly. The spread of such prediction

systems—from precision medicine to targeted advertising to predictive policing—has raised

concerns that algorithms may perpetrate unfair discrimination, especially against individ-

uals from minority groups. While it’s easy to speculate on the risks of unfair prediction,

devising an e↵ective definition of algorithmic fairness is challenging. Most existing defini-

tions tend toward one of two extremes—individual fairness notions provide theoretically-

appealing protections but present practical challenges at scale, whereas group fairness no-

tions are tractable but o↵er marginal protections. In this thesis, we propose and study

a new notion—multi-calibration—that strengthens the guarantees of group fairness while

avoiding the obstacles associated with individual fairness.

Multi-calibration requires that predictions be well-calibrated, not simply on the popu-

lation as a whole but simultaneously over a rich collection of subpopulations C. We specify

this collection—which parameterizes the strength of the multi-calibration guarantee—in

terms of a class of computationally-bounded functions. Multi-calibration protects every

subpopulation that can be identified within the chosen computational bound. Despite such

a demanding requirement, we show a generic reduction from learning a multi-calibrated

predictor to (agnostic) learning over the chosen class C. This reduction establishes the fea-

sibility of multi-calibration: taking C to be a learnable class, we can achieve multi-calibration

e�ciently (both statistically and computationally). To better understand the requirement

of multi-calibration, we turn our attention from fair prediction to fair ranking. We establish

an equivalence between a semantic notion of domination-compatibility in rankings and the

technical notion of multi-calibration in predictors—while conceived from di↵erent vantage

points, these concepts encode the same notion of evidence-based fairness. This alternative

characterization illustrates how multi-calibration a↵ords qualitatively di↵erent protections

than standard group notions.
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Perspective on Fairness
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Chapter 1

Overture

1.1 Introduction

Today, algorithmic predictions inform decisions across all aspects of life. Algorithms are

making medical diagnoses, driving our cars, and running sophisticated content recommen-

dation and advertising platforms. There is a growing recognition—within academic circles

and the public consciousness—that algorithmic systems have a profound impact on our

daily lives. The nominal promise of such algorithmic prediction systems, is that everyone

stands to benefit from their use: individuals will receive predictions tailored to their needs,

while decision-makers will use the data-driven predictions to improve their e�ciency.

Despite the appeal of this narrative, a growing body of evidence suggests that algo-

rithms—particularly machine-learned prediction systems—may perpetuate human biases,

in ways that adversely a↵ect underrepresented groups. From an advertising platform that

decides whether to display housing ads on the basis of race [ASB+19], to an “artificial in-

telligence” that penalizes résumés on the basis of gender [Vin18], to a facial recognition

system that achieves near-perfect performance on white men but performance commensu-

rate with random guessing on black women [BG18]: countless examples demonstrate how

machine-learned models’ predictions can be unfair to significant groups of individuals and

underscore the need to address such systematic failures.

A notable concrete example comes from the “Gender Shades” study [BG18]. Motivated

by anecdotal evidence of bias in facial recognition systems, the Gender Shades project

demonstrated rigorously that a number of commercial face detectors exhibited significant

performance gaps across di↵erent subpopulations. While face detectors achieved roughly

2



CHAPTER 1. OVERTURE 3

90% accuracy on a popular benchmark, a closer investigation revealed that the systems were

significantly less accurate on women compared to men and on Black individuals compared to

White—worse yet, this performance discrepancy compounded considerably when comparing

White men (⇠ 100%) to Black women (⇠ 65%). The Gender Shades study substantiates

the intuition that machine-learned classifiers may optimize predictions to perform well on

individuals from the majority population, inadvertently hurting performance on historically-

disenfranchised groups in significant ways.

Addressing unfairness. While the phenomenon of algorithmic unfairness seems to be

widespread, in this thesis we focus our attention on algorithms that make predictions about

people. Such predictors take as input data about an individual person and produce an

inference or a judgement about that person. Often, these predictors are trained using su-

pervised machine learning: given many individual-label (x, y) pairs, the machine-learned

predictor p outputs p(x0), an estimate of the label y0 for a previously-unseen individual x0.

For instance, a university running college admissions might develop a predictor—based on

historical application and graduation records—that given the grades, test scores, and demo-

graphic information of an applicant, outputs an estimate of their probability of graduation

within four years. Based on such a predictor, the university might also develop a classifier,

which outputs a binary decision of whether to accept or reject the individual applicant.

A common strategy for addressing undesirable discrimination in machine learning begins

by identifying some form of bias in the training pipeline of a given machine-learned model—

often in the training data—and then re-training the model to correct for the observed biases.

Patching flawed models to address problematic behavior is a necessary practice, but does

not present a sustainable long-term solution for promoting fairness in algorithmic prediction

systems. Indeed, adopting such a reactive approach to mitigating harms is inherently lim-

ited: the only forms of discrimination that can be prevented are those which have already

been observed.

A more subtle—but also more essential—challenge with this strategy for addressing

unfairness in prediction systems is determining what we consider to be “undesirable dis-

crimination.” Already in this introduction, we have used words like “unfair” and “biased”

and “discriminatory” imprecisely—suggestive of some implicitly-agreed-upon “problematic”

behavior but without clear delineation. Each of these words carries a di↵erent set of con-

notations in common parlance, and words like “bias” and “discrimination” are also used
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within statistical machine learning to communicate specific technical concepts. Fundamen-

tal to any conversation about fairness in algorithmic prediction systems, we must first ask:

When we indict an algorithm for being “unfair,” what do we actually mean?

Framing and perspective. We frame our answer to this question within broader inves-

tigations into the foundations of “responsible computing.” This nascent field—borne out

of the theoretical computer science community—aims to model socio-technical problems

formally using mathematical, statistical, and computational analysis to wrestle with social

challenges that arise when algorithms interact with people. Importantly, work in this area

emphasizes the importance of abstraction and definitions.

Establishing e↵ective abstractions is one of the greatest success stories of theoretical

computer science as a field of study. Our objective—by removing instance-specific details—

is to capture the elements of the problem (both human and technical) most salient to the

issue of algorithmic unfairness, so that our results will suggest e↵ective general-purpose

solutions. Paired with the right level of abstraction, we investigate and develop rigorous

mathematical notions of fairness. Such definitions allow us to discuss the issues of algorith-

mic unfairness precisely, rather than simply intuitively. The eventual goal of this research

program is to develop statistical and algorithmic techniques that come with provable guar-

antees of fairness, much in the way that the cryptographic protocols that secure our online

communications come with formal guarantees of security.

Setting the Stage

Research e↵orts to formalize algorithmic fairness began roughly a decade ago [PRT08,

KC11, KAS11, DHP+12]. Since these early works, research aiming to address issues of

unfair discrimination in algorithmic systems has exploded, especially within the machine

learning community. To date, almost all approaches to defining fairness fall into one of

two paradigms: group fairness and individual fairness. Each paradigm has appeals and

drawbacks, which we discuss next.

Group fairness. Most of the research on algorithmic fairness has focused on achieving

so-called group fairness notions [ZWS+13, ES15, Cho17, KMR17, HPS16, BCZ+16, FSV16,

KLRS17, MCPZ18, MPB+18]. Defining a notion of group fairness involves identifying a

protected group, (e.g., defined on the basis of gender or race) as well as a statistic of interest,
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(e.g., the selection rate or statistical bias); then, the notion requires that the statistic of

interest “looks right” in the protected group compared to the rest of the population.

The ease of defining and implementing these notions makes them especially appealing for

machine learning practitioners; nevertheless, the broad-strokes statistical nature of group

notions tend to provide very weak protections. The foundational work of [DHP+12] was the

first to identify the significant shortcomings of group notions. Exploiting the on-average

nature of the constraints, [DHP+12] demonstrated how predictors could satisfy the “let-

ter” of these marginal statistical constraints, while still materially discriminating against

individuals from the protected groups.

Complicating matters further, most notions of group fairness are known to be mutually-

incompatible. For instance, spurred by a debate raised in the popular press over the

COMPAS recidivism risk prediction system [ALMK16], there has been lots of recent in-

terest in the incompatibility of two popular notions: calibration and balanced error rates

[KMR17, Cho17, PRW+17]. While both notions of fairness are simple to state and have

obvious merits (as well as particular failure modes) no nontrivial predictor can simultane-

ously satisfy both notions. Such impossibility results dash any hope of strengthening the

protections of group notions by enforcing di↵erent group notions on the same predictor.

Fairness through awareness. To address the shortcomings of group notions, the work of

[DHP+12] proposed an alternative paradigm for defining fairness, dubbed “fairness through

awareness.” This framework takes the perspective that a fair classifier should treat similar

individuals similarly, formalizing this abstract goal by assuming access to a task-specific

similarity metric that encodes which pairs of individuals should receive similar predictions.

The proposed individual fairness notion requires that if the distance between two individuals

(according to the metric) is small, then their predictions cannot be very di↵erent.

While the approach of fairness through awareness o↵ers a theoretically-principled way

to allow for high-utility predictions while ensuring fairness, a challenging aspect of this

approach is the assumption that the similarity metric is known for all pairs of individuals.

Deciding on an appropriate metric is itself a delicate matter and could require input from

sociologists, legal scholars, and specialists with domain expertise. For instance, in a loan

repayment setting, a simple seemingly-objective metric might be a comparison of credit

scores. A potential concern, however, is that these scores might themselves encode historical

discrimination; in such cases, human judgment might be needed on a case-by-case basis.
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Thus far, the challenges involved in obtaining an e↵ective fairness metric have stymied the

adoption of individual fairness within the machine learning community.

Beyond groups and individuals. Given the appeals and shortcomings of group and

individuals fairness, a natural question arises:

Are there meaningful notions of fairness

that bridge the gap between group and individual notions?

In this thesis, we address this question, presenting a novel framework for defining and

enforcing notions of fairness for prediction tasks that reside between group and individual

notions. These multi-group fairness notions are defined by requiring a group fairness notion

to hold, not just on the population as a whole, but instead on each group from a vast

collection of diverse subpopulations. The multi-group perspective was originally introduced

in two concurrent works [HKRR18,KNRW18] and has been studied subsequently in works

of the author and others [KRR18,KGZ19,KNRW19,GKR19,DKR+19,SCM20].

Enforcing group notions to hold over a richer class of groups naturally provides quan-

titatively stronger guarantees. This thesis argues that when we take the collection of sub-

populations to be su�ciently-expressive, unexpectedly, multi-group fairness notions pro-

vide qualitatively stronger protections, akin to those of individual fairness. If achieving

individual-level fairness is the information-theoretic ideal, then achieving multi-group fair-

ness is the complexity-theoretic ideal.

1.2 A Complexity-Theoretic Perspective on Fairness

The remainder of this chapter is dedicated to overviewing the thesis as a whole. Our goal

is to communicate the intuition behind our contributions, emphasizing their qualitative

significance rather than the quantitative details. Ideally, the reader will be able to discern

the moral of the story from the Overture alone and can refer to the later chapters for more

detailed exposition. As such, we introduce some basic notation needed for the definitions and

theorems. Rigorous preliminaries and assumptions are introduced at the start of Chapter 2.

Basic preliminaries. Throughout, we will denote individuals’ features using x 2 X

and their binary outcome (or label) by y 2 Y = {0, 1}. We imagine that individuals are
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distributed according to a distribution x ⇠ D. Given an individual x, we imagine their

outcome to be distributed according to y ⇠ Ber(p⇤(x)) for some p⇤(x). Importantly, this

means that the function

p⇤ : X ! [0, 1]

is the information-theoretic optimal predictor of y given x. We denote the distribution

of individual-outcome pairs as (x, y) ⇠ DX⇥Y . Our goal will be to recover predictors

p : X ! [0, 1] that approximate p⇤, in a fair manner, using a bounded set of samples from

the underlying distribution DX⇥Y .

Reasoning about p⇤ is a useful abstraction, allowing us to compare against the ideal

predictions if we had unbounded statistical and computational resources. Throughout, we

assume that the features representing individuals X are expressive enough that p⇤ : X !

[0, 1] captures all meaningful variation across the population in the likelihood of an outcome

given an individual. Importantly, p⇤ will only be used as a reference point—we never need

direct access to p⇤ to learn multi-calibrated predictors.

Calibration. The bulk of this thesis is devoted to studying the flagship notion of multi-

group fairness, called multi-calibration. The starting point for multi-calibration is the statis-

tical condition known as group calibration. Intuitively, calibrated predictions “mean what

they say” regardless of group membership: suppose that p is a calibrated predictor and

x represents a certain individual’s features; then, given the prediction p(x), learning the

individual’s group membership status x 2 S (say, membership in the majority vs. minority

population), should not change the posterior belief about their outcome y 2 {0, 1}. In

many application domains, obtaining calibrated predictions is a necessary baseline for fair

treatment. For instance, in medical settings risk scores are often involved in triage—the

highest risk patients receive care first. When risk scores are poorly calibrated across de-

mographic groups, significant harms may occur to historically-marginalized groups. For

instance, racial bias in medical risk predictors a↵ects access to treatment and eventual pa-

tient outcomes, due to under-estimating the risk for Black patients relative to similarly-sick

White patients [OPVM19].

Formally, a predictor p is calibrated on a group S ✓ X if for all possible values1 v 2 [0, 1],

1We avoid measure theoretic complications by assuming X is discrete and the support size of p is finite,
handling this issue formally in subsequent chapters.
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the predictions amongst the individuals x 2 S who receive value v are accurate on average.

E
x⇠D

[ p⇤(x) | p(x) = v, x 2 S ] ⇡ v.

First note that the optimal predictor p⇤ is perfectly calibrated over all subpopulations S.

Because ED [ p⇤(x) ] = PrDX⇥Y [ y = 1 ], all calibrated predictions p(x) can be meaningfully

thought of as encoding a “probability” that for a given individual x, the outcome will be

y = 1. While group calibration requires that predictions mean what they say across groups,

unfortunately, predictions can be calibrated without saying very much. Indeed, calibrated

predictions can ignore variation within groups leading to potentially-harmful “algorithmic

stereotyping.” This form of unfairness stems from the fact that predicting the average value

for a group is always calibrated on the group.

In particular, suppose we enforce group calibration over two disjoint groups S, T ✓ X .

Suppose in each group there is significant variation within p⇤; for instance, perhaps p⇤(x) 2

{0, 1} is a 50:50 mix of positive and negative outcomes in each group. In T , which we’ll think

of as the majority, we predict perfectly according to p(x) = p⇤(x). In S, the minority, we

predict according to the mean of the optimal predictions p(x) = 0.5 = ED [ p⇤(x) | x 2 S ].

These predictions ignore all variation within S—stereotyping based solely on their group

membership. But it’s easy to verify that p is actually calibrated: amongst the individuals

who receive prediction 0.5, the expectation of p⇤(x) is 0.5. Using the predictions of p for

medical triage, as above, could lead to significant harms to the minority group S. All of

the risky patients in T will receive attention before those in S; despite similar risk, they

receive di↵erent predictions. The predictor p satisfies calibration, but completely overlooks

the individuals in S who were “qualified” or deserving of attention.

Strengthening calibration. Group calibration fails to o↵er meaningful protections—

even to the groups it designates as “protected”—because the constraints, which are defined

marginally over the groups, do not account for meaningful variation within the groups. As

in the example above, while calibration required on-average consistency over the group S,

it required no such consistency for the group of qualified individuals within S.

But suppose we were able to enforce calibration over a set of highly-qualified individuals

in S. Specifically, suppose we identify a set S0
✓ S where ED [ p⇤(x) | x 2 S0 ] is large

(close to 1). Then, to be calibrated over this group, the predictions would also need to

be reasonably accurate on the individuals within the group. Intuitively, even enforcing
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calibration over the group of unqualified individuals within S (i.e., likely to have y = 0)

could help protect the qualified individuals; by breaking the symmetry within S, under-

confident predictions on the qualified individuals would no longer appear calibrated on

these groups. In this sense, identifying meaningful structure within S—subpopulations S0

where membership in S0 correlates with the outcome y—may help us protect S as a whole.

The challenge with this approach, of course, is that the groups of qualified and unqual-

ified individuals are hard to anticipate. Indeed, the reason for developing a predictor in

the first place is to estimate these groups. Thus, rather than attempting to single out the

group of qualified individuals for protection, we could instead try to o↵er protections to as

many groups as possible. This goal leads us to the definition of multi-calibration, which

guarantees calibration over a collection of subpopulations C.

Definition (Multi-Calibration). Suppose C is a collection of subpopulations. A predictor

p̃ is C-multi-calibrated if it is calibrated over all subpopulations in C; that is, for all S 2 C

and all supported values v 2 [0, 1]

E
x⇠D

[ p⇤(x) | p̃(x) = v, x 2 S ] ⇡ v.

In other words, a multi-calibrated predictor means what it says across every subpopu-

lation within the class C. When we discuss multi-calibration more formally, we will discuss

(C,↵)-multi-calibration, where the equality must hold up to accuracy ↵ � 0. This notion of

approximate multi-calibration is important when discussing how to learn multi-calibrated

predictors from data, but is not essential to discuss its properties as a notion of fairness.

Technically, multi-calibration is a generalization of group calibration; for instance, taking

our collection of groups to be the majority and minority population as before, C = {S, T},

C-multi-calibration is simply group calibration. The question becomes how to choose C to

provide strong protections, while maintaining a feasible notion. Ideally, we would o↵er pro-

tection to every group; certainly, if we enforced multi-calibration for such a collection, then

the set of qualified individuals would receive protection. The problem with such a propo-

sition is that it is statistically impossible to protect all groups. In particular, protecting

every group with calibration would require individual-level recovery of p⇤. In most settings,

learning the optimal predictor exactly is simply not possible.
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1.2.1 Calibration for the Computationally-Identifiable Masses

Drawing inspiration from cryptography, we take C to be the collection of “e�ciently-

identifiable” subpopulations. In particular, we imagine the collection C ✓ {0, 1}X to be

specified by a class of functions with bounded complexity: for each subpopulation S 2 C,

the characteristic function �S : X ! {0, 1} that determines set membership x 2 S can

be evaluated within the class. We think of this complexity class of functions as a “com-

putational bound.” Concretely, the bound is specified by a collection of simple (i.e., low

complexity) but expressive functions—for instance, small conjunctions, decision trees, linear

functions, even bounded neural networks.

The collection of subpopulations can intersect in nontrivial ways and need not corre-

spond to groups we traditionally think of as “protected.” By selecting a computationally-

bounded class C, we strike a balance between simplicity and expressivity: individually, each

subpopulation is simple enough to be described succinctly; collectively, the class is expres-

sive enough to capture all subpopulations that can be understood within a given bound

on statistical and computational resources. Importantly, by restricting our attention to the

computationally-bounded subpopulations C (rather than all subpopulations), we allow for

the possibility of learning C-multi-calibrated predictors from a small set of data.

For instance, in an application where individuals are encoded as d-dimensional boolean

feature vectors, S 2 C could be the subpopulations whose characteristic function �S : X !

{0, 1} is defined by 3-way conjunctions over the features.

C = { S ✓ X : �S(x) = xi ^ xj ^ xk for i, j, k 2 [d] }

Intuitively, choosing such a collection C goes beyond defining “protected” groups, and in-

stead defines “meaningful” groups. Rather than ensuring calibration over the demographic

groups of “women” and “Black individuals” marginally, multi-calibration over this collec-

tion C might require calibration over “Black women, who wear glasses,” as one of the ⇥(d3)

conjunctions in C. Importantly, C is defined over all of the features—not just the “sensitive”

features, and the more expressive the collection C is, the stronger the protections that are af-

forded by C-multi-calibration. Even if wearing glasses isn’t considered a sensitive attribute,

incorporating the attribute may help to reveal structure within the data distribution, and

in turn, will help to protect the protected populations.

To illustrate this point concretely, we show formally that multi-calibrated predictors
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guarantee accuracy on any set of qualified individuals S 2 C that the collection identifies.

Given any predictor p, we can consider naively rounding it to {0, 1} by using a threshold of

1/2; on any qualified set S 2 C, the rounded classifier must obtain small error.

Theorem 1. Suppose ED [ p⇤(x) | x 2 S ] � 1 � " for some S 2 C. Then, after naive

rounding, any C-multi-calibrated predictor obtains classification error on S of at most O(").

In other words, a key strength of multi-calibration lies in its ability to protect any set of

qualified individuals that can be e�ciently identified from the data at hand. An analogous

inequality holds for any S 2 C that correlates with y = 0 rather than y = 1. This structural

result demonstrates the importance of taking C to be an expressive complexity class: if a

predictor p̃ is multi-calibrated over a collection C, then p̃ must incorporate all information

about p⇤ that can be identified within the computational bound defined by C. By taking C

to be as expressive as the data and computational constraints allow, we increase our ability

to identify and protect groups of highly-qualified individuals–even if they’re part of a group

that is disadvantaged on average.

The notion. Multi-calibration is an “evidence-based” notion of fairness. This framework

takes the perspective that, first and foremost, predictors should investigate the evidence—

given through training data—to understand the distribution of individuals and outcomes to

the extent that the statistical and computational resources allow. For a given computational

bound C, multi-calibration defines a strong set of consistency constraints that can be tested

within the bound from a small set of data. Practically, the collection of meaningful groups

C can be specified by a regulator or virtuous learner, based on the richness of available

training data and computational power. By varying the complexity of C, the guarantees

of C-multi-calibration interpolate between those of group fairness and individual fairness,

strengthening as C becomes more expressive.

Our emphasis in much of the thesis is on the importance of multi-calibration as a notion

of fairness for prediction tasks. No matter how you get your hands on a predictor—through

empirical risk minimization or specialized algorithms—the definition of multi-calibration

sets a rigorous standard of what we should expect from our machine-learned predictors.

Multi-calibration articulates that the most meaningful populations to reason about are

those that can be identified e�ciently from data. And while multi-calibration only requires

you to protect groups within a computationally-bounded class C, it requires you to protect

every such group. The contrapositive perspective sheds some light on the e↵ectiveness of
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multi-calibration: if a predictor p does not satisfy multi-calibration over a computationally-

bounded class C, then there is some simple explanation (i.e., some S 2 C) for why the

predictions are flawed and how to improve them.

Developing Multi-Group Fairness

Concurrent with the development of multi-calibration in [HKRR18], another group of re-

searchers [KNRW18] also recognized the need to provide guarantees of fairness between

the level of groups and individuals. Their work promoted analogous notions of multi-group

parity2 based on group fairness through parity of selection rates (demographic parity) and

of false negative rates (equalized opportunity). Specifically, their notions require that for

all subpopulations within a given class C, the rate is similar to that of the overall pop-

ulation; for instance, for multi-group demographic parity the selection rate of a classifier

f : X ! {0, 1} must be close to some global selection rate � for all subpopulations S 2 C.

���� Pr
x⇠DS

[ f(x) = 1 ]� �

����  ↵.

Yet another notion, which we introduced in [KRR18], defines a multi-group analogue of

metric fairness [DHP+12], which—depending on the selected fairness metric—may provide

an intermediary multi-group notion. All of these multi-group fairness notions start with

many of the same motivations as multi-calibration, and there are a number of technical

similarities between the works of [HKRR18,KNRW18,KRR18], as well as their empirical

follow-ups [KGZ19,KNRW19]. These notions also di↵er in important technical and concep-

tual ways, which we explore in Part III of this thesis.

1.3 Overview of Results

Next, we give a high-level overview of the results of this thesis. Part II of the thesis

studies the feasibility of multi-calibration as a notion of fairness in theory and in exper-

iments. Part III investigates other multi-group notions of fairness and their relation to

multi-calibration. First, we characterize when achieving multi-calibration is feasible. We

demonstrate that the complexity of C-multi-calibration is tightly connected to the complex-

ity of the class C in a number of senses.

2Note that [KNRW18] refer to their notions as “rich subgroup fairness.”
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• Representing multi-calibrated predictors—To begin, we show that the complexity of

representing multi-calibrated predictors scales modestly with the complexity of rep-

resenting the subpopulations S 2 C. Provided that for each S 2 C, the characteristic

function �S : X ! {0, 1} has a succinct description (i.e., bounded complexity), then

there is a C-multi-calibrated predictor p̃ with a (slightly less) succinct description.

Importantly, the complexity of p̃ is independent of the complexity of p⇤, depending

only on the complexity of C (and the desired accuracy guarantee).

• Learning multi-calibrated predictors—Next, we show that the learnability of C-multi-

calibrated predictors is tightly connected to the task of learning the class C. Sta-

tistically, we demonstrate that C-multi-calibrated predictors can be learned from a

small number of samples scaling with log(|C|). Computationally, we demonstrate that

learning a C-multi-calibrated predictor is equivalent to the task of agnostic learning

the class C. Theoretically, this equivalence should be viewed as a hardness result:

agnostic learning is a notorious hard problem from computational complexity theory.

Practically, however, the tight equivalence yields an e↵ective reduction from “multi-

calibrated” learning to standard machine learning. In three case studies, we demon-

strate the empirical e↵ectiveness of using o↵-the-shelf regression tools to implement

the multi-calibration framework to mitigate disparities in prediction quality.

Collectively, these results demonstrate that when we take C to be a class of e�ciently-

identifiable functions, we can learn C-multi-calibrated predictors from data e�ciently, re-

gardless of the complexity of p⇤, in a way that improves the prediction quality across all

identifiable subpopulations. In the next part, we consider multi-group fairness beyond

multi-calibration.

• Fairness through “computationally-bounded” awareness—Fairness through awareness

[DHP+12] advocated treating similar individuals similarly, based on a task-specific

fairness metric. When the task calls for a metric where two individuals x, x0 are sim-

ilar if |p⇤(x)� p⇤(x0)| is small, then multi-calibration gives a strong, feasible notion

of protections—even when p⇤ cannot be recovered. To handle more general similarity

metrics, we introduce another notion, multi-metric fairness. We show algorithmic

feasibility of this notion from a small number of samples from the underlying met-

ric. Multi-metric fairness gives a strong multi-group metric fairness guarantee that is

achievable in settings where individual-level metric fairness is infeasible.
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• Parity, information, and multi-calibration—We show that the guarantees of multi-

calibration can be understood through the information-theoretic concept of refine-

ments. This perspective allows us to better compare the guarantees between multi-

calibration and other notions of multi-group fairness based on parity [KNRW18]. In

all, we argue that starting with a multi-calibrated predictor, then adjusting the pre-

dictions to reduce disparity may promote representation of underserved groups while

avoiding the negative delayed impacts that may arise from blindly requiring parity

(as described by [LDR+18]).

Finally, we turn our attention to understanding notions of fairness in rankings. Studying

ranking—rather than prediction—is motivated for a number of reasons. Often, the impetus

for developing a predictor is not actually to understand individuals’ absolute risk, but rather

to understand their rank within the population. Further, recovering a ranking requires un-

derstanding the population globally, not just within the majority. As such, formalizing the

problem of fairness in rankings also helps to clarify what we should expect from predictors.

• Evidence-based rankings—We initiate the study of fairness in rankings. We introduce

a semantic multi-group notion called domination-compatibility : if a ranking favors a

group T over another S (i.e., if T dominates S), then in reality, the expected outcome

of T should exceed that of S (i.e., the evidence about EDT [ p⇤(x) ] � EDS [ p⇤(x) ]

should be consistent with the ranking). Surprisingly, we show that if we enforce this

notion across a rich enough collection of subpopulations (informed by the ranking it-

self), then the class of C-domination-compatible rankings is exactly the set of rankings

induced by C-multi-calibrated predictors.

The equivalence between these notions—an intuitive notion about the relative ranking of

subgroups and a technical notion about absolute consistency of subgroups’ predictions with

the underlying risk—bolsters the perspective that obtaining multi-calibrated predictors re-

quires globally-consistent learning across all identifiable subpopulations.

Statement of results. In what follows, we give a more detailed statement of the results

from each section. For the sake of presentation we state the theorems informally, assuming

that the subpopulations S 2 C all have PrD [ x 2 S ] = ⌦(1), and take all failure prob-

abilities to be � = � = ⌦(1). The informal theorems are substantiated through formal

propositions and proofs for arbitrary settings of the relevant parameters in Chapters 2-7.
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1.3.1 Learning Multi-Calibrated Predictors

As is clear from the definition, if we can obtain a highly-accurate approximation to the

information-theoretic optimal p⇤, then multi-calibration is feasible (for any computational

class C). A concern, however, is that the definition might be restrictive enough that learning

a multi-calibrated predictor would require learning p⇤. Typically, information-theoretic

recovery of the optimal predictor is intractable . Thus, to establish the e↵ectiveness of

multi-calibration as a notion of fairness, we must establish that for meaningful collections

C, learning p⇤ is not necessary. The first set of results of the thesis demonstrate the feasibility

of multi-calibration: for any true underlying optimal predictions p⇤, there exists a C-multi-

calibrated predictor whose complexity depends only on C and the desired accuracy ↵—

independent of p⇤.

Theorem 2. For any distribution DX⇥Y , any collection of subpopulations C and accu-

racy parameter ↵, there exists a (C,↵)-multi-calibrated predictor whose complexity scales as

O (complexity(C) · poly(1/↵)).

In other words, even if the distribution of y conditioned on x (i.e., p⇤) is arbitrarily

complex, the complexity of multi-calibrated predictors only scales with the complexity of

the subpopulations we aim to protect and the desired calibration accuracy. Here, we state

the theorem informally using an abstract measure of complexity(C). Concretely, circuit

complexity [Sha49] serves as a natural measure for which the theorem applies.

Sample complexity of multi-calibration. With knowledge that multi-calibrated pre-

dictors can be represented succinctly, the next question to ask is whether we can learn them

e�ciently, both in terms of statistical and time complexity. In fact, Theorem 2 is a corollary

of a generic algorithm we give for learning multi-calibrated predictors. The algorithm is an

iterative boosting-style algorithm, and Theorem 2 follows directly from an upper bound on

the number of required iterations.

Simply stated, in each iteration, the algorithm searches for a subpopulation S 2 C where

the current predictions are mis-calibrated. If such a subpopulation exists, the algorithm

calibrates the predictions locally and continues; if no such subpopulation exists, the algo-

rithm terminates returning a multi-calibrated predictor. Importantly, we show that this

procedure must terminate in a bounded number of iterations, and that the re-calibration

steps can be implemented with statistical validity from a small number of labeled samples.
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Theorem 3. There exists a learning algorithm that, for any collection of subpopulations

C and accuracy parameter ↵, given m = O(poly(log(|C|)/↵)) labeled samples from DX⇥Y ,

learns a (C,↵)-multi-calibrated predictor in O(poly(1/↵)) iterations.

That is, from a set of labeled samples whose cardinality grows modestly with the

complexity of C and ↵, it is statistically possible to learn a (C,↵)-multi-calibrated pre-

dictor. Note that the sample complexity dependence on C and ↵—growing with log(|C|)

and poly(1/↵)—is typical of learning problems; however, the way that we achieve this upper

bound is non-standard. Multi-calibration (and even group calibration) constrains predictors

in a self-referential manner. Indeed, for any calibrated predictor p̃, the true expectation of

the outcome is v, amongst the individuals x who received score p̃(x) = v. For these reasons,

the standard approach for establishing sample complexity through uniform convergence

arguments present significant challenges for learning multi-calibrated predictors.3

Instead, our algorithm works in the statistical query framework. We develop an algo-

rithm whose termination and correctness depend on the correctness of access to a statistical

query oracle. Still, when learning a multi-calibrated predictor from data, our iterative algo-

rithm needs to reason about constraints that depend on the current predictions—and thus,

on the prior access to the data set. Without care, the multi-calibration constraints lead

to a classic statistical pitfall: asking future queries based on the answers to past queries.

The classic tools used to guarantee statistical validity assume that all queries of the data

are fixed before the analysis begins; in the worst case, allowing the data analyst to queries

adaptively leads to rapid overfitting of the data set [DFH+15c].

To counteract overfitting to the sample, we leverage a recently-discovered powerful con-

nection between generalization in adaptive data analysis and di↵erential privacy [DFH+15c,

DFH+15b,DFH+15a,BNS+16, JLN+20]. This line of work demonstrates how data analy-

sis under di↵erential privacy is robust to adaptivity in analysis: many adaptively selected

queries can be answered before overfitting the sample, provided these queries are answered

in a di↵erentially private manner. By implementing the statistical mechanisms in a di↵er-

entially private manner, we obtain the improved sample complexity. As a consequence of

our analysis strategy, we show that multi-calibration is compatible with di↵erential privacy,

a strong notion of privacy protections for individuals in our training set.

3Very recent work of [SCM20] addresses the question of uniform convergence for the multi-calibration
loss (i.e., the di↵erence between sample and distributional violation to the multi-calibration constraints). In
fact, their bounds are the first to establish uniform convergence bounds even for the well-studied notion of
calibration.



CHAPTER 1. OVERTURE 17

Corollary. For " = ⇥(↵) and � > 0, there exists a (", �)-di↵erentially-private algorithm

achieving the guarantees of Theorem 3 for learning a (C,↵)-multi-calibrated predictor.

Computational complexity of multi-calibration. While the algorithm from Theo-

rem 3 has bounded iteration complexity, each iteration runs through every subpopulation

in the collection S 2 C. As we want to think of C as a large, expressive class of functions, in

many application domains, running time that grows as ⌦ (|C|) may be prohibitive. Naturally,

the question to ask is when we can improve over the naive search strategy. We answer this

question by showing a tight equivalence between the problem of learning C-multi-calibrated

predictors and agnostic learning the class C.

Theorem 4. Learning a (C,↵)-multi-calibrated predictor is O(poly(1/↵))-time equivalent

to the problem of agnostic learning the class C.

The bidirectional nature of this equivalence presents both good and bad news. The bad

news is that agnostic learning is a notoriously hard problem in computational complexity

theory. Thus, under natural complexity and cryptographic assumptions [Val84,GGM84],

learning C-multi-calibrated predictors is intractable for su�ciently-expressive choices of C.

The good news is that the equivalence suggests an e↵ective reduction from the seemingly-

harder task of C-multi-calibrated learning to the standard task of machine learning with

the class C. Indeed, all of practical machine learning is agnostic in nature. And despite

the theoretical hardness, machine learning has proved exceptionally e↵ective at extracting

structure from noisy, complex data.

Thus, Theorem 4 suggests a practical strategy for leveraging the power of “vanilla” ma-

chine learning techniques (e.g., logistic regression or decision tree learning) to obtain multi-

calibrated predictors. Unlike many novel theoretical results, this strategy is not hypothet-

ical: we demonstrate the e↵ectiveness of the multi-calibration using o↵-the-shelf machine

learning tools across an array of case studies, from facial recognition to income prediction

to medical diagnosis. While preliminary in nature, the experiments demonstrate concretely

that the multi-group paradigm maintains the practical e�ciency of standard group fairness

notions, while providing significant improvements to the performance of the learned mod-

els, across a wide array of application domains. These empirical results suggest a promising

future for deploying multi-calibration at scale.
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1.3.2 Fairness through Computationally-Bounded Awareness

Multi-calibration applies the multi-group fairness paradigm by starting with a group notion

and extending it to hold over subpopulations to strengthen the protections. A di↵erent

approach to the paradigm starts with a desirable individual fairness notion and relaxes it to

hold over subpopulations to improve the algorithmic complexity. We apply this approach

to the metric fairness notion of [DHP+12], which requires a predictor to be Lipschitz with

respect to the task-specific fairness metric. Concretely, the notion requires that for all pairs

of individuals x, x0 2 X
��p(x)� p(x0)

��  d(x, x0).

We extend this individual notion to a multi-group notion that we call multi-metric fairness.

Rather than enforcing the metric constraint to hold over every pair of individuals, we

can require an on-average Lipschitzness condition to hold over all subpopulations from a

collection C. That is, we take an expectation over pairs of subpopulations, and for all

S, T 2 C require that

E
x⇠DS
x0
⇠DT

⇥ ��p(x)� p(x0)
�� ⇤  E

x⇠DS
x0
⇠DT

⇥
d(x, x0)

⇤
+ ⌧

for some small constant ⌧ . Intuitively, we think of the metric d as defining the ideal

information-theoretic set of similarity constraints; thus, multi-metric fairness provides a

computational relaxation of this goal. The advantage of this relaxation is that it only

requires very limited access to the metric. Whereas individual metric fairness requires a

metric value for all pairs of individuals, multi-metric fairness only requires the expectations

over large groups, which can be estimated from a small set of samples.

Theorem 5. Given a weak agnostic learning oracle for the class C and O(log(|C|)·poly(1/⌧))

samples from the metric d, there exists an oracle-e�cient algorithm for learning a ⌧ -optimal

(C, d)-multi-metric fair linear hypotheses.

As with multi-calibration, the algorithmic result works in general, and is computation-

ally e�cient when (weak agnostic) learning over the collection C is e�cient. Note that we

can loosely view the guarantees of multi-calibration as a form of multi-metric fairness, where

we take the metric to be the statistical distance d(x, x0) = |p⇤(x)� p⇤(x0)|. The feasibility

of multi-metric fairness (over the restricted class of linear functions) shows that we can

enforce multi-group notions where consistency with p⇤ is not necessarily the ideal.
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Comparing multi-calibration and multi-group parity. Beyond the notions of multi-

calibration and multi-metric fairness, a popular approach to multi-group fairness is based

on group parity. Notably, [KNRW18] developed parallel notions of multi-group fairness

for the notions of demographic parity and equalized opportunity. This work (concurrent

with [HKRR18]) also demonstrated a tight connection between the computational com-

plexity of learning classifiers satisfying the multi-parity notions and weak agnostic learn-

ing the class C. Another contemporary work of [HSNL18] also takes a multi-group fair-

ness perspective, requiring parity in accuracy across groups (i.e., no group will experience

loss significantly greater than any other). Their approach—based on distributionally ro-

bust optimization—ensures this relative performance guarantee across all su�ciently-large

groups. These approaches towards multi-group fairness based on parity bear a number of

technical and conceptual similarities to multi-calibration.

But there are also key di↵erences that distinguish multi-calibration as a solution concept.

The first major conceptual distinction between these notions is where they “bottom out.”

The easiest way to see that multi-calibrated predictors exist is noting that perfect predictions

(i.e., according to p⇤) satisfy the multi-calibration constraints. For multi-group parity (or

any notion of parity), utility and fairness are portrayed as at odds with one another, and

feasibility is established by arguing that useless predictions (e.g., those that treat everyone

the same) are feasible.

Concretely, this means that the role of the collection of subpopulations C has di↵erent

interpretations for each notion. For C-multi-calibration taking C to be as expressive as

possible—including complex subpopulations defined over a rich set of features—improves

the resulting fairness guarantee. At the extreme, if we took C to be defined by all e�-

cient computations, then C-multi-calibrated predictors are computationally indistinguish-

able from the information-theoretic optimal predictions p⇤. For C-multi-parity, the richer

we take C, the more likely it is that the only feasible solution is a trivial predictor that

makes no distinctions between any individuals. Thus, [KNRW18] advocate defining C only

over the set of “sensitive attributes” and auditing within intersectional protected groups.

Do no harm. The typical motivation for enforcing notions of parity is to correct for

historical discrimination, possibly reflected through biased training data. The problem

with correcting for these biases while learning, however, is that there may be significant

qualitative di↵erences in the solutions satisfying parity that the optimization algorithm does
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not account for. The e↵ective di↵erences between multi-group parity and multi-calibration

comes into focus, when considering a recent work that introduced the idea of “delayed

impact” of fairness notions [LDR+18]. This work identifies ways in which enforcing parity-

based notions may actually lead to long-term negative impacts on underrepresented groups

that these notions are meant to protect, due to over-selection within the groups. The

model is stylized but natural, and raises a serious concerns about blindly applying parity-

based notions to predictors learned through constrained optimization. Because multi-group

parity intentionally requires parity to hold across a diverse set of subpopulations, it may be

particularly prone to causing such negative impacts due to over-selection.

To understand the relationship between multi-calibration and multi-parity notions, as

well as their potential for negative impact, we revisit the setting of [LDR+18]. We analyze

the setting through the information-theoretic notion of refinements of predictors. We show

a new interpretation of multi-calibration as simultaneous refinement over a rich class of

subpopulations: multi-calibrated predictors incorporate all of the information accessible

to the class. Leveraging this characterization, we demonstrate that for a natural predict-

then-select strategy for devising a classifier, enforcing multi-calibration through refinement

improves many quantities of interest for fair classification.

Theorem 6. Suppose p̃ is a C-multi-calibrated refinement of a predictor p. Then, for all

groups S 2 C and all selection rates within the group, the true positive rate, false positive

rate, and positive predictive value over S can only improve in p̃.

TPRp̃
S � TPRp

S , FPRp̃
S  FPRp

S , PPVp̃
S � PPVp

S .

In this sense, rather than advocating parity in predictions between subpopulations—

possibly to the detriment of the absolute predictions within some groups—multi-calibration

promotes improved predictions across every identifiable subpopulation. We present this

result as an example of a more general “do-no-harm” phenomenon that multi-calibrated

predictors exhibit. Fed trustworthy data as evidence, multi-calibrated predictors cannot

deviate in ways that unexpectedly harm performance in identifiable subgroups.

1.3.3 Evidence-Based Rankings

Finally, we turn our attention to fairness when ranking individuals based on the perceived

probability of an outcome. Expanding our study from prediction to ranking is of interest
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for several reasons. Ranking is at the heart of triage—allocating resources in disaster relief

or providing timely care in emergency medicine–and is often the underlying impetus for

prediction. For instance, recall our example where a college admissions committee develops

a model to predict the probability that a given applicant will succeed (e.g., graduate within

4 years). Typically, the university will accept the same number of applicants every year; in

this case, the predicted probability is a proxy used to elicit the most qualified applicants to

accept. In actuality the admissions committee cares more about the the relative ordering

of individuals compared to one another than the individuals’ absolute qualifications.

This example highlights how the goals of ranking are qualitatively di↵erent than those

of prediction. While prediction cares about absolute recovery of the risk, ranking cares

about the relative ordering of individuals. The di↵erences in the ranking and prediction

objectives mean that small absolute errors in a predictor might result in large relative errors

in the corresponding (induced) ranking. In this sense, ranking is a more global task than

prediction: while notions of accuracy and fairness in predictors seem to be robust to small

absolute errors on a portion of the population, intuitive notions of accuracy and fairness in

rankings seem brittle to such mistakes.

Domination-Compatibility and Multi-Calibration. Our investigation of rankings

begins with a simple group notion of fairness that considers the relative ranking of groups:

for a given pair of sets S, T , suppose that on-average S is more qualified than T , but the

ranking in question favors T above S. Such a transposition—from the true qualifications

of S and T to their ordering in the ranking—represents a form of obvious systematic bias

that could be audited from data. We formalize this concern through a notion, which we call

domination-compatibility. This multi-group notion of fairness in rankings requires that for

all pairs of subpopulations S, T 2 C, if the ranking favors T above S (i.e., if T dominates S

in a sense we make formal), then the quality of T must be at least that of S, EDT [ p⇤(x) ] �

EDS [ p⇤(x) ]. Thus, a domination-compatible ranking must respect the “evidence” provided

by the statistical tests defined by the subpopulations in C.

Domination-compatibility is an intuitive notion of fairness that protects subpopula-

tions relative to one another. We establish a lemma that makes a compelling argument

for domination-compatibility: if a ranking violates C-domination-compatibility, then no

predictor exists that is consistent with the ranking and the statistical evidence from the
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class C. By contrapositive, this observation suggests that if we start with a globally-

consistent predictor—such as a multi-calibrated predictor—then the induced ranking must

satisfy domination-compatibility. Surprisingly, for an appropriately-strengthened variant

of domination-compatibility, the reverse implication also holds. Taking this stronger no-

tion of reflexive-domination-compatible rankings, we derive a tight equivalence with multi-

calibrated predictors.

Theorem 7. A ranking r is C-reflexive-domination-compatible if and only if it is the induced

ranking of a C-multi-calibrated predictor.

In other words, any ranking that respects the ordering of the relevant subgroups derived

from C suggests an analogous globally-consistent multi-calibrated predictor; conversely, ev-

ery C-multi-calibrated predictor p̃ must order subpopulations consistently relative to one

another—not just overall, but also when restricting to the level sets of p̃.

This equivalence suggests multiple interpretations. First and most pertinent to the ques-

tion of fair ranking, the result shows that if we want to satisfy a strong semantic notion

of domination-compatibility fairness in rankings, it su�ces to learn a multi-calibrated pre-

dictor and then turn it into a ranking. Second, this equivalence gives a new perspective

on the guarantees of multi-calibration. While multi-calibration was conceived as a notion

of fairness in prediction—emphasizing absolute accuracy on identifiable populations—the

result shows that learning a multi-calibrated predictor requires learning a globally consis-

tent ranking. This interpretation strongly supports the idea that multi-calibration requires

a qualitatively di↵erent type of learning than earlier notions. Learning a multi-calibrated

predictor implies a global understanding of all of the computationally-identifiable subpop-

ulations and how they relate to one another.

1.4 Contents of the Thesis

This thesis draws much of its content from the following published manuscripts.

• Calibration for the (Computationally-Identifiable) Masses. Joint work with Úrsula

Hébert-Johnson, Omer Reingold, and Guy N. Rothblum, appearing at ICML in 2018,

[HKRR18].

• Fairness through Computationally-Bounded Awareness. Joint work with Omer Rein-

gold and Guy N. Rothblum, appearing at NeurIPS in 2018, [KRR18].



CHAPTER 1. OVERTURE 23

• Multiaccuracy: Black-Box Post-Processing for Fairness in Classification. Joint work

with Amirata Ghorbani and James Zou, appearing at AAAI AI, Ethics, and Society

in 2019, [KGZ19].

• Tracking and Improving Information in the Service of Fairness. Joint work with

Sumegha Garg and Omer Reingold, appearing at EC in 2019, [GKR19].

• Learning from Outcomes: Evidence-Based Rankings. Joint work with Cynthia Dwork,

Omer Reingold, Guy N. Rothblum, and Gal Yona, appearing at FOCS in 2019,

[DKR+19].

The remaining chapters of the thesis are organized into two parts as follows.

Calibration for the Computationally-Identifiable Masses. Part II centers around

multi-calibration, exploring the mathematical and algorithmic aspects of the notion.

• In Chapter 2, we describe the setting and formal notation that will be used throughout

the thesis. We begin with a more in-depth discussion of prior notions of fairness. Then,

we introduce the formal definition of multi-calibration and explore its basic properties.

• With the definition of multi-calibration in place, Chapter 3 focuses on learning multi-

calibrated predictors as studied in [HKRR18]. We lay out the basic boosting-style

learning framework and then turns to implementing the algorithm from a small set of

labeled samples. Much of the technical content of this chapter is dedicated to answer-

ing the adaptively selected statistical queries required to achieve multi-calibration in

a way that generalizes. Ultimately, this leads us to a di↵erentially-private implemen-

tation of the learning algorithm that ensures e�cient statistical validity.

• Chapter 4 explores the connections between learning multi-calibrated predictors and

standard machine learning. First, we establish the theoretical equivalence between

the multi-calibration auditing problem and weak agnostic learning, discovered in

[HKRR18]. Then, we shift to a more practical perspective explored in [KGZ19],

auditing and post-processing for multi-accuracy using o↵-the-shelf regression tech-

niques. We present theoretical and empirical results from [KGZ19], demonstrating

the e↵ectiveness of the multi-calibration framework for improving predictions across

underrepresented subpopulations without without hurting the overall performance.
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Fairness through Computationally-Bounded Awareness. Part III explores other

notions of multi-group fairness. While framed from di↵erent perspectives, we draw connec-

tions between these notions and multi-calibration.

• In Chapter 5, we present work on a di↵erent multi-group fairness notion from [KRR18].

This notion—multi-metric fairness—extends the individual metric fairness notion of

[DHP+12] to the multi-group setting. We explore the properties of this notion and

present an algorithm for learning high-accuracy predictors satisfying it.

• In Chapter 6, we return to studying multi-calibrated predictors in terms of the

information-theoretic concept of refinements. We show that the multi-calibration

guarantee can be understood as a strong form of simultaneous refinement, across a

rich class of calibrated predictors. Leveraging this understanding, the chapter con-

cludes exploring a natural setting in which refined, multi-calibrated predictors may

be an e↵ective tool for reducing disparity according to other notions of fairness (e.g.,

selection or false negative rates).

• Finally, Chapter 7 explores evidence-based rankings and their connection to multi-

calibrated predictors, as studied in [DKR+19]. We introduce our learning to rank

setting formally, then introduce the multi-group notions of fairness for rankings,

domination-compatibility and evidence-consistency. Developing these notions to their

limits, we show a strong equivalence with multi-calibration.
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Chapter 2

Between Groups and Individuals

In this chapter, we introduce the main technical content of the thesis. In Section 2.1, we

establish notation, nomenclature, and formal assumptions that will be used throughout.

Then in Section 2.2, we give an overview of prior notions of fairness. Drawing from the

foundational work of [DHP+12], we highlight two main paradigms for establishing algo-

rithmic fairness: group fairness and individual fairness. Each paradigm has its appeals

as well as its drawbacks, which we discuss. Given the state of prior fairness notions, we

ask the question: What lies between group and individual notions of fairness? Answering

this question leads us to the definition of multi-calibration, which we introduce formally in

Section 2.3 and study in the remainder of the thesis.

2.1 Notation and Formal Assumptions

Throughout the thesis, we will use the following notation. Let X to denote the population

of individuals, which we assume to be a discrete domain. For each individual, we use x 2 X

denote an individual or the features/covariates of the individual interchangeably. Each

individual also has an associated outcome drawn from a boolean outcome space, denote by

Y = {0, 1}.

We assume that X and Y are jointly distributed according to a fixed, but unknown

distribution DX⇥Y . Let D denote the marginal distribution over individuals X and let DY|X

denote the marginal distribution over the outcome given an individual. For a subset S ✓ X ,

we use the notational shorthand DS⇥Y and DS to denote the conditional distributions

(joint and marginally over individuals, respectively) amongst individuals x 2 S. For all

26
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distributions, we use the notation x ⇠ D to denote that x is a random sample distributed

according toD. To denote probabilities and expectations over these samples, we use boldface

notation, as in

Pr
x⇠D

[ x 2 S ] E
x,y⇠DX⇥Y

[ p(x)� y ] .

We use 1 [ P (z) ] to denote the indicator function of a predicate P (z).

Our focus will be on learning predictors over the distribution DX⇥Y . A predictor p :

X ! [0, 1] is a function mapping individuals to a real-valued prediction. For a predictor p

and a subset of individuals S ✓ X we denote its support on S as

suppS(p) =

⇢
v 2 [0, 1] : Pr

x⇠DS

[ p(x) = v ] > 0

�
.

When clear from context we use supp(p) to denote the support of p over the entire domain.

To focus on the definitions and issues of fairness in prediction, we avoid measure-theoretic

complications by assuming that X is discrete and that predictors are supported on a discrete

and finite set of values. As an example, this assumption means that conditional expectations

of the form

E
x,y⇠DX⇥Y

[ y | p(x) = v ]

are well-defined for all v 2 supp(p). When we discuss learning multi-calibrated predictors,

we work with an explicit discretization, but throughout the rest of the thesis, we will often

make this assumption implicitly.

We use p⇤ : X ! [0, 1] to denote the Bayes optimal predictor, defined as

p⇤(x) = Pr
y⇠DY|X

[ y = 1 | x ] .

p⇤(x) represents the “true probability” that the outcome of an individual x will be 1. In

other words, our distributional assumption of DX⇥Y can be equivalently defined by the

marginal distribution on individuals D paired with a conditional outcome distribution,

where y|x ⇠ Ber(p⇤(x)). We use the convention that p̃ : X ! [0, 1] typically refers to a

learned estimate of p⇤, often a multi-calibrated predictor. When a predictor always outputs

a boolean response f : X ! {0, 1} we call it a binary classifier or a decision rule. Predictors

can generically be turned into classifiers by thresholding or by randomly rounding.
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2.2 Prior Notions of Fairness

The study of fairness in algorithms and prediction tasks emerged in the past decade, stem-

ming from the influential work of [DHP+12]. Much of this study focuses on notions of

fairness that lie at one of two extremes. At one extreme, group notions tend to be intu-

itive to work with and compatible with existing machine learning techniques, but o↵er only

marginal protections. At the other extreme, individual fairness o↵ers principled protections

to individuals, but presents challenges at scale. Next, we overview the most common notions

of group and individual fairness and discuss their strengths and weaknesses.

2.2.1 Group Fairness

The general recipe for a notion of group fairness consists of three main components.

(1) identify a sensitive attribute, which defines “protected groups” (e.g., gender, race, sexual

orientation, etc.);

(2) identify a statistic of interest;

(3) ensure that the statistic of interest “looks right” across the groups defined by the sen-

sitive attribute.

Such a straightforward framework for defining fairness is appealing in practice, because en-

suring group fairness only requires reasoning about marginal statistics of a handful of groups

defined by the sensitive attribute. Often, these constraints are convex in the predictions

and can be incorporated easily into existing machine learning and optimization procedures.

Parity-based fairness notions. To describe the group fairness notions, we will assume

that the chosen sensitive attribute partitions the population into two groups S, T ✓ X . The

group notions will reason about marginal statistics over the distributions DS and DT .

One of the earliest notions of group fairness is called demographic parity1 and aims to

equalize the selection rates of individuals across groups.

Definition 2.1 (Demographic Parity, [DHP+12]). A binary classifier f : X ! {0, 1} sat-

isfies demographic parity if

Pr
x⇠DS

[ f(x) = 1 ] = Pr
x⇠DT

[ f(x) = 1 ] .

1Many works refer to this notion as statistical parity.
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That is, the rate at which the classifier accepts individuals from S and from T (i.e.

f(x) = 1) is equal. For instance, a company screening candidates for a job may enforce

demographic parity to ensure they interview roughly the same number of men as women.

Note that, in full generality, we can allow demographic parity to be achieved by selecting

a randomized classification rule (distribution over deterministic classifiers) to ensure parity

in selection rate (over the randomness in the classification as well). For instance, a decision

rule that randomly selects individuals, so that f(x) is statistically independent of x, would

satisfy demographic parity.

Parity-based notions of fairness can be taken a step further, to require equality of other

statistics. A popular alternative to demographic parity is equalized opportunity, which aims

to equalize the false negative rate of a classifier.

Definition 2.2 (Equalized Opportunity, [HPS16]). A binary classifier f : X ! {0, 1}

satisfies equalized opportunity if

Pr
x,y⇠DS⇥Y

[ f(x) = 1 | y = 1 ] = Pr
x,y⇠DS⇥Y

[ f(x) = 1 | y = 1 ] .

In other words, equalized opportunity aims to ensure that the selection rate of the “qual-

ified individuals” is preserved across groups. Note that according to equalized opportunity,

the set of qualified individuals is defined in an a posteriori sense: the qualified group (y = 1)

is only defined after the outcome is revealed. Thus, enforcing equalized opportunity and

its variants2 makes the most sense when the group of individuals X1 = {x : y = 1} can be

estimated fairly accurately from data. Again, one trivial way to satisfy equalize opportunity

is to ensure f(x) is independent from x; further, note that a perfect binary classifier where

f(x) = y for all x 2 X also satisfies the notion.

In general, when we define a notion of fairness that is based on the parity of statistical

quantities across groups, the notion is feasible because useless predictions satisfy the notion.

For instance, if our decision rule f treats all individuals identically (i.e., if f(x) is statistically

independent of x), then parity is satisfied but there is no reason to make individual-level

predictions. Thus, with parity-based notions of fairness, the goal is typically to minimize

some expected loss function ` over a hypothesis class H subject to satisfying the parity

2Equalized opportunity asks for parity of false negative rates. A stronger notion requires parity of both
false negative and false positive rates and goes by a few names including equalized odds [HPS16] and balanced
error rates [KMR17].
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constraints. For instance, for demographic parity:

min
h2H

E
x,y⇠DX⇥Y

[ `(h(x), y) ]

s.t. Pr
x⇠DS

[ h(x) = 1 ] = Pr
x⇠DT

[ h(x) = 1 ] .

Formulating the goal of fair prediction as a constrained optimization problem is natural in

this context, but should be noted as a design decision. In particular, this framing suggests

that fairness (encoded in parity constraints) and utility (encoded in the loss function) are

inherently at odds with one another. For the program to make sense, we must also select a

fixed hypothesis class H to optimize over. As such, the choice of hypothesis class implicitly

a↵ects the guarantees of such parity-based notions of fairness. In such a constrained math-

ematical program, we can always trade o↵ fairness for improved utility along the Pareto

curve by selecting di↵erent hypothesis h 2 H. Implicit in the formulation is the assumption

that all hypotheses at a given level of disparity (di↵erence in selection rates) are equally

“fair.”

Calibration. An alternative approach to group fairness requires absolute predictive per-

formance across groups, rather than relative guarantees between groups. Group calibration

is the primary example that follows this approach. Calibration is a widely-studied concept

from the literature on forecasting [DF81,Daw82,FV97,FV98]; the formulation in the con-

text of algorithmic fairness is due to [KMR17]. Colloquially, for a well-calibrated predictor

p of skin cancer, 70% of the lesions that receive prediction p(x) = 0.7 will be malignant.

Definition 2.3 (Calibration). A predictor p : X ! [0, 1] is calibrated over a group S if for

all v 2 suppS(p),

Pr
x,y⇠DS⇥Y

[ y = 1 | p(x) = v ] = v.

That is, calibrated predictors “mean what they say,” and the prediction p(x) can be

meaningfully interpreted as a conditional probability that the individual’s outcome will

be y = 1 given x. Importantly, if we require calibration over the protected groups and the

majority group, then we know that risk scores in each group mean the same thing. Ensuring

that a predictor is calibrated helps to mitigate mistreatment that may arise due to overt

statistical bias in the underlying predictions.

The simplest way to satisfy calibration is simply to give out the expected value to every
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individual in the group. That said, the Bayes optimal predictor p⇤ is also calibrated. As

such, it’s clear that there is a wide range of calibrated predictors for all tasks. We discuss

these issues and calibration in more detail starting in Section 2.3

Incompatibility of group notions. While many of the statistical properties defined by

group fairness notions feel natural and desirable, unfortunately, most notions are known

to be mutually-incompatible. For instance, spurred by a debate raised in the popular

press over the COMPAS recidivism risk prediction system [ALMK16], there has been lots

of recent interest in the incompatibility of calibration and balanced error rates [KMR17,

Cho17,PRW+17]. As such, when implementing group notions of fairness, the decision-maker

or regulator needs to decide which notion is most appropriate for the given context.

2.2.2 Fairness Through Awareness

In a highly-influential work, [DHP+12] identified serious flaws with the group fairness ap-

proach, highlighting how a malicious decision-maker could satisfy the “letter” of group

fairness notions, while still discriminating in a way that harmed individuals from the pro-

tected groups. They argued that this phenomenon was widespread, compiling a “catalog

of evils,” listing a number of scenarios where unfair decisions satisfy demographic parity.

As research into fairness in prediction has grown, critiques of group fairness notions have

continued to emerge [CG18,LDR+18].

The arguments against group notions leverage the average-case nature of the constraints.

Even though we require the treatment of the majority group and the protected group to

“look similar,” this similarity is measure on average over the entire group. In other words,

constraints on predictions defined marginally over groups provide little to no guarantees to

the individuals who receive predictions. This observation led [DHP+12] to a fundamentally

di↵erent approach towards defining fairness in prediction.

Individual fairness. To address the shortcomings of group notions, [DHP+12] proposed

an alternative paradigm for defining fairness, which they call “fairness through awareness.”

This framework takes the perspective that a fair classifier should treat similar individuals

similarly. [DHP+12] formalizes this abstract goal by assuming access to a task-specific

similarity metric d over pairs of individuals that encodes which pairs must receive similar

predictions. The proposed notion of individual fairness requires that if the metric distance



CHAPTER 2. BETWEEN GROUPS AND INDIVIDUALS 32

between two individuals is small, then the predictions of a fair classifier cannot be very

di↵erent. To distinguish from subsequent notions of fairness that define constraints on a

per individual basis, we refer to the notion of [DHP+12] as metric fairness.

Definition 2.4 (Metric Fairness, [DHP+12]). Let D : [0, 1]⇥ [0, 1]! [0, 1] be a metric over

predictions and let d : X ⇥ X ! [0, 1] be a task-specific fairness metric over individuals. A

predictor p : X ! [0, 1] is metric fair (a.k.a., individually fair) if

8x, x0 2 X ⇥ X : D(p(x), p(x0))  d(x, x0).

In other words, this Lipschitz condition—parameterized by the task-specific metric—

must hold for all pairs of individuals from the population X . Basing fairness on a similarity

metric o↵ers a flexible approach for formalizing a variety of guarantees and protections from

discrimination. Importantly, the notion avoids the weaknesses of group notions, by allowing

a regulator to specify the constraints on an individual-by-individual basis. Then, subject

to the individual-level fairness constraints, the classifier may be chosen to maximize utility.

While the approach of fairness through awareness o↵ers a theoretically-principled way

to allow for high-utility predictions while ensuring fairness, a challenging aspect of this

approach is the assumption that the similarity metric is known for all pairs of individuals.

Indeed, [DHP+12] identifies this assumption as “one of the most challenging aspects” of the

framework. Deciding on an appropriate metric is itself a delicate matter and could require

input from sociologists, legal scholars, and specialists with domain expertise. For instance,

in a loan repayment setting, a simple seemingly-objective metric might be a comparison of

credit scores. A potential concern, however, is that these scores might themselves encode

historical discrimination. In such a case, a more nuanced metric that incorporates human

judgment might be called for.

A number of recent works have turned their attention to relaxing the assumption that

the fairness metric is known and specified in full [RY18,KRR18,JKN+19,Ilv20]. These works

make significant technical progress in reducing the number of similarity queries necessary

to obtain PAC-style guarantees for metric fairness. Still, there are normative questions that

remain unresolved in terms of who decides on the choice of the metric and on what basis.

Thus, while individual fairness provides appealing protections from a theoretical computer

science perspective, a number of socio-technical challenges continue to impede its adoption

in practical settings.
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2.3 Multi-Calibration: Beyond Protected Groups

Given the weaknesses of group fairness and the challenges of e↵ectively implementing indi-

vidual fairness, we turn our attention to what lies in between. Specifically, we ask whether

we can strengthen the guarantees of group fairness notions while still maintaining their

practical appeal to machine learning practitioners. We begin with a more in-depth look

into calibration—its motivation as well as its failure mode as a notion of fairness. Then,

we present the notion of multi-calibration, which aims to address the issues with group

calibration by a↵ording protections not only to traditionally-protected groups, but instead

to every identifiable group.

Understanding calibration. A first step to addressing these issues is to obtain cali-

brated predictions—to ensure that predictions mean the same thing in the protected groups

as in the majority population. Optimistically, we may hope that if predictions mean the

same thing across groups, then the predictions would be equally meaningful across groups.

This hopeful logic breaks down, however, because predictions may satisfy calibration with-

out actually saying that much.

Consider the following toy example based on a common classification scenario. The

decision-maker obtains a calibrated predictor, then turns the predictions into decisions by

selecting individuals with scores p(x) > ⌧ above some fixed group-independent threshold.

For instance, suppose that a lender is willing to accept an applicant if they have at least

a 0.8 chance of repaying the loan. Further, suppose there are two disjoint populations

S and T . Suppose the true risk in S and T are identically distributed as a 50 : 50 mix

of p⇤(x) 2 {0.1, 0.9}, such that EDS [ p⇤(x) ] = EDT [ p⇤(x) ] = 0.5. While the optimal

predictions p⇤ is the same in each group, consider the following predictor p.

p(x) =

8
<

:
p⇤(x) if x 2 S

0.5 if x 2 T.

Even though the populations are identical, the predictions are very di↵erent in S and in

T . But the predictor p is actually calibrated over both S and T ! To verify, note that the

conditional probabilities defining the calibration constraints are accurate.
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Pr
x⇠DS

[ y = 1 | p(x) = 0.1 ] = E
x⇠DS

[ p⇤(x) | p⇤(x) = 0.1 ] = 0.1

Pr
x⇠DS

[ y = 1 | p(x) = 0.9 ] = E
x⇠DS

[ p⇤(x) | p⇤(x) = 0.9 ] = 0.9

Pr
x⇠DT

[ y = 1 | p(x) = 0.5 ] = E
x⇠DT

[ p⇤(x) ] = 0.5

In this case, using a fixed threshold of ⌧ = 0.8 will select every qualified individual in S and

none of the individuals from T , even though, by the fact that p is calibrated, half of them

were qualified.

This example highlights how calibration allows for “algorithmic stereotyping”—large

groups of individuals receive similar predictions, despite variation in outcomes across the

group. This type of discrimination may be the result of adversarial manipulation of pre-

dictions or may arise naturally as the result of standard machine learning training al-

gorithms. Because standard training procedures optimize for on-average performance,

machine-learned predictions tend to be confident within the majority group and tend to

be under-confident in minority groups, simply due to the relative population sizes. Similar

to other group notions of fairness, calibration provides marginal guarantees that may not

even protect the groups designated as “protected.”

2.3.1 Protecting the Computationally-Identifiable Masses

The failure of calibration to protect the predictions—even within the protected groups—

stems from the fact that calibration allows for under-confident predictions. Requiring pre-

dictions to be calibrated over a disjoint set of subpopulations always allows for the predictor

to give the average value within each partition. As in the example above, even if there are

qualified individuals within a population, averaging over the population may lead to over-

looking the qualified subpopulation. Minority populations may be especially susceptible to

such marginalization, both due to historical discrimination as well as the simple fact that

there are fewer minority examples to learn from.

Ideally, if we could identify the set of qualified individuals, then we could aim to protect

these individuals. Anticipating the set of qualified individuals is typically challenging, if not

impossible. For instance, a natural way to define the “qualified” individuals would be as

those whose outcome was positive y = 1—this is the perspective that equalized opportunity
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takes. The downside with this notion is that this set is only defined a posteriori : whenever

there is significant uncertainty in y ⇠ Ber(p⇤(x)), then the set of individuals with positive

outcome is essentially a random set.

Ensuring protections for a randomly drawn set is essentially equivalent to ensuring

protections over all su�ciently-large subpopulations. The problem with hoping to ensure

that we accurately represent the qualifications of all of these subpopulations is that it

is information-theoretically impossible from a small sample. In particular, such a set of

constraints would require recovering p⇤ to very high accuracy. Without strong assumptions

that p⇤ comes from some bounded class of functions, there will always be a subpopulation

on which we are inaccurate (e.g., the set of individuals on which the model errs), until we

observe essentially the entire domain of individuals and outcomes. Thus, in any statistical

learning setting, we need a di↵erent approach to defining fairness.

Multi-calibration takes a di↵erent perspective on how to define qualified individuals.

Instead of requiring protections on a group defined after the outcomes are revealed, multi-

calibration requires a priori protections for the set of populations that could reasonably

be identified from the given data. Rather than trying to ensure calibration over all sub-

populations, we relax the goal to ensure calibration over all “meaningful” subpopulations.

Specifically, we consider a subpopulation to be worthy of protection if it can be identified

e�ciently from the data.

Slightly more formally, consider a collection of subpopulations C ✓ {0, 1}X . Multi-

calibration with respect to a class C will require that a predictor is well-calibrated simulta-

neously over each S 2 C. While we can define multi-calibration over any collection C, we

will think of C as being defined by a simple, but expressive computational class. Specifically,

for any subpopulation S ✓ X , we can consider its characteristic function

�S(x) =

8
<

:
1 x 2 S

0 x 62 S.

Conversely, any class of boolean functions C induces a collection of subpopulations by imag-

ining that each c 2 C defines the characteristic function of some subpopulations Sc ✓ X . We

can define such a collection with respect to any computational class C, e.g., small conjunc-

tions, decision trees, or linear functions. As we take C to be more and more expressive, the
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protections of multi-calibration become stronger, as we are forced to reason about subpop-

ulations that may be relevant to the task at hand. In particular, the collection C shouldn’t

be thought of as defining “protected” groups so much as “meaningful” groups that will help

to identify structure within p⇤.

Formal definitions. With the intuition for multi-calibration in place, we are ready to

define the notion formally. First, we formally define a useful collection of subpopulations

which we refer to as the level sets of p.

Definition 2.5 (Level sets). Given a predictor p : X ! [0, 1] and a subpopulation S ✓ S,

for each v 2 supp(p), let Sv = {x 2 S : p(x) = v}. The sub-level sets of the predictor p on

the subpopulation S are

{Sv : v 2 supp(p)} .

The level sets of p are the sub-level sets over X .

Intuitively, calibration requires on-average consistency over the level sets with the un-

derlying Bayes optimal predictor p⇤. Formally, we define approximate calibration as follows.

Definition 2.6 (Approximate Calibration). Suppose a predictor p : X ! [0, 1] has finite

support s = |supp(p)|. For ↵ � 0 and a subset S ✓ X , p is ↵-calibrated over S if for all

v 2 supp(p) such that Prx⇠DS [ p(x) = v ] > ↵/s,

���� E
x⇠DS

[ p⇤(x) | p(x) = v ]� v

����  ↵.

Note that in this notion, we only consider the level sets that are su�ciently large.

This condition is largely a technical requirement, due to the fact that it is statistically

impossible to reason about groups if they are too small. Note, however, that the choice to

parameterize the approximation factor by the support size is consistent with the intuition

that predictions should “mean what they say.” Specifically, a predictor that gives out lots

of distinct supported values must be confident about smaller level sets than a predictor that

gives out only a few values. Overall, excluding these small level sets of density at most ↵/s

can introduce ↵ additional error in the predictions over DS . We will think of ↵ as a small

constant throughout, so in most applications this will be an acceptable and unavoidable

degree of error.
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With this more technical definition in place, we define (C,↵)-multi-calibration as ap-

proximate calibration over every subpopulation defined by C.

Definition 2.7 (Multi-Calibration). Let ↵ � 0. For a collection of subsets C ✓ {0, 1}X , a

predictor p̃ : X ! [0, 1] is (C,↵)-multi-calibrated if for all S 2 C, p̃ is ↵-calibrated over S.

By taking an expressive class of subpopulations, multi-calibration strengthens the re-

quirements of calibration significantly. Intuitively, when we take C to consist of many

overlapping subpopulations, defined by a function class capable of identifying interesting

patterns within an individual’s data, then C-multi-calibration requires a predictor to make

sense globally—not just marginally over a partition of the input space.

While the multi-calibration constraints are stringent, especially as C becomes progres-

sively more complex, the notion is always feasible. This fact follows from the observation

that p⇤ itself is (C, 0)-multi-calibrated for any choice of C. Indeed, p⇤ is perfectly calibrated

over any subpopulation S ✓ X :

E
x⇠DS

[ p⇤(x) | p⇤(x) = v ] = v.

In this sense, a multi-calibrated predictor p̃ can be viewed as a computational relaxation

of the information-theoretic optimal p⇤. Specifically, we can frame multi-calibration in the

language of pseudorandomness. Imagining C as a computational class, each subpopulation

S 2 C—equivalently a boolean circuit �S : X ! {0, 1}—defines a collection of statistical

tests on the level sets of a predictor p: for each v 2 supp(p)

���� Ex⇠D

[ �S(x) · (p
⇤(x)� v) | p(x) = v ]

����  ↵ · Pr
x⇠D

[ �S(x) = 1 ] .

None of these statistical tests can significantly distinguish a (C,↵)-multi-calibrated predictor

from p⇤—each tests passes up to the ↵ approximation. In this sense, p̃ can be viewed as

computationally-indistinguishable from p⇤ by the class of calibration tests defined within

the class C.

2.3.2 Multi-Accuracy

Often, it will be su�cient (and significantly easier) to work with a simpler notion of fair-

ness, which we refer to as multi-accuracy. Multi-accuracy relaxes the guarantee of multi-

calibration, and requires that a predictor be accurate in expectation (unbiased) over each
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subpopulation defined by C.

Definition 2.8 (Multi-Accuracy). Let ↵ � 0. For a collection of subsets C ✓ {0, 1}X , a

predictor p̃ : X ! [0, 1] is (C,↵)-multi-accurate if for all S 2 C,

���� E
x⇠DS

[ p⇤(x) ]� E
x⇠DS

[ p̃(x) ]

����  ↵.

By a straightforward argument, multi-calibration implies multi-accuracy. While imme-

diately true in the exact case, when we work with approximate calibration, we lose an

additional ↵ when translating the quantitative guarantee.

Proposition 2.9. If a predictor p̃ : X ! [0, 1] is (C,↵)-multi-calibrated, then p̃ is (C, 2↵)-

multi-accurate.

To gain familiarity with both notions, we include a proof of the proposition.

Proof. Suppose that p̃ is a (C,↵)-multi-calibrated predictor with s = |supp(p)|. For any

subset S 2 C, consider the true expected outcome over DS . Denote by LS(p̃) the large

supported values,

LS(p̃) =

⇢
v 2 supp(p̃) : Pr

x⇠DS

[ p̃(x) = v ] > ↵/s

�
,

and let RS(p̃) = supp(p̃) \ LS(p̃).

E
x⇠DS

[ p⇤(x) ]

=
X

v2suppS(p̃)

Pr
x⇠DS

[ p̃(x) = v ] · E
x⇠DS

[ p⇤(x) | p̃(x) = v ] (2.1)

=
X

v2LS(p̃)

Pr
x⇠DS

[ p̃(x) = v ] ·

✓
E

x⇠DS

[ p⇤(x) | p̃(x) = v ]

◆

+
X

v2RS(p̃)

Pr
x⇠DS

[ p̃(x) = v ] ·

✓
E

x⇠DS

[ p⇤(x) | p̃(x) = v ]

◆
(2.2)



X

v2LS(p̃)

Pr
x⇠DS

[ p̃(x) = v ] ·

✓
E

x⇠DS

[ p̃(x) | p̃(x) = v ] + ↵

◆
+ |RS(p̃)| ·

↵

s
(2.3)

 E
x⇠DS

[ p̃(x) ] + 2↵ (2.4)
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where (2.1) follows by iterated expectations; (2.2) follows by expanding the summation

across the partition of supported values; (2.3) follows by the assumption that p̃ is multi-

calibrated and the definition of ↵-calibration; and (2.4) follows again by iterated expecta-

tions and the fact that RS(p̃) ✓ supp(p̃), so |RS(p̃)|  s. Thus, we have shown that for

each S 2 C

E
x⇠DS

[ p⇤(x) ]� E
x⇠DS

[ p̃(x) ]  2↵.

The reverse inequality follows similarly, so p̃ is (C, 2↵)-multi-accurate.

Most of this thesis focuses on multi-calibration for its strengths. In principle, multi-

accuracy provides weaker protections than multi-calibration and can be abused by making

arbitrary distinctions within subpopulations while still satisfying the correct overall expec-

tations. Still, despite the fact that multi-accuracy is a weaker notion, we can still prove

strong protections when the class C captures structure within p⇤.

Multi-accuracy guarantees that the predictions of a classifier appear unbiased over a

rich class of subpopulations. From a practical machine learning perspective, we often prefer

guarantees in terms of the classification accuracy, not just the bias. Recall, the classification

error or zero-one loss of a classifier f over a subpopulation S is defined as follow.

erS(f) = Pr
(x,y)⇠DS⇥Y

[ f(x) 6= y ]

For a predictor p : X ! [0, 1], we define a rounded classifier fp as follows based on a

threshold of 1/2.

fp(x) = 1 [ p(x) > 1/2 ]

Intuitively, as we take the collection C to include a more diverse set of subpopulations,

the guarantees of simultaneous unbiasedness should become stronger, and guarantee that a

useful classifier can be extracted. This intuition is formalized in the following proposition.

Proposition 2.10. Let ↵, " > 0. For any S 2 C, suppose EDS [ p⇤(x) ] � 1 � ". For a

(C,↵)-multi-accurate predictor p̃, the classification error on S of the classifier f p̃ is upper

bounded as

erS(f
p̃)  3"+ 2↵.

Proof. Consider some S 2 C such that EDS [ p⇤(x) ] � 1� ". By (C,↵)-multi-accuracy, this

means that EDS [ p̃(x) ] � 1 � " � ↵. With this upper bound on the expectation, we can
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analyze the probability that f p̃(x) = 0 over DS ; this will upper bound the probability of

false negatives. By Bayes’ rule,

E
x⇠DS

[ p̃(x) ] = Pr
x⇠DS

[ p̃(x) < 1/2 ] · E
x⇠DS

[ p̃(x) | p̃(x) < 1/2 ]

+ Pr
x⇠DS

[ p̃(x) � 1/2 ] · E
x⇠DS

[ p̃(x) | p̃(x) � 1/2 ] .

For notational convenience, let

p0 = Pr
DS

[ p̃(x) < 1/2 ] v0 = E
x⇠DS

[ p̃(x) | p̃(x) < 1/2 ] v1 = E
x⇠DS

[ p̃(x) | p̃(x) � 1/2 ] .

We can rearrange to obtain the following bound.

p0 =
v1 �Ex⇠DS [ p̃(x) ]

v1 � v0


1� (1� "� ↵)

1� v0

 2 · ("+ ↵)

where the inequalities follow by the fact that v0 < 1/2, v1  1, and the assumed bound on

the expectation from multi-accuracy.

Finally note from the original assumption, we know that PrDS [ y = 0 ]  "; thus, the

probability of false positives cannot exceed ". In total, we bound the error as the probability

of false positive or false negative as 3"+ 2↵.

This proposition highlights the intuition that the strength of multi-calibration lies in its

ability to detect the subpopulation of the a priori “qualified individuals;” that is, a set S 2 C

where EDS [ p⇤(x) ] is close to 1. Of course, an analogous statement could be proved about

identifying “unqualified individuals” as well. The point is that when C identifies meaningful

structure in p⇤—when there are sets S 2 C that correlate nontrivially with the expected

outcome of interest—then any predictor that is multi-accurate over C must di↵erentiate

nontrivially between the set where y = 0 and y = 1, even before these groups are revealed.

In this sense, the more expressive we take the class C—and thus, the stronger the a priori

guarantee we give—the more likely C is to contain a subpopulation that correlates strongly

with the set of a posteriori qualified individuals.



CHAPTER 2. BETWEEN GROUPS AND INDIVIDUALS 41

Chapter Notes

Work on fairness in algorithms and machine learning has exploded since the publication of

[DHP+12]. A comprehensive survey of this emerging field is beyond the scope of this thesis.

For an overview of the growing list of notions and approaches to fairness, we recommend

[MPB+18] as well as [BHN19].

Multi-calibration and multi-accuracy3 were first defined and studied in a joint work

with Úrsula Hébert-Johnson, Omer Reingold, and Guy N. Rothblum [HKRR18]. While

intuitively part of the motivation for multi-calibration and multi-accuracy, a variant of

Proposition 2.10 first appeared in a follow-up work to [HKRR18], joint work with Amirata

Ghorbani and James Zou [KGZ19].

3 [HKRR18] refers to multi-accuracy as “multi-accuracy-in-expectation”, or “multi-AE” for short.



Chapter 3

Learning Multi-Calibrated

Predictors

Having introduced multi-calibration, we turn our attention to learning multi-calibrated

predictors. If feasible, multi-calibration provides strong guarantees of population-wide

learning—no subpopulation identified within C can be overlooked. Still, the question re-

mains: When is multi-calibration feasible?

To start, if the true risk function p⇤ : X ! [0, 1] is simple enough to learn to high

precision, then multi-calibration will be attainable. As we’ve argued, p⇤ is multi-calibrated

with respect to every collection of subpopulations C. Often, however, p⇤ will not be directly

learnable. In such cases, we may worry that multi-calibration will be infeasible: perhaps the

multi-calibration constraints are restrictive enough that learning p⇤ is necessary to obtain

a multi-calibrated predictor. In this chapter, we describe a learning algorithm that shows

this fear is misplaced. We demonstrate that learning a (C,↵)-multi-calibrated predictor is

possible with complexity (in terms of necessary data and running time) scaling as a function

of C and ↵—independent of p⇤.

We describe and analyze the algorithm for learning multi-calibrated predictors across

the next sections. In Section 3.1, we describe our iterative algorithm in the statistical query

framework. At this level of abstraction, we can analyze the iteration complexity, which

a↵ects the running time as well as the eventual model complexity. Then in Section 3.2, we

show how to implement the statistical query oracle from a small set of samples. Due to

the self-referential calibration constraints, standard uniform convergence arguments do not

su�ce to guarantee validity. Instead in Section 3.3, we leverage a line of work showing how

42
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Algorithm 1 Multi-Calibrate Pseudocode

Repeat:

if there exists S 2 C and v s.t. pt is significantly mis-calibrated on S then
pt+1  re-calibrate on {x 2 S : pt(x) = v}
continue // next iteration upon update

end if
return p̃ = pt // return when calibrated

di↵erentially private algorithms can be used to maintain validity in adaptive data analysis

to obtain e�cient sample complexity for learning a multi-calibrated predictor.

Representing predictors. When describing the learning algorithm, we aim to be as

generic as possible, without explicit dependence on the way that the features encoding

individuals x 2 X or the functions c 2 C are represented. Still, to give a formal treatment,

we must discuss some technical elements of the way that we represent real-valued predictors.

Specifically, we will learn predictors p : X ! [0, 1] of finite discrete support. Recall, the

definition of approximate calibration is parameterized by the support size s = |supp(p)|.

As we’ll see, discretizing the interval [0, 1] into s = ⇥(1/↵) values su�ces to ensure ↵-

calibration simultaneously across all S 2 C with minimal overhead.

3.1 Learning a Multi-Calibrated Predictor

At its core, the algorithmic approach to learning a multi-calibrated predictor is one of

the simplest imaginable, and can be viewed as a variant of the boosting algorithm given

in [TTV09]. The algorithm starts with a trivial predictor p0 : X ! [0, 1]. Then, we begin an

iterative procedure that in the tth iteration checks whether there is a set S 2 C on which the

current predictor pt is mis-calibrated. If there is, then we update the predictions to better

reflect E[p⇤(x)]; else, we terminate guaranteed that the final predictor is well-calibrated on

all S 2 C. We describe the generic template for such an iterative algorithm in Algorithm 1.

While simple enough to state, the technicalities in implementing this algorithm e�-

ciently from a small set of samples take up the remainder of the chapter. Intuitively, if

the algorithm terminates and each component is implemented correctly, the correctness is

immediate; the returned predictor passes all of the possible multi-calibration tests. As such,
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our analysis focuses on an implementation of the components that guarantees correctness

and termination in a small number of iterations.

3.1.1 Statistical Query Algorithm

To begin, we describe an implementation of the framework sketched above in the statisti-

cal query model. Assuming access to certain distributional queries, we show that we can

implement the framework sketched in Algorithm 1 in a finite number of iterations. After

presenting the statistical query algorithm, we will show how to implement the necessary

oracles from a small set of samples.

Abstracting the interaction with labeled samples away, we allow the algorithm to ask

for approximate expectations of p⇤(x) on subpopulations over the distribution D. More

generally, we define these statistical queries for bounded functions over the domain.

Definition 3.1 (Statistical query). Suppose for b > 0, q : X ! [�b, b] is a bounded

function. For a subset S ✓ X , a statistical query on q over the distribution D estimates the

true expected outcome

q(S) = E
x⇠DS

[ q(x) ] .

Given a sequence of statistical queries (q1, S1), . . . , (qT , ST ) and ↵,� > 0, a (possibly-

randomized) function SQD,↵ : {X ! [�b, b]}⇥ {0, 1}X ! [0, 1] satisfies the statistical query

guarantee with (↵,�)-distributional accuracy if with probability at least 1� �

�� SQD,↵(q
t, St)� qt(St)

��  ↵

for each t 2 [T ].

We drop explicit reference to � as we will always set � to be negligible; the correctness

of the algorithm is predicated on the queries being correct. Note that this definition of sta-

tistical queries is tailored to the definition we use for approximate calibration. Specifically,

↵-calibration over a subset S requires relative error of at most ↵ (i.e., scaled by the density

of S in D). Thus, we define statistical queries to be ↵-accurate on expectation queries

over restrictions of the distribution, DS . Traditionally, statistical queries are defined to

guarantee absolute error (i.e., always measured with respect to an expectation over D).

Recall that the definition of multi-calibration only requires that we be well-calibrated

over sub-level sets {x 2 S : p̃(x) = v} provided PrDS [ p̃(x) = v ] > ↵/s for a support-s
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predictor p̃. This technicality, while sensible as a notion of approximation is reasonable,

is used primarily to ensure that our algorithm terminates in a finite number of iterations

and samples. Thus, we will also assume access to a certain density query oracle DQD,⌧ :

{0, 1}X ! {7,X} satisfying the property

• if PrD [ x 2 S ]  ⌧/2, then DQD,⌧ (S) = 7

• if PrD [ x 2 S ] > ⌧ , then DQD,⌧ (S) = X

with high probability. With these oracles in place, we describe the statistical query algo-

rithm in Algorithm 2.

As in the sketch, the algorithm searches over each S 2 C and v 2 ⇤. If a given sub-level

set is a large enough fraction of DS to be considered, then the algorithm proceeds to make

a statistical query of p⇤. When we query the expectation over the set of individuals x 2 S

where pt(x) = v, then we see the statistical query tells us the degree to which the sub-level

set is miscalibrated. Specifically, pt violates (C,↵)-multi-calibration if there is some set

where ���� v � E
x⇠DS

[ p⇤(x) | pt(x) = v ]

���� > ↵.

Querying the expected value with su�cient accuracy, we update the predictor from pt to

pt+1 if the miscalibration exceeds ↵.

Remark. As a technicality, we assume that SQD,↵ returns a multiple of ↵. This ensures

that the support of the predictor remains ⇤ and does not grow in cardinality with updates.

We take care to ensure this property holds when implementing the oracle from samples.

Analysis of algorithm. We analyze Algorithm 2 showing that—assuming the statistical

and query guarantees—the algorithm terminates in a bounded number of iterations return-

ing a multi-calibrated predictor p̃. First, we observe that if Algorithm 2 terminates, then p̃

is a (C,↵)-multi-calibrated predictor.

Proposition 3.2. Suppose Algorithm 2 returns a predictor p̃. Then, p̃ is (C,↵)-multi-

calibrated with all but negligible probability.

Proof. Note that by construction of ⇤, p̃ is supported on at most s = 4/↵ possible values.

Recall, by the definition of (C,↵)-multi-calibration and ↵-calibration, we need to reason
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Algorithm 2 SQ-Multi-Calibrate

Given:

C ✓ {0, 1}X // collection of subpopulations

↵ > 0 // approximation parameter

� > 0 // density lower bound

SQD,↵ // statistical query oracle

DQD,⌧ // density query oracle

Initialize:

⌧  ↵2�/4
⇤ 

�
0, ↵4 ,

↵
2 , . . . ,

⌅
4
↵

⇧
·
↵
4

 
// discretize interval [0,1]

8x 2 X : p0(x) 1/2 // initialize uniformly

Repeat: for t = 0, 1, . . .

for each S 2 C and each v 2 ⇤ do
Sv  {x 2 S : pt(x) = v} // consider level sets

if DQD,⌧ (Sv) = 7 then
continue to next Sv // only consider large sets

end if
u SQD,↵/4 (p

⇤, Sv) // query expectation

if |v � u| > 3↵/4 then
8x 2 Sv : pt+1(x) u // test and update for calibration

8x 2 X \ Sv : pt+1(x) pt(x)
break and continue to t t+ 1 // new iteration upon update

end if
end for
return p̃ = pt // return when no update occurs

about the su�ciently-large level sets {x 2 S : p̃(x) = v} where

Pr
x⇠DS

[ p̃(x) = v ] >
↵

s
� ↵2/4.

If p̃ is returned, then the final iteration certifies that for all S 2 C and all values v 2 ⇤,

if DQD,⌧ (Sv) = X, then
��v = SQD,↵(p

⇤;Sv)
��  3↵/4.

With all but negligible probability, if Prx⇠DS [ p(x) = v ] > ↵2/4, then the density query

DQD,⌧ (Sv) = X for all Sv. This follows by taking ⌧ = ↵2�/4, the assumed density lower
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bound of � for all S 2 C, and the assumed density query guarantee. Thus, for each such

Sv, the iteration continues to test the expectation of p⇤. By the statistical query accuracy

guarantee, we know that with all but negligible probability u = SQD,↵/4(p
⇤, Sv) satisfies

���� u� E
x⇠DS

[ p⇤(x) | p̃(x) = v ]

����  ↵/4.

If |u� v|  3↵/4 for each of these sets, then

���� v � E
x⇠DS

[ p⇤(x) | p̃(x) = v ]

����  ↵.

Thus, any returned p̃ satisfies (C,↵)-multi-calibration.

Next, we argue that Algorithm 2 is guaranteed to terminate and return a predictor p̃ in

a bounded number of iterations.

Lemma 3.3. Let ↵, � > 0. Suppose that C ✓ {0, 1}X is a collection of subpopulations such

that PrD [ x 2 S ] � � for all S 2 C. Assuming access to a density query oracle DQD and

statistical query algorithm SQD, Algorithm 2 returns a (C,↵)-multi-calibrated predictor p̃ in

at most O

✓
1

↵4�

◆
iterations.

Proof. We prove Lemma 3.3 using a potential argument. Specifically, we will track the

expected squared error between pt and p⇤

E
x⇠D

h
(p⇤(x)� pt(x))

2
i
.

We show that in each iteration, the update from pt to pt+1 causes a significant reduction in

the expected squared error. Noting that the squared error is a nonnegative potential that

cannot exceed 1 (by the fact that predictors are bounded in the interval [0, 1]), progress at

each iteration implies a bounded number of iterations.

First, we note that for every non-terminating iteration t, there is some S 2 C and v 2 ⇤

such that |u� v| > 3↵/4 for u = SQD,↵/4(p
⇤, Sv). Thus, the only changes from pt to pt+1

occur on x 2 S where pt(x) = v to pt+1(x) = u. Thus, we consider the di↵erences in squared
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error conditioning on x 2 S and pt(x) = v, which we denote �t,S,v.

�t,S,v = E
x⇠DS

h
(p⇤(x)� pt(x))

2
��� pt(x) = v

i
� E

x⇠DS

h
(p⇤(x)� pt+1(x))

2
��� pt(x) = v

i

= E
x⇠DS

h
(p⇤(x)� v)2

��� pt(x) = v
i
� E

x⇠DS

h
(p⇤(x)� u))2

��� pt(x) = v
i

= v2 � u2 � 2 · E
x⇠DS

[ p⇤(x) | pt(x) = v ] · (v � u)

=

✓
v + u� 2 · E

x⇠DS

[ p⇤(x) | pt(x) = v ]

◆
· (v � u)

= (v � u)2 � 2 ·

✓
E

x⇠DS

[ p⇤(x) | pt(x) = v ]� u

◆
· (v � u) (3.1)

For notational convenience, we introduce the following variables.

dvp⇤ = v � E
x⇠DS

[ p⇤(x) | pt(x) = v ] dup⇤ = u� E
x⇠DS

[ p⇤(x) | pt(x) = v ]

By the update conditions and statistical query guarantee, we can derive the following in-

equalities.

↵/2  |v � u|  dvp⇤ + ↵/4 (3.2)

|v � u| 
3

2
· |dvp⇤ | (3.3)

dvp⇤ · (v � u) > 0, (3.4)

where (3.3) follows from (3.2) and (3.4) indicates that updating from v to u moves in the

same direction as updating from v to the true expectation of p⇤.

Then, rearranging (3.1), we obtain the following bound.

(3.1) = (v � u)2 � 2 · ((v � u)� dvp⇤) · (v � u)

= 2dvp⇤ · (v � u)� (v � u)2

�
(v � u)2

3
(3.5)

where (3.5) follows by (3.3) and (3.4). By (3.2) �t,S,v � ↵2/12.

To track the change to the overall potential, we need to scale this conditional expectation

probability that x 2 S and pt(x) = v. We denote the overall potential change at the tth
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iteration as �t.

�t = E
x⇠D

h
(p⇤(x)� pt(x))

2
i
� E

x⇠D

h
(p⇤(x)� pt+1(x))

2
i

= Pr
x⇠D

[ x 2 Sv ] ·�t,S,v

We know that if Sv is updated, then it passed the density query test. By the density query

oracle guarantee, we know that if DQD(Sv,↵2�/4) = X, then Prx⇠D [ x 2 Sv ] > ↵2�/8.

Thus, in all, we know that the progress at each iteration is lower bounded by

�t >
↵4�

96
.

Thus, Algorithm 2 terminates and returns p̃ after at most O

✓
1

↵4�

◆
iterations.

In order to obtain to complete the description of an algorithm for learning a multi-

calibrated predictor from samples, it remains to demonstrate how to implement the density

query and statistical query oracles from a small set of samples. Even without such an im-

plementation, however, bounding the iteration complexity of Algorithm 2 actually provides

an upper bound on the representation complexity of multi-calibrated predictors. In partic-

ular, as a corollary of Lemma 3.3, we can obtain a bound on the circuit complexity needed

to represent a (C,↵)-multi-calibrated predictor p̃. Importantly, the bound only depends

on the circuit complexity of C and the approximation parameters—not on the complexity

of representing p⇤. Thus, multi-calibrated predictors can always be represented e�ciently,

even when the underlying true risk is arbitrarily complex.

Theorem 3.4 (Corollary of Lemma 3.3, informal). Suppose C ✓ {0, 1}X is a collection of

subpopulations with circuit complexity c; that is, for each S 2 C, the characteristic function

�S : X ! {0, 1} is computable by a circuit of size at most c. Then, for ↵, � > 0, if

PrD [ x 2 S ] � � for all S 2 C, there exists a (C,↵)-multi-calibrated predictor p̃, such that

the circuit complexity of p̃ is at most O
�
c/↵4�

�
.

We state Theorem 3.4 informally, ignoring the details of how we represent the ⇥(↵)-

accurate real-values and perform functions like addition. The takeaway is that the com-

plexity of representing multi-calibrated functions depends on the complexity of C. This is

another way in which C must define “e�ciently-identifiable” subpopulations in order to be

e↵ective: if we cannot e�ciently compute set membership for S 2 C, then it is not clear how
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to enforce multi-calibration over C. Conversely, the theorem says that if we can compute

set membership e�ciently, then the multi-calibrated predictor resulting from Algorithm 2

will be e�cient to evaluate. This fact follows immediately from the bound on the iteration

complexity of Algorithm 2 and by observing that the only operations necessary to com-

pute pt at each iteration are addition, testing equality over values in ⇤, and evaluating set

membership for the updated sets.

3.2 Answering Multi-Calibration Statistical Queries

In this section, we open the black boxes of the query oracles used in Algorithm 2. We will

show how to implement the oracles using the empirical expectations from samples. Due

to the adaptive nature of the queries of Algorithm 2—as pt changes, the set of possible

queries changes—we need to take care in translating the guarantees for a single query into a

bound for all of the queries. In this section, we establish a baseline using the naive strategy

of taking a fresh sample after every update. In Section 3.3, we show how to improve the

labeled sample complexity by implementing the statistical query oracle in a di↵erentially

private manner.

3.2.1 Implementing Oracles from Small Set of Samples

We begin by showing how to implement the density and statistical query oracles, for a

fixed query set, from a small set of samples. After analyzing how to answer a single query,

we turn to bounding the number of samples needed to answer all of the queries asked in

Algorithm 2.

Implementing the density query oracle. We argue that the density query oracle can

be implemented given access to unlabeled samples from the distribution D. Specifically, the

oracle is described in Algorithm 3. Taking m su�ciently large, the implementation satisfies

the density query oracle guarantees with high probability.

Lemma 3.5. Given a subset S ✓ X , threshold ⌧ > 0, failure probability � > 0, and

m independent unlabeled samples from D, Algorithm 3 satisfies the density query oracle

guarantee with probability at least 1� � provided m �
32 · log(1/�)

⌧
.
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Algorithm 3 Density Query Oracle

On query DQD,⌧ (S):

Draw x1, . . . , xm ⇠ D // independent unlabeled samples

�̂S  
1
m ·
Pm

i=1 1 [ x 2 S ] // compute empirical density

if �̂S > 3⌧/4 then
return X // sufficiently dense

end if
return 7

Proof. Let �S = PrD [ x 2 S ] denote the true density of the set S over D. To establish the

lemma, we prove the follow claims that correspond to the density query oracle guarantees.

With probability at least 1� �, over the randomness in the samples:

(a) if �S  ⌧/2, then �̂S  3⌧/4

(b) if �S > ⌧ , then �̂S > 3⌧/4

Noting that �̂S is a empirical expectation of m independent nonnegative random variables

bounded by 1 with expectation �S , both claims will follow by an application of Cherno↵’s

inequalities (Theorem A.1).

(a) First, suppose that �S  ⌧/2. Then, we bound the probability that �̂S exceeds 3⌧/4

as follows.

Pr [ �̂S > 3⌧/4 ] = Pr


�̂S >

3⌧

4�S
· �S

�

Letting � =

✓
3⌧

4�S
� 1

◆
and applying Cherno↵’s inequality, we obtain

Pr [ �̂S > 3⌧/4 ]  exp

✓
��2

2 +�
· �S ·m

◆
.

Under the assumption that �S  ⌧/2, then � is bounded as

� =

✓
3⌧

4�S
� 1

◆
�

✓
3⌧

4 · (⌧/2)
� 1

◆
= 1/2.
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Thus, we suppose � � 1/2. Then,

exp

✓
��2

2 +�
· �S ·m

◆
 exp

✓
��2

· �S
5�

·m

◆

= exp

✓
�� · �S

5
·m

◆
.

Again, leveraging the assumption that �S  ⌧/2, we can expand the numerator in the

exponential as follows.

� · �S =

✓
3⌧

4�S
� 1

◆
· �S

=
3⌧

4
� �S

�
⌧

4

Thus, we can obtain the desired bound of � failure probability by taking

Pr [ �̂S > 3⌧/4 ]  exp

✓
�⌧ ·m

20

◆
 �.

(b) Next, suppose that �S > ⌧ . Then, we bound the probability that �̂S is at most 3⌧/4 as

Pr [ �̂S  3⌧/4 ]  Pr


�̂S 

3

4
· �S

�
,

by the assumption that �S > ⌧ and the fact that the probability of tail events is monoton-

ically decreasing away from the true mean. This time, we can apply Cherno↵’s inequality

in the other direction with � = 1/4:

Pr [ �̂S  3⌧/4 ]  exp

✓
�(1/4)2

2
· �S ·m

◆

 exp

✓
�⌧ ·m

32

◆
(3.6)

 �

where (3.6) follows by the assumption on �S > ⌧ .

Thus, taking m �
32 · log(1/�)

⌧
su�ces to provide the density query oracle guarantee

for DQD(S, ⌧) with probability at least 1� � in either case.
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Algorithm 4 Statistical Query Oracle

On query SQD,↵(p
⇤, S):

Draw (x1, y1), . . . , (xm, ym) ⇠ DX⇥Y // independent labeled samples

mS  
Pm

i=1 1 {xi 2 S}
ŷS  

1
mS

·
Pm

i=1 1 [ xi 2 S ] · yi // compute empirical expectation

u round ŷS to nearest multiple of ↵
return u

Implementing the statistical query oracle. Next, we turn our attention to imple-

menting the statistical query oracle from labeled samples from DX⇥Y . The implementation

in Algorithm 4 tests and reports the empirical average of the statistical query.

Lemma 3.6. For a subset S ✓ X , let �S = Prx⇠D [ x 2 S ]. Given 0 < ↵ < 1/2, failure

probability � > 0, and m independent samples from DX⇥Y , Algorithm 4 satisfies the (↵,�)-

distributional accuracy statistical query guarantee, provided m �
4 · log(2/�)

↵2 · �S
.

Proof. First, we argue that with high probability mS � �S ·m/2. By Cherno↵’s inequality,

Pr [ mS < �S ·m/2 ]  exp
⇣
�
�S ·m

8

⌘
,

so for m �
8 · log(2/�)

�S
, then mS � �S · m/2 with probability at least 1 � �/2. Next, we

condition on the event where there are at least mS � �S ·m/2 draws where x 2 S. ŷS is an

unbiased estimate of EDS⇥Y [ y ] = EDS [ p⇤(x) ]. Further, ŷS is the sum of mS independent

random variables bounded in the range {0, 1}. Thus, we can bound the probability that

the estimate deviates by more than ↵ using Hoe↵ding’s inequality.

Pr

 ���� E
x⇠DS

[ p⇤(x) ]� ŷS

���� > ↵

���� mS � t

�

 Pr

 ���� E
x⇠DS

[ p⇤(x) ]� ŷS

���� > ↵

���� mS = t

�

 exp

✓
�
↵2

· t

2

◆
(3.7)

where (3.7) follows by Hoe↵ding’s Inequality (Theorem A.3). For t = �S · m/2, then for

m �
4 · log(2/�)

↵2�S
we have that with probability at least 1� �/2, |p̂S � ŷS | is ↵-accurate.

To satisfy the statistical query requirement, we take m to guarantee that ŷS is ↵/2-

accurate and then round to the nearest multiple of ↵. Thus, we can apply a union bound



CHAPTER 3. LEARNING MULTI-CALIBRATED PREDICTORS 54

to conclude that provided

m � max

⇢
8 · log(2/�)

�S
,
4 · log(2/�)

↵2�S

�
= ⇥

✓
log(1/�)

↵2�S

◆
,

the statistical query oracle guarantee is satisfied with probability at least 1��. The claimed

bound follows by assuming ↵ < 1/2 is nontrivial.

Answering the adaptive queries. With the sample complexities from Lemmas 3.5 and

3.6 in place, we can establish upper bounds on the sample complexity needed to answer

a fixed set of queries. Specifically, suppose we want to guarantee validity on queries over

a fixed collection of subpopulations C; then, we can apply the lemmas taking � = �0/ |C|,

then applying a union bound to bound the probability of failure by �0.

The problem with applying this argument to all of the queries made by Algorithm 2 is

that the set of possible queries is not fixed. Multi-calibration requires us to reason about

the accuracy of the level sets of the predictor in question. At the tth iteration, we make

queries on sets defined as Sv = S \ {x : pt(x) = v}. Importantly, the queries over the level

at the tth iteration depends on the t � 1 prior updates we’ve made. In other words, the

queries we ask are chosen adaptively based on the earlier statistical queries. Classically, to

maintain validity over adaptive statistical queries, we sample a fresh set of data every time

we update the set of queries we may ask. In the context of Algorithm 2, the set of queries

changes each time we update the predictions. Thus, to guarantee validity, we can take a

fresh set of data per iteration, resulting in the following bound.

Proposition 3.7 (Naive sample complexity). Let ↵,�, � > 0. Suppose that C ✓ {0, 1}X is a

collection of subpopulations such that PrD [ x 2 S ] � � for all S 2 C. Then, given access to

mu independent unlabeled samples from D and m` independent labeled samples from DX⇥Y ,

there is an implementation of Algorithm 2 that returns a (C,↵)-multi-calibrated predictor

with probability at least 1� �, for mu = O

✓
log(|C| /↵��)

↵6�2

◆
and m` = O

✓
log(|C| /↵��)

↵8�2

◆
.

Proof. The claim follows by running Algorithm 2 with DQD implemented by Algorithm 3

and SQD implemented by Algorithm 4. The general approach will be to feed Algorithm 3

and 4 fresh samples at the beginning of each iteration with su�ciently many samples to

guarantee validity within the iteration. The overall complexity follows from the bound of

T = O(1/↵4�) on the iteration complexity.
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Note that for each t = 0, . . . , T , at the start of iteration t, there is a fixed set of

density and statistical queries that the algorithm can make. Specifically, these queries are

determined by the subsets Ct defined as

C
t =

�
St
v = S \ {x : pt(x) = v} : 8S 2 C, 8v 2 ⇤

 
. (3.8)

By the discretization defined in ⇤, |Ct|  |C| /↵.

(Density queries) In each iteration, Algorithm 2 tests if each St
v 2 C

t has density at

least ⌧ = ↵2�. Thus, by Lemma 3.5, given m0 = O

✓
log(1/�0)

↵2�

◆
unlabeled samples per

iteration, each query to DQD will be correct with probability at least 1 � �0. By union

bounding against each potential query St
v 2 C

t per iteration, and then against each iteration

t 2 [T ], if we take �0 = O

✓
�

|Ct| · T

◆
, then with probability at least 1�� every query across

the algorithm will be correct. Thus, taking �0 = O

✓
↵5��

|C|

◆
the stated bound on mu

follows.

(Statistical queries) Once we’ve certified that a set St
v 2 C

t has density at least

�St
v
� ↵2�, then we may ask a statistical query. By Lemma 3.6, given m0 = O

✓
log(1/�0)

↵2 · ↵2�

◆

labeled samples per iteration, each query to SQD will be correct with probability at least

1� �0. Selecting �0 as above, the stated bound on m` follows.

3.3 Improved Sample Complexity via Di↵erential Privacy

As we’ve discussed, the multi-calibration statistical queries asked in Algorithm 2 are chosen

adaptively. In other words, the decisions about which subpopulations to query changes

as a function of the answers to prior queries. From a classical statistical perspective, this

form of adaptive data analysis is a recipe for statistical invalidity due to overfitting. A

recent line of work, however, has investigated techniques for guaranteeing the validity of

conclusions of an adaptive statistical analyst. Specifically, the research program investi-

gates how di↵erential privacy [DMNS06, DR14]—a concept of algorithmic stability used

to guarantee the privacy of individuals within a database—can be used to prevent over-

fitting. Starting with [DFH+15a, DFH+15c, DFH+15b], many works from the past few

years [RZ16,BNS+16, JLN+20] have pinned down quite elegantly the way that di↵erential

privacy can be used to improve statistical validity in adaptive data analysis.
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At a high-level, di↵erential privacy guarantees that upon viewing the output of a mecha-

nism, an adversary cannot e↵ectively distinguish whether an individual’s datum was or was

not included as an element of the mechanism’s data. Intuitively, if an adaptive data analyst

could overfit to the training data significantly, then running the analysis could be used as

an e↵ective statistical test to break di↵erential privacy. Much technical work has gone into

turning this intuition into formal theorem statements, culminating in the work of [JLN+20],

who give an intuitive proof of the “transfer” theorem showing that a di↵erentially private,

sample-accurate mechanism must also be distributionally-accurate. Most pertinent to our

application is the following theorem, implicit in [JLN+20].

Theorem 3.8 (Implicit in [JLN+20]). Suppose ↵,�, ", �,� > 0. For a distribution D

supported on a discrete universe Z, consider a sequence of bounded statistical queries over

functions q1, . . . , qT : Z ! [0,�] such that for all t 2 [T ],

E
z⇠D

[ qt(z) ] 2 [0, 1].

Suppose that a mechanism M , given m samples z1, . . . , zm ⇠ D, answers the sequence of

queries while satisfying the following properties:

• M is (", �)-di↵erentially private;

• M is (↵,�)-sample accurate; that is, with probability at least 1� �, for all queries qt,

�����
1

m

mX

i=1

qt(zi)�M(qt)

�����  ↵;

• and M(qt)  1 for all t 2 [T ].

Then for every c, d > 0, the mechanism M is (↵0,�0)-distributionally accurate for ↵0 =

↵ + c + (e" � 1) + 2d and �0 = �/c + �/d; that is, with probability at least 1 � �0, for all

queries qt, ���� Ex⇠D

[ qt(x) ]�M(qt)

����  ↵0.

Note that by setting the parameters in Theorem 3.8 as ↵ = ↵0, " = ↵0/2, c = ↵, d = ↵/2,

and � = ↵�0, � = ↵�0, then we obtain a (4↵0, 3�0)-distributionally accurate mechanism for

answering the sequence of queries.
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Algorithm 5 DP-Multi-Calibrate

Repeat: for t = 0, 1, . . .

for each S 2 C and each v 2 ⇤ do
Sv  {x 2 S : pt(x) = v} // consider level sets

�̂S,v  DQD,⌧,� (Sv)
if �̂S,v < ⌧ then
continue to next Sv // only consider large sets

end if
µ 1/�̂S,v
� DP-SQD,↵ (�v,S,µ) // DP query expectation

if � > 0 then
8x 2 Sv : pt+1(x) v �� // test and update for calibration

8x 2 X \ Sv : pt+1(x) pt(x)
break and continue to t t+ 1 // new iteration upon update

end if
end for
return p̃ = pt // return when no update occurs

Improved Sample Complexity. In this section, we will re-implement the statistical

query oracle in a manner that guarantees di↵erential privacy, even given the adaptivity

in the chosen queries. Our mechanism will be based on the private multiplicative weights

framework of [HR10], which is designed to answer many statistical queries accurately, pro-

vided the number of rounds of adaptivity is bounded. In all, we will prove the following

statement about the revised Algorithm 5, completing our analysis of the sample complexity

of learning a (C,↵)-multi-calibrated predictor.

Theorem 3.9. Let ↵,�, � > 0. Suppose that C ✓ {0, 1}X is a collection of subpopulations

such that for all S 2 C, PrD [ x 2 S ] � �. Then, given access to mu independent unlabeled

samples from D and m` independent labeled samples from DX⇥Y , there is an implementation

of Algorithm 5 that returns a (C,↵)-multi-calibrated predictor with probability at least 1� �

provided

mu � ⌦

✓
log(|C| /�)

↵8�2

◆
m` � ⌦

 
log(|C| /↵��)3/2

↵6�3/2

!
.

While the sample complexity in Theorem 3.9 does not improve over Proposition 3.7

in all parameter settings, in many reasonable settings, the approach applying di↵erential
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privacy will be improved. In particular, for the multi-calibration guarantee to give strong

protections over the collection of subpopulations C, we would typically take ↵ to be a

small constant and protect populations that may only be in the distribution with a small

� probability. Thus, saving a 1/↵2�1/2-factor is a considerable savings regardless of the

chosen C, and typically will outweigh the additional log(|C| /�)1/2-factor. Further, in many

settings the distribution D is well-understood; in this case, the additional unlabeled samples

may be significantly cheaper than obtaining labeled samples.

Overview of approach. Due to the nature of the multi-calibration constraints and

the way that Algorithm 2 asks queries, our application of the main DP-transfer theo-

rem will be slightly indirect. Recall that in principle, we would like to query the value

of Ex⇠DS [ p⇤(x) | pt(x) = v ]; if it is far from v, then we want to issue an update. To apply

the transfer theorem we need to adjust the algorithm as follows.

First, when asking density queries of the sub-level-sets DQD,⌧,�(Sv), we will require a

much tighter estimate of the probability �S,v = PrD [ x 2 Sv ]. In particular, we require an

e±� multiplicative approximation for � = O(↵) rather than a constant, and have the oracle

return the estimate �̂S,v. We require more unlabeled samples in Algorithm 5 compared to

Algorithm 2 to perform this more stringent density estimation.

Then, with the estimate �̂S,v in hand, we can issue a statistical query that simulates

the desired query. Specifically, we will query the following di↵erence function. For a value

v 2 [0, 1] and a sensitivity parameter µ, we let the function �v,µ : X ! [0, 1] be defined as

�v,S,µ(x) = µ · (v � p⇤(x)) · 1 [ x 2 S ] .

If we take a statistical query over the function �v,S,µ—based on the choice of µ = �̂S,v—is

to approximate the mis-calibration on Sv.

E
x⇠D

[ µ · (v � p⇤(x)) · 1 [ x 2 S ] ] = E
x⇠D


(v � p⇤(x)) · 1 [ x 2 Sv ]

�̂S,v

�

⇡ v � E
x⇠DS

[ p⇤(x) | pt(x) = v ] .

Some care must be taken to prove the claimed approximations formally, but the main

technical hurdle is to implement the statistical query algorithm in a way that we can apply

the transfer theorem for statistical generalization.
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Specifically, with the estimate �̂S,v in hand, we will implement the statistical query by

answering the query to guarantee (↵,�)-sample accuracy; that is, accuracy to the empirical

estimate

u =
1

m

mX

i=1

yi · 1 [ xi 2 Sv ]

�̂S,v
.

Importantly, estimating the density �̂S,v non-privately and separately from the statistical

query allows our interaction with the labeled sample to have fixed, bounded sensitivity on a

query whose answer never needs to exceed 1. Thus, if we can implement the mechanism to

satisfy (", �)-di↵erential privacy, we can then apply the transfer theorem to guarantee that

the mechanism’s responses will be distributionally accurate.

The details. As we will see, implementing the statistical query oracle to answering the

multi-calibration queries while satisfying di↵erential privacy is a bit delicate. In particular,

to guarantee di↵erential privacy, our technique will require a bound on the number of

rounds of adaptively chosen queries; conversely, to guarantee a bounded number of rounds,

we need to guarantee that the algorithm only su↵ers “privacy loss” upon an update to the

predictive model. Thus, we use a separate unlabeled sample to estimate the density queries;

this way, we will only guarantee privacy over the labeled sample (su�cient to guarantee

generalization) but will never use any of our privacy budget on the density queries.

First, we show that given a su�ciently accurate estimate of the density PrD [ x 2 Sv ],

we can answer the multi-calibration queries as a bounded-sensitivity “absolute” statistical

query (i.e., as an expectation over DX⇥Y without conditioning).

Lemma 3.10. Suppose �S,v = PrD [ x 2 Sv ] and let
���log

⇣
�̂S,v
�S,v

⌘���  � < 1/2. Then,

���� E
x,y⇠DX⇥Y


y · 1 [ x 2 Sv ]

�̂S,v

�
� E

x⇠DS

[ p⇤(x) | pt(x) = v ]

����  2�.

Proof. Leveraging the bounded ratio between �̂S,v and �S,v, we bound the expectation as
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follows.

E
x,y⇠DX⇥Y


y · 1 [ x 2 Sv ]

�̂S,v

�
 e� · E

x,y⇠DX⇥Y


y · 1 [ x 2 Sv ]

�S,v

�

= e� · E
x⇠DS

[ p⇤(x) | pt(x) = v ]

 (1 + 2�) · E
x⇠DS

[ p⇤(x) | pt(x) = v ]

 E
x⇠DS

[ p⇤(x) | pt(x) = v ] + 2�.

The other direction of the inequality follows by a similar argument.

Thus, taking � = ↵/4, to estimate the statistical query EDS [ p⇤(x) | pt(x) = v ], we

obtain the unlabeled sample complexity again by a Cherno↵ bound, similar to Lemma 3.5.

With such a density query oracle in place, it su�ces to implement statistical queries for

�v,S,µ.

Di↵erentially Private Statistical Queries. The mechanism we build essentially follows

the private multiplicative weights mechanism of [HR10]. We adapt the proof of privacy and

accuracy to our setting; specifically, our proof follows the analysis from [Vad17] quite closely.

Our goal in this section is not to give a comprehensive overview of DP, but rather provide

a high-level proof of the result given a working knowledge of DP. For a comprehensive

background on di↵erential privacy, the author recommends [DR14,Vad17].

Di↵erential privacy is a strong notion of stability for data analysis algorithms. A DP

mechanism for interacting with a database guarantees that small changes to the database

cannot have profound impacts on the distribution of outcomes.

Definition 3.11 (Di↵erential Privacy). Fix ", � > 0. For a discrete domain Z and a family

of queries Q ✓ {q : Z ! [0, 1]}, a mechanism M : Zm
⇥ Q ! [0, 1] is (", �)-di↵erentially

private if for all neighboring databases Z,Z 0
✓ Z where kZ � Z 0

k0 = 1 and every query

q 2 Q, for all events T

Pr [ M(Z, q) 2 T ]  e" ·Pr
⇥
M(Z 0, q) 2 T

⇤
+ �

where the probability is taken over the randomness in the mechanism. A mechanism is

"-di↵erentially private if it is (", 0)-di↵erentially private.
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A key appeal of di↵erential private mechanisms is that they allow for modular design.

In particular, given the outputs of multiple DP mechanisms over the same data, the total

privacy loss degrades gracefully. Further, DP is closed under post-processing—that is, for

any function f , if the release of X is (", �)-DP, then the release of f(X) is equally privacy-

preserving (", �)-DP. Formally, our analysis relies upon the following advanced composition

theorem.

Theorem 3.12 (Advanced composition, [DRV10]). Suppose M1, . . . ,MT are T (possi-

bly adpatively chosen) "0-di↵erentially private mechanisms for T < 1/"20. Then, M =

(M1, . . . ,MT ) is (", �)-di↵erentially private for any � > 0 and " = O("0 ·
p
T · log(1/�)).

With advanced composition and post-processing in place, the last preliminary we need

to describe our mechanism is the Laplace mechanism, which guarantees "-DP for bounded

sensitivity queries. We say a function Q has input sensitivity of � if for all neighboring

databases kZ � Z 0
k0 = 1,

��Q(Z)�Q(Z 0)
��  �.

Theorem 3.13 (Laplace Mechanism, [DMNS06]). Suppose Q : Z⇤
! [0, 1] is a function

of a database with input sensitivity �. Then, given a database Z 2 Z
⇤, a mechanism that

releases

Q(Z) + Lap

✓
�

"

◆

is "-di↵erentially private.

Here, L ⇠ Lap(B) denotes a random variable drawn from the Laplace distribution with

mean 0 and scale parameter B. The main fact that we need about the Laplace distribution

is the following tail bound.

Fact (Laplace tails). Let L ⇠ Lap (B) be a random variable distributed according to the

Laplace distribution with mean 0 and scale B. The magnitude of the random variable |L| is

distributed as follows.

Pr [ |L| > ⌧ ] = exp

✓
�⌧

B

◆

The mechanism. With these preliminaries in place, we’re now able to describe the mech-

anism for interacting with the labeled data. The mechanism can be viewed as a composition

of multiple Laplace mechanisms, designed to allow for the release of many queries. Impor-

tantly, when the query value is su�ciently small (i.e., the predictor pt is already quite
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Algorithm 6 Private SQ Oracle

Initialize:

Given ↵, �, "0 > 0 and m 2 N
Draw Z  (x1, y1), . . . , (xm, ym) ⇠ DX⇥Y // independent labeled samples

µ0  2/↵2� // worst-case sensitivity

⌧  ↵/2 + Lap (µ0/"0m) // randomize error tolerance

On query DP-SQD,↵(�v,S,µ,X ):

u 1
m ·
Pm

i=1 µ · yi · 1 [ xi 2 S ]

�̂v,S,µ  |v � u|

if �̂v,S,µ + Lap (µ0/"0m)  ⌧ then
return 0 // v is sufficiently accurate

end if
⌧  ↵/2 + Lap (µ0/"0m) // re-randomize after release

return �̂v,S,µ + Lap (µ/"0m) // round to nearest multiple of alpha in [0,1]

accurate on the sub-level set Sv) we return 0 with high probability. In such cases, very little

information about the database is actually released. The main privacy loss occurs when we

return a non-zero �̂v,S,µ. But recall, these are also the iterations upon which we update pt.

Intuitively, as long as we make su�cient progress towards multi-calibration in each of these

iterations, Algorithm 5 will terminate with a multi-calibrated predictor before we use up

our privacy budget.

We give a description of the mechanism in Algorithm 6. To begin the analysis, note

that for a given a run of Algorithm 5, we can split the sequence of queries into T rounds.

At the start of each round t 2 [T ], we fix the set of possible queries that we might ask

to be C
t as defined in (3.8). Within each round, the algorithm continues to ask statistical

queries from C
t until the response is non-zero. Then, the model pt is updated based on the

statistical query and the round ends. Importantly, the response to every query in the round

is 0, except for the final response in ⇤.

We argue that Algorithm 6 is a DP mechanism to handle such sequences of queries.

Specifically, we will analyze Algorithm 6 as separate "0-DP sub-mechanisms for each round

that will guarantee accuracy within the round with high probability. Then to analyze the

privacy of the entire algorithm, we apply advanced composition to the T rounds and obtain

an (", �)-DP mechanism for " = "0 ·
p

T · log(1/�).

Further, for the right choice of "0 and m, we can guarantee that the responses are
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su�ciently sample accurate. Applying the transfer theorem, we will show that the entire

sequence of queries are answered su�ciently accurately for Algorithm 5 from a bounded m.

First, we argue that if we set "0 and m appropriately, we can guarantee sample accuracy.

Proposition 3.14 (Sample Accuracy). Suppose m � 2·log(1/�0)
↵3�"0

. Then, every non-zero re-

sponse is ↵/16-sample accurate.

Proof. Suppose DP-SQD,↵(�v,S,µ) responds with a non-zero response, i.e., with �̂v,S,µ +

Lap (µ/"0m). This returned value is the empirical estimate of �v,S,µ evaluated on the sample

plus Laplace noise distributed as L ⇠ Lap (µ/"0m). Thus, an upper bound on the error

comes from the magnitude of this noise using the Laplace tails bound.

Pr [ |L| > ↵/16 ] = exp (�↵ · "0m/µ)

� exp
�
�↵3�"0m/2

�

Thus, to upper bound this probability by some �0, it su�ces to take m as

m �
2 · log(1/�0)

↵3�"0
.

With sample accuracy in place, we establish that the mechanism satisfies di↵erential

privacy.

Proposition 3.15 (Privacy). Suppose "0 < O
⇣
"↵2�1/2/

p
log(1/�)

⌘
. Then, Algorithm 6

can answer all T = O(1/↵4�) queries while satisfying (", �)-di↵erential privacy for " =

⇥(↵).

Proof. The proof follows closely the private multiplicative weights privacy proof. We break

the analysis into rounds, showing that each iteration satisfies O("0)-DP. The bound follows

by applying advanced composition for T = O(1/↵4�) rounds with the goal of " = ⇥(↵).

We can verify that when we solve for the necessary "0 to obtain (", �)-DP overall

" = O("0 ·
p
T · log(1/�)),

then the number of rounds is indeed T < 1/"20.
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We note that each iteration of the mechanism can be viewed as the composition of a

constant number of O("0)-DP instances of the Laplace mechanism. To see this, note that if

Algorithm 5 asks a query on Sv, then �̂S,v > ↵2�/2, so the sensitivity µ/m of each empirical

query on m samples is at most 2/↵2�m = µ0/m.

The main observation is as follows: fixing an ordering over the queries at the start of

each round (v, S, µ)1, . . . , (v, S, µ)k, the probability of observing the sequence of responses

DQD,↵(�(v,S,µ)1) = 0, . . . ,DQD,↵(�(v,S,µ)k�1
) = 0,DQD,↵(�(v,S,µ)1) 6= 0 is essentially the same

under a small change to the underlying data set. Specifically, fix a sequence of outputs based

on an underlying data set Z, and suppose we change the set by a single element. Then, we

show a small change to the randomly-selected threshold ⌧ will recover the same sequence

of 0-responses. Consider fixing the random draws of Laplace random variables where Li ⇠

Lap(µ0/"0m) Consider the maximum over i < k of the noisy di↵erence computation.

�0 = max
i<k

n
�̂(v,S,µ)i + Li � ⌧

o
= max

i<k

n
�̂(v,S,µ)i + Li � ↵/2

o
+ Lap(µ0/"0m)

Specifically, note that after fixing the sequence of Li’s this maximum is a query with at

most µ0 sensitivity. Thus, answering it with additional Laplace noise Lap(µ0/"0m) will be

"0-DP. Conditioning on the event where �0 < 0, we proceed to the test on the kth query.

This query passes the test and returns a non-zero value only if the di↵erence is su�ciently

large.

0 < �(v,S,µ)k � ⌧ + Lap(µ0/"0m)

= �(v,S,µ)k �max
i<k

n
�̂(v,S,µ)i + Li

o
+ �0 + Lap(µ0/"0m)

With the {Li} and �0 values fixed, this threshold test is a 2µ/m-sensitive query over the

data set; thus, the Laplace noise ensures 2"0-DP. Finally, the release of the query itself is

"0-DP by using fresh Laplace noise.

Note that with these propositions in place, we can apply the transfer theorem. While

we established sample accuracy for the non-zero queries, this is equivalent to establishing

sample accuracy on queries of the form

max {0, �v,S,µ(Z)� ↵/2} .
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Thus, applying the transfer theorem, we obtain the following lemma.

Lemma 3.16. Suppose the parameters of Algorithm 6 satisfy the conditions in Propos-

tions 3.14 and 3.15. Then, DP-SQD,↵ satisfies the following properties.

• if v �Ex⇠D [ p⇤(x) | pt(x) = v ]  ↵/4, then DP-SQD,↵(�v,S,µ) = 0

• if v �Ex⇠D [ p⇤(x) | pt(x) = v ] > ↵, then DP-SQD,↵(�v,S,µ) > 3↵/4.

Theorem 3.9 follows as a corollary of this lemma and the analysis of the statistical query

algorithm from the prior section.

Chapter Notes

The results of this chapter were originally proved in [HKRR18]. Importantly, we correct

an erratum from [HKRR18] in the stated sample complexity of Theorem 3.9, and present

the corrected proof in detail. The author is grateful to Lee Cohen and Yishay Mansour for

identifying the original error in preparing their work [SCM20].



Chapter 4

Multi-Calibration Auditing and

Post-Processing

In Chapter 3, we established bounded sample complexity learning algorithms for obtaining

multi-calibrated predictors. While the algorithms obtained e�ciency in the number of

samples used, a drawback is that the algorithms run in linear time in the cardinality of the

collection of subpopulations we wish to protect. Note that the complexity of each iteration

is dominated by searching for whether there exists some S 2 C and v 2 supp(p) where the

predictions are mis-calibrated. In other words, the problem of learning a multi-calibrated

predictor can be (Turing) reduced the problem of auditing for multi-calibration—deciding

whether a given predictor satisfies multi-calibration.

Auditing is a natural problem on its own: if an ML service provider claims their models

are “fair,” clients may naturally want to verify the claims themselves. In this chapter, we

study the problem of auditing for multi-calibration. We show that the auditing problem is

computationally equivalent to the problem of agnostic learning the class C. This equivalence

is both good news and bad news. Pessimistically, agnostic learning is a notoriously hard

problem in theory—cryptography schemes are based on its hardness for certain classes of

functions. Indeed, this reduction shows that under plausible cryptographic assumptions

[GGM84,BR17], the running time dependence on |C| of Algorithm 2 cannot be improved

significantly for arbitrary classes C. Optimistically, all of practical machine learning is

agnostic and is still remarkably e↵ective at finding patterns in the data for tasks of interest.

This direction shows a reduction from the problem of learning for multi-calibration to the

problem of “vanilla” machine learning.

66
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An important aspect of our auditing setup is that it only uses black-box access to the

predictor in question. In fact, we observe that the reduction from learning to auditing

works perfectly well even if we don’t know the internals of the predictor. This observation

suggests an alternative paradigm to learning a multi-calibrated predictor directly. First,

we learn a highly-sophisticated model using plentiful (but possibly biased) data, that aims

to approximate p⇤ without concern for fairness. Then, using this pre-trained unfair model,

we can audit for multi-calibration by learning where the model is miscalibrated, using a

held-out unbiased data set drawn from the distribution of interest DX⇥Y . Using the result

of auditing, we can update the model until it passes and thus, is multi-calibrated.

We begin this chapter with the formal equivalence between auditing and learning. Then,

we turn to discussing more practical aspects of auditing and post-processing. In particular,

we conclude the section with an empirical case study revisiting the Gender Shades study,

showing how the multi-calibration framework can help to address the observed performance

disparities across demographic groups.

4.1 Auditing via Weak Agnostic Learning

In this section, we demonstrate a connection between the goal of learning multi-calibrated

predictors and weak agnostic learning, introduced in the literature on agnostic boost-

ing [BDLM01, KMV08, KK09, Fel10]. At its core, the algorithmic framework presented

in Chapter 3 relies upon the ability to audit a given predictor to determine whether it is

su�ciently calibrated on sub-level sets or not. Formally, we can define the auditing problem

as follows.

Problem (Multi-Calibration Auditing). Fix some ↵, �,� > 0 where ↵� > � and collection

of subpopulations C ✓ {0, 1}X where for all S 2 C, PrD [ x 2 S ] � �. Given a predictor

p : X ! [0, 1] with support s = |supp(p)|, if there is any S 2 C and v 2 ⇤ such that

���� E
x⇠DS

[ p⇤(x) | p(x) = v ]� v

���� > ↵

for su�ciently large sub-level sets PrDS [ p(x) = v ] > ↵/s, return some S0
✓ X where

���� Pr
x⇠D

⇥
x 2 S0

⇤
· E
x⇠DS0

[ (p⇤(x)� p(x)) ]

���� > �/s.
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In other words, if the given model p is not multi-calibrated, then the auditor is required

to return a subpopulation S0
✓ X on which the model is biased. By the assumption that

the underlying model is not multi-calibrated, we know that such a subpopulation must

exist. Note that for the auditing to be e↵ective, we need � to be polynomially related to

our accuracy parameters; that way, we can correct the model into a multi-calibrated one in

polynomially many rounds of auditing as in Algorithm 2.

We will connect this problem to the problem of detecting correlations between the mis-

calibration and the subpouplations within C. For this discussion, it will be useful to consider

an equivalent representation of subpopulations S ✓ X as boolean concepts over {�1, 1}.

Specifically, for each S 2 C there exists a boolean function cS : X ! {�1, 1} such that for

all x 2 X

cS(x) =

8
<

:
1 x 2 S

�1 x 62 S.

We will overload notation, referring to a concept c 2 C, imagining the collection of subpop-

ulations / concepts C independent of the representation. We will connect the problem of

finding a set S 2 C on which a predictor p violates calibration to the problem of learning

over the concept class C over the distribution D.

Weak agnostic learning is a problem that centers around detecting correlations between

arbitrary labels and concepts c 2 C. In our results, we will work with the distribution-specific

weak agnostic learners of [Fel10].1 For notational convenience, we will use the following inner

product notation to represent the correlation of two functions f, g : X ! [�1, 1] over D.

hf, giD = E
x⇠D

[ f(x) · g(x) ]

Formally, we define weak agnostic learning as the following promise problem.

Problem ((⇢, ⌧)-Weak agnostic learning). Fix some ⇢ > ⌧ > 0 and a concept class C ✓

{X ! {�1, 1}}, and suppose f : X ! [�1, 1] is an arbitrary labeling function. Promised

that there is some c 2 C with correlation hc, fiD > ⇢, return some h : X ! [�1, 1] with

correlation at least hh, fiD > ⌧ .

Typically, we take ⇢, ⌧ to be inverse polynomial in the parameters of interest (e.g., the

1Often, such learners are defined in terms of their error rates rather than correlations; the definitions are
equivalent up to factors of 2 in ⇢ and ⌧ . Also, we will always work with a hypothesis class H = [�1, 1]X the
set of functions from X to [�1, 1], so we fix this class in the definition.
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dimension of the input data). The literature on agnostic boosting shows that given such

settings of parameters, weak agnostic learners can be boosted to strong agnostic learners

after polynomially many iterations. Importantly, while we denote the labels f(x) as a

function of x, agnostic learning does not assume that these labels come from any class of

bounded complexity—the labels may be arbitrary. Intuitively, if there is a concept c 2 C

that correlates nontrivially with the observed labels, then a weak agnostic learner must

return a hypothesis h (not necessarily from C), that is also nontrivially correlated with the

observed labels.

4.1.1 Multi-calibration from weak agnostic learning

First, we show how we can use a weak agnostic learner to solve the multi-calibration auditing

problem. Specifically, we aim to solve the following problem. Rather than issuing separate

statistical queries for each Sv, we will use the learner to perform the auditing. If the

auditing fails, the learner will return a hypothesis that can be used as an update that

makes significant progress towards multi-calibration. Our focus in this section is on time

complexity, so our discussion of sample complexity will be informal. We assume that the

weak agnostic learner is guaranteed to given access to m samples for some su�ciently large

m 2 N, and take at least this many labeled samples for the multi-calibration auditing

problem.

Lemma 4.1. Suppose L solves the (⇢, ⌧)-weak agnostic learning problem for a concept class

C from labeled samples. Let C� ✓ {0, 1}X be the collection of subpopulations S 2 C such

that PrD [ x 2 S ] � �. Then, given access to labeled samples (x, y) ⇠ DX⇥Y , we can audit

a predictor p : X ! [0, 1] for (C� ,↵)-multi-calibration auditing using 2 · |supp(p)| calls to L

for ⇢ = ↵�/s and ⌧ � �/s.

Proof. For some finite discrete support ⇤ ✓ [0, 1], suppose we are given a predictor p : X !

⇤. Our goal is to determine whether p satisfies (C� ,↵)-multi-calibration and if so, to return

a hypothesis demonstrating a subpopulation where p is biased. We will demonstrate a

slightly relaxed goal, by allowing the auditor to return a hypothesis h : X ! [�1, 1], rather

than a boolean cS : X ! {�1, 1}. To start, we will simply verify that p is approximately

calibrated overall. For each v 2 ⇤, we will estimate

�v = E
x⇠D

[ p⇤(x) | p(x) = v ]� v.
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This can be carried out e↵ectively from a small number of samples. Take " = ↵� � �. If for

any of these level sets, the magnitude of the di↵erence exceeds a threshold PrD [ p(x) = v ] ·

|�v| > "/s, then we can simply return the level set {x 2 X : p(x) = v} as evidence of mis-

calibration.

Thus, in subsequent analysis, we will assume that the model is approximately calibrated

up to this absolute error of "/s. With knowledge that p is well-calibrated overall, then for

each v 2 ⇤ separately, we will take a new labeled sample {(x1, ym), . . . , (xm, ym)} and

consider relabeling each xi according to `v(xi) as follows.

`v,y(xi) = 1 [ p(xi) = v ] · (v � yi)

Then, we will pass the samples {(xi, `v,y(xi))} to the weak agnostic learner L. We show

that if p violates (C,↵)-multi-calibration by over-estimating the true value on the sub-

level set Sv = {x 2 S : p(x) = v}, then the correlation between `v,y and cS 2 C will be

su�ciently large to satisfy the weak agnostic learning promise. (The other direction will

follow similarly by taking the labels to be �`v,y(x).) Let T = X \S; note that we can write

cS(x) = 1 [ x 2 S ]� 1 [ x 2 T ] = 2 · 1 [ x 2 S ]� 1.

h`v,y, cSi = E
DX⇥Y

[ `v,y(x) · cS(x) ]

= E
DX⇥Y

[ 1 [ x 2 Sv ] · (v � y) ]� E
DX⇥Y

[ 1 [ x 2 Tv ] · (v � y) ]

= 2 · E
DX⇥Y

[ 1 [ x 2 Sv ] · (v � y) ]� E
DX⇥Y

[ 1 [ p(x) = v ] · (v � y) ]

= 2 ·E
D

[ 1 [ x 2 Sv ] · (v � p⇤(x)) ]�E
D

[ 1 [ p(x) = v ] · (v � p⇤(x)) ]

� 2 · ↵�/s� "/s

Again, taking " = ↵� shows that the correlation is at least ⇢ � ↵�/s. Thus, the weak

agnostic learning promise is satisfied, and we obtain a hypothesis h : X ! [�1, 1] such that

�/s > ⌧  h`v,y, hi

= E
x⇠D

[ h(x) · 1 [ p(x) = v ] · (v � y) ]

= E
x⇠D

[ h(x) · 1 [ p(x) = v ] · (p(x)� p⇤(x) ] .
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Thus, returning the function hv : X ! [�1, 1] defined as

hv(x) = h(x) · 1 [ p(x) = v ]

will satisfy the (relaxed) multi-calibration auditing guarantee.

4.1.2 Weak agnostic learning from multi-calibration

Proof. Suppose there exists some c 2 C such that hc, fiD > ⇢. We will show how to

construct a predictor p : X ! [0, 1] from labeled samples {(x1, f(x1)), . . . , (xm, f(xm))}

such that auditing for multi-calibration will find some h : X ! [�1, 1] with correlation at

least hh, fiD > ⌧ , solving the weak agnostic learning problem. First, we define a function

p⇤ : X ! [0, 1] in terms of f : X ! [�1, 1] and let µ denote its mean over D.

p⇤(x) =
f(x) + 1

2
µ = E

x⇠D

[ p⇤(x) ] =
1

2
· (h1, fiD + 1)

First, suppose µ < 1/2��/4. We argue that in this case, the constant hypothesis h(x) = �1

satisfies the weak agnostic guarantee.

hh, fiD = �h1, fiD = 1� 2 · µ � �/2.

Thus, we will begin by testing this condition using the samples labeled according to f ; if µ

is su�ciently small, then we return the constant function that correlates su�ciently with

the label.

Proceeding, we assume that µ > 1/2 � �/4. Consider for any c 2 C, the correlation

between hc, fiD and let Sc ✓ X be the corresponding subpopulation. We show that if

the correlation with c is su�ciently large, then the constant predictor p(x) = 1/2 violates

multi-calibration on Sc.

hc, fiD = E
x⇠D

[ c(x) · f(x) ]

= E
x⇠D

[ (2 · 1 [ x 2 Sc ]� 1) · (2 · p⇤(x)� 1) ]

= 4 · E
x⇠D

[ 1 [ x 2 Sc ] · p
⇤(x) ]� 2 · Pr

x⇠D

[ x 2 Sc ]� 2 · µ+ 1

= 4 · Pr
x⇠D

[ x 2 Sc ] · E
x⇠DS

[ p⇤(x)� 1/2 ]� 2 · µ+ 1
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Let p(x) = 1/2 be the trivial constant predictor, and ensure that ⇢ � �. Thus, under the

weak agnostic promise that there exists some c 2 C where hc, fiD > ⇢, we see the following

inequality

E
x⇠DSc

[ p⇤(x)� p(x) ] =
hc, fiD + 2µ� 1

4 ·Prx⇠D [ x 2 Sc ]

�
⇢� �/2

4

� ⇢/8

where we note that PrD [ x 2 Sc ]  1 and apply the assumption that 2µ � 1 � ��/2 �

�⇢/2. As such, if we audit the predictor p(x) = 1/2 for (C,↵)-multi-calibration for ↵ = ⇢/4,

then the auditing promise is satisfied, and we will receive a subpopulation S ✓ X such that

����Pr
x⇠D

[ x 2 S ] · E
x⇠DS

[ p⇤(x)� 1/2 ]

���� > �.

By the same argument as above, the hypothesis hS(x) = 2 · 1 [ x 2 S ] � 1 correlates well

with f .

hhS , fi � �/8

Thus, we return a hypothesis satisfying the (⇢, ⌧)-weak agnostic guarantee for ⌧ = �/8.

Note that the proof did not rely upon the full power of multi-calibration auditing. In

particular, because the predictor we audited only had a single supported element, we were

really testing whether there was any subpopulation bias. In this sense, auditing for multi-

accuracy would su�ce and is even more tightly connected to the problem of weak agnostic

learning. We further explore the power of multi-accuracy auditing in the next sections.

4.2 Black-Box Post-Processing

With the theoretical understanding that weak agnostic learning su�ces to obtain multi-

calibrated predictors, we turn to a practical question of how to use standard machine

learning techniques to improve the subpopulation calibration of predictive models. We will

focus on the problem of auditing, electing to focus on the simpler notion of multi-accuracy.

As we’ll see, multi-accuracy auditing and post-processing can still provide some strong

theoretical guarantees and appears to be quite e↵ective in experiments.
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We focus on a setting that is common in practice but distinct from much of the other

literature on fairness in classification. Suppose we are given black-box access to a classifier,

p0, and a relatively small “validation set” of labeled samples drawn from the representa-

tive distribution D; our goal is to audit p0 to determine whether the predictor satisfies

multi-accuracy using o↵-the-shelf machine learning techniques. If auditing reveals that the

predictor does not satisfy multi-accuracy, we will apply the framework established in Chap-

ter 3 to post-process p0 to produce a new model p that is multi-accurate. Importantly, we

show that with some care, we can post-process the model without adversely a↵ecting the

predictions on subpopulations where p0 was already accurate.

Even if the initial classifier p0 was trained in good faith, it may still exhibit biases

on significant subpopulations when evaluated on samples from D. This setting can arise

when minority populations are underrepresented in the distribution used to train p0 com-

pared to the desired distribution D, as in the Gender Shades study [BG18]. In general,

we make no assumptions about how f0 was trained or implemented. In particular, f0 may

be an adversarially-chosen classifier, which explicitly aims to give erroneous predictions

within some protected subpopulation while satisfying marginal statistical notions of fair-

ness. Thus, the post-processing strategy we present can be viewed as a form of black-box

transfer learning—leveraging the initial performance on a potentially biased distribution to

e�ciently obtain a model that performs well across subpopulations on the distribution of

interest.

4.2.1 Do-No-Harm Post-Processing for Multi-Accuracy

In this section, we describe Multi-Accuracy-Boost (Algorithm 7) for post-processing a

pre-trained model to achieve multi-accuracy. The algorithm follows the same framework as

Algorithm 1 for learning a multi-calibrated predictor. With an eye for practical applications

of the algorithmic framework, we leverage the connection to learning from Section 4.1 and

describe Algorithm 7 in terms of an auditor instead of a search over a class C. Multi-

Accuracy-Boost is given black-box access to an initial hypothesis p0 : X ! [0, 1] and

uses a learning algorithm L to audit the model for violations to the multi-accuracy condi-

tion. When the auditor finds violations, we can use the hypothesis returned to update the

predictions, post-processing until there are no significant violations. Note that we elect to

use the multiplicative weights framework, which tracks more closely to cross-entropy loss

minimization used in practice for binary classification. Indeed, it is possible to analyze
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the convergence properties of the algorithm in terms of the expected cross-entropy loss (or

KL-divergence from p⇤) rather than in terms of the regression loss (squared error) as in

Chapter 3. The original work introducing Multi-Accuracy-Boost [KGZ19] includes a

complete convergence analysis.

Residual functions. Algorithm 7 also takes a “residual function” as input. If we apply

the reduction from Section 4.1 with an agnostic learner for C, then it makes sense to use

the residual labeling function from that reduction.

`(p, x, y) = p(x)� y

Intuitively, if we are able to learn a close approximation h to this absolute residual function,

then taking steps along the residual will bring us closer to y.

exp(�h(x)) · p(x) ⇡ p(x)� h(x) ⇡ y + p(x)� p(x) = y.

In practice, instead of labeling with the absolute residual directly, we could also label our

examples with a di↵erent residual function. For instance, for the classification setting, a

natural choice of residual would be the partial derivative function of the cross-entropy loss

with respect to the predictions

h(p, x, y) = y · log(p(x)) + (1� y) · log(1� p(x))

`(p, x, y) =
@h(p, x, y)

@p(x)
=

1

1� p(x)� y(x)
.

which grows rapidly in magnitude as the absolute residual |p(x)� y(x)| grows towards 1.

Running Algorithm 7 with this gradient-based residual function is similar in spirit to gra-

dient boosting techniques [MBBF00,Fri01], which interpret boosting algorithms as running

gradient descent on an appropriate cost-functional.

Do-No-Harm. Importantly, we also adapt the framework so that Algorithm 7 exhibits

what we call the “do-no-harm” guarantee; informally, if p0 has low classification error on

some subpopulation S ✓ X identifiable by L, then the resulting classification error on S

cannot increase significantly. To achieve this guarantee, Algorithm 7 starts by partitioning

the input space X based on the initial classifier p0 into X
(0) = {x 2 X : p0(x) < 1/2} and
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Algorithm 7 Multi-Accuracy-Boost

Given:

p0 : X ! {0, 1} // initial classifier

L : (X ⇥ Y)m ! {h : X ! [�1, 1]} // learning algorithm as auditor

` : {p : X ! [0, 1]}⇥ X ⇥ Y ! [�1, 1] // residual function

⌧ = ↵� > 0 // absolute approximation parameter

⌘ > 0 // step size

Initialize:

X
(0)
 {x 2 X : p0(x) < 1/2} // Partition by initial classification

X
(1)
 {x 2 X : p0(x) � 1/2}

Repeat: for t = 0, 1, . . .

Zt  {(x1, y1), . . . , (xm, ym)} ⇠ DX⇥Y // refresh data

h L ({`(pt, xi, yi) : i 2 [m]}) // learn residuals

h(0)  L
��

1
⇥
xi 2 X

(0)
⇤
· `(pt, xi, yi) : i 2 [m]

 �

h(1)  L
��

1
⇥
xi 2 X

(1)
⇤
· `(pt, xi, yi) : i 2 [m]

 �

hmax
 argmaxh02{h,h(0),h(1)}

{hh0, pt � yi} // max correlation with residual

if hhmax, pt � yi < ⌧ then
return p̃ = pt // return when max residual is small

end if
pt+1(x) / exp(�⌘hmax) · pt(x) // update and continue

X
(1) = {x 2 X : p0(x) � 1/2} Partitioning the search space X based on the predictions of

p0 helps to ensure that the p̃ we output maintains the initial accuracy of p0. Intuitively,

the initial hypothesis may make false positive predictions and false negative predictions for

very di↵erent reasons, even if in both cases the reason is simple enough to be identified

by the auditor. More technically, the partition allows us to search over just the initially-

positive-labeled examples (negative, respectively) for a way to improve the classifier; these

subpopulations (and their intersections with C may be significantly more complex that

C itself. A similar strategy was explored theoretically in the context of multi-calibration

in [HKRR18].2

2The original work on multi-calibration referred to an analogous property as “best-in-class” predictions.
In the context of multi-calibration for regression, [HKRR18] showed that partitioning the input space based
on the level-sets of p0, then performing multi-calibration preserved the squared error of the original predictor.
To maintain classification accuracy, it su�ces to partition the space based on the initial binary label.
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Proposition 4.2 (Do-No-Harm). For a predictor p0 : X ! [0, 1] and a collection of sub-

populations C ✓ {0, 1}X , define an augmented collection C
p0 as follows.

X
(0) = {x 2 X : p0(x) < 1/2} X

(1) = {x 2 X : p0(x) � 1/2}

C
p0 = C [

n
S \ X

(0) : S 2 C

o
[

n
S \ X

(1) : S 2 C

o

Suppose p̃ is (Cp0 ,↵)-multi-accurate. Then, for any S 2 C,

erS(f
p̃)  3 · erS(f

p0) + 2↵

where f p̃, fp0 are the rounded classifiers of p̃ and p0, respectively.

Proof. Proposition 4.2 is a direct corollary of Proposition 2.10. Note that we can rewrite

the classification error over S as an average of the false positive and false negative rates on

S. Let " = erS(fp0), �(0) = PrDS [ p0(x) < 1/2 ], �(1) = PrDS [ p0(x) � 1/2 ], and "FN, "FP

represent the false error rates; then

" = �(0) · "FN + �(1) · "FP.

Consider the subsets of S defined by the initial predictor.

S(0) = {x 2 S : p0(x) < 1/2} S(1) = {x 2 S : p0(x) � 1/2}

Both of these sets are contained in C
p0 . Thus, for any (Cp0 ,↵)-multi-accurate predictor we

can apply Proposition 2.10 to bound the resulting classification error on each set by

erS(f
p̃)  p0 · (3"FN + 2↵) + p1 · (3"FP + 2↵)

 3"+ 2↵.

Applying this proposition to the output of Algorithm 7 establishes the Do-No-Harm prop-

erty.
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4.3 Empirical Study: Revisiting “Gender Shades”

We evaluate the empirical performance of Multi-Accuracy-Boost in three case studies.

The first and most in-depth case study aims to emulate the conditions of the Gender Shades

study [BG18], to test the e↵ectiveness of multi-accuracy auditing and post-processing on

this important real-world example. In Section 4.3.1, we show experimental results for audit-

ing using two di↵erent validation data sets. In particular, one data set is fairly unbalanced

and similar to the data used to train, while the other data set was developed in the Gender

Shades study and is very balanced. For each experiment, we report for various subpop-

ulations, the population percentage in D, accuracies of the initial model, our black-box

post-processed model, and white-box benchmarks.

4.3.1 Multi-accuracy improves gender detection

In this case study, we replicate the conditions of the Gender Shades study [BG18] to evaluate

the e↵ectiveness of the multi-accuracy framework in a realistic setting. For our initial model,

we train an Inception-ResNet-v1 [SIVA17] gender classification model using the CelebA data

set with more than 200,000 face images [LLWT15]. The resulting test accuracy on CelebA

for binary gender classification is 98.4%.

We applied Multi-Accuracy-Boost to this p0 using two di↵erent auditing distribu-

tions. In the first case, we audit using data from the LFW+a3 set [WHT11,HRBLM07],

which has similar demographic breakdowns as CelebA (i.e. D ⇡ D0). In the second case,

we audit using the PPB data set (developed in [BG18]) which has balanced representation

across gender and race (i.e. D 6= D0). These experiments allows us to track the e↵ectiveness

of Multi-Accuracy-Boost as the representation of minority subpopulations changes.

In both cases, the auditor is “blind”—it is not explicitly given the race or gender of any

individual—and knows nothing about the inner workings of the classifier. Specifically, we

take the auditor to perform ridge regression to fit the cross-entropy gradient.4 Instead of

training the auditor on raw input pixels, we use the low dimensional representation of the

input images derived by a variational autoencoder (VAE) trained on CelebA dataset using

Facenet [SKP15] library.

To test the initial performance of p0, we evaluated on a random subset of the LFW+a

3We fixed the original data set’s label noise for gender and race.
4To help avoid outliers, we smooth the loss and use a quadratic approximation for points with very large

residual.
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All F M B N BF BM NF NM

D 100 21.0 79.0 4.9 95.1 2.1 2.7 18.8 76.3
p0 5.4 23.1 0.7 10.2 5.1 20.4 2.1 23.4 0.6
MA 4.1 11.3 3.2 6.0 4.9 8.2 4.3 11.7 3.2
RT 3.8 11.2 1.9 7.5 3.7 11.6 4.3 11.1 1.8

Table 4.1: Results for LFW+a gender classification. D denotes the percentages of each population
in the data distribution; p0 denotes the classification error (%) of the initial predictor; MA denotes the
classification error (%) of the model after post-processing with Multi-Accuracy-Boost; RT denotes the
classification error (%) of the model after retraining on D.

data containing 6,880 face images, each of which is labeled with both gender and race—black

(B) and non-black (N). For gender classification on LFW+a, p0 achieves 94.4% accuracy.

Even though the overall accuracy is high, the error rate is much worse for females (23.1%)

compared to males (0.7%) and worse for blacks (10.2%) compared to non-blacks (5.1 %);

these results are qualitatively very similar to those observed by the commercial gender de-

tection systems studied in [BG18]. We applied Multi-Accuracy-Boost, which converged

in 7 iterations. The resulting classifier’s classification error in minority subpopulations was

substantially reduced, even though the auditing distribution was similar as the training

distribution.

We compare Multi-Accuracy-Boost against a strong white-box baseline. Here, we

retrain the network of p0 using the audit set. Specifically, we retrain the last two layers

of the network, which gives the best results amongst retraining methods. We emphasize

that this baseline requires white-box access to p0, which is often infeasible in practice.

Multi-Accuracy-Boost accesses p0 only as a black-box without any additional demo-

graphic information, and still achieves comparable, if not improved, error rates compared

to retraining. We report the overall classification accuracy as well as accuracy on di↵erent

subpopulations—e.g. BF indicates black female—in Table 4.1.

The second face dataset, PPB, in addition to being more balanced, is much smaller; thus,

this experiment can be viewed as a stress test, evaluating the data e�ciency of our post-

processing technique. The test set has 415 individuals and the audit set has size 855. PPB

annotates each face as dark (D) or light-skinned (L). As with LFW+a, we evaluated the

test accuracy of the original p0, the multi-accurate post-processed classifier, and retrained

classifier on each subgroup. Multi-Accuracy-Boost converged in 5 iterations and again,

substantially reduced error despite a small audit set and the lack of annotation about race

or skin color (Table 4.2).
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All F M D L DF DM LF LM

D 100 44.6 55.4 46.4 53.6 21.4 25.0 23.2 30.4
p0 9.9 21.6 0.4 18.8 2.2 39.8 1.0 5.2 0.0
MA 3.9 6.5 1.8 7.3 0.9 12.5 2.9 1.0 0.8
RT 2.2 3.8 0.9 4.2 0.4 6.8 1.9 1.0 0.0

Table 4.2: Results for the PPB gender classification data set. D denotes the percentages of each
population in the data distribution; p0 denotes the classification error (%) of the initial predictor; MA
denotes the classification error (%) of the model after post-processing with Multi-Accuracy-Boost; RT
denotes the classification error (%) of the model after retraining on D.

Figure 4.1: Multi-accuracy vs. Retraining: Di↵erence in classification accuracy is plotted on the vertical
axis; this di↵erence represents the accuracy advantage of Multi-Accuracy-Boost compared to retraining.
As the size of the audit set shrinks, Multi-Accuracy-Boost has better performance both in overall
accuracy and accuracy of the subgroups with the most initial bias because it is more data e�cient.

To further test the data e�ciency of Multi-Accuracy-Boost, we evaluate the e↵ect

of audit set size on the resulting accuracy of each method. In Fig. 4.1, we report the

performance of Multi-Accuracy-Boost versus the white-box retraining method for

di↵erent sizes of audit set. The plot displays the di↵erence in accuracy for the overall

population along with the subgroups that su↵ered the most initial bias. It shows that the

performance of Multi-Accuracy-Boost may actually be better than the white-box

retraining baseline when validation data is especially scarce.
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Representation matters. As discussed earlier, in the reported gender detection ex-

periments, we audit for multi-accuracy using ridge regression over an encoding of images

produced by a variational autoencoder. Using the representation of images produced by

this encoding intuitively makes sense, as the autoencoder’s reconstruction objective aims

to preserve as much information about the image as possible while reducing the dimension.

Still, we may wonder whether multi-accuracy auditing over a di↵erent representation of the

images would perform better. In particular, since we are interested in improving the accu-

racy on the gender detection task, it seems plausible that a representation of the images

based on the internal layers of the initial prediction network might preserve the information

salient to gender detection more e↵ectively.

We investigate the importance of the representation used to audit empirically. In par-

ticular, we also evaluate the performance of Multi-Accuracy-Boost using the same

auditor run over two other sets of features, given by the last-layer and the second-to-last

layer of the initial prediction residual network p0. In Table 4.3, we show that using the

unsupervised VAE representation yields the best results. Still, the representations from the

last layers are competitive with that of the VAE, and in some subpopulations are better.

Collectively, these findings bolster the argument for “fairness through awareness,” which

advocates that in order to make fair predictions, sensitive information (like race or gender)

should be given to the (trustworthy) classifier. While none of these representations explicitly

encode sensitive group information, the VAE representation does preserve information about

the original input, for instance skin color, that seems useful in understanding the group

status. The prediction network is trained to have the best prediction accuracy (on an

unbalanced training data set), and thus, the representations from the network reasonably

may contain less information about these sensitive features. These results suggest that the

e↵ectiveness of multi-accuracy does depend on the representation of inputs used for auditing,

but so long as the representation is su�ciently expressive, Multi-Accuracy-Boost may

be robust to the exact encoding of the features.

Multi-accuracy auditing as diagnostic. As was shown in [BG18], models trained in

good faith on unbalanced data may exhibit significant biases on the minority populations.

For instance, the initial classification error on black females is significant, whereas on white

males, it is near 0. Importantly, the only way we were able to report these accuracy

disparities was by having access to a rich data set where gender and race were labeled.
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All F M D L DF DM LF LM

LFW+a:
VAE 4.1 11.3 3.2 6.0 4.9 8.2 4.3 11.7 3.2
R1,p0 4.9 13.6 2.6 6.3 4.9 8.8 4.3 14.1 2.6
R2,p0 4.5 12.6 2.4 6.3 4.4 8.8 4.3 13.1 2.3
PPB:
VAE 3.9 6.5 1.8 7.3 0.9 12.5 2.9 1.0 0.8
R1,p0 4.3 7.6 1.7 7.8 1.3 13.6 2.9 2.1 0.8
R2,p0 5.1 9.7 1.3 9.4 1.3 17.0 2.9 3.1 0.0

Table 4.3: E↵ect of representation on the Multi-Accuracy-Boost performance VAE denotes the
denotes the classification error (%) using the VAE representation; R1,p0 denotes the classification error (%)
using the classifier’s last layer representation, R2,p0 denotes the classification error (%) using the classifier’s
second to last layer representation

Often, this demographic information will not be available; indeed, the CelebA images are

not labeled with race information, and as such, we were unable to evaluate the subpopulation

classification accuracy on this set. Thus, practitioners may be faced with a problem: even if

they know their model is making undesirable mistakes, it may not be clear if these mistakes

are concentrated on specific subpopulations. Without understanding the demographics on

which the model is erring, collecting additional (biased) training data may not actually

improve performance across the board.

We demonstrate that multi-accuracy auditing may serve as an e↵ective diagnostic and

interpretation tool to help developers identify systematic biases in their models. The idea

is simple: the auditor returns a hypothesis h that essentially “scores” individual inputs x

by how wrong the prediction p0(x) is. If we consider the magnitude of their scores |h(x)|,

then we may understand better the biases that the encoder is discovering.

As an example, we test this idea on the PPB data set, evaluating the test images’

representations with the hypotheses the auditor returns. In Figure 4.2, we display the

images in the test set that get the highest and lowest e↵ect (|h(x)| large and |h(x)| ⇡ 0,

respectively) according to the hypothesis returned by the auditor during the first round of

auditing. The three highest-scoring images (top row) are all women, both black and white.

Interestingly, all of the least active images (bottom row) are men in suits, suggesting that

suits may be a highly predictive feature of being a man according to the original classifier, p0.

In this sense, multi-accuracy auditing may provide a useful exploratory tool for developers

to interact with the data and their trained models to better understand where (and why)

the model may be underperforming.
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Figure 4.2: Interpreting Auditors Here, we depict the PPB test images with the highest and lowest
activation according to the hypothesis trained in the first round of auditing. The images with the highest
auditor e↵ects corresponds to images where the auditor detects the largest bias in the classifier.

4.3.2 Additional case studies

Multi-accuracy auditing and post-processing is applicable broadly in supervised learning

tasks, not just in image classification applications. We demonstrate the e↵ectiveness of

Multi-Accuracy-Boost in two other settings: the adult income prediction task and a

semi-synthetic disease prediction task.

Adult Income Prediction For the first case study, we utilize the adult income prediction

data set [Koh96] with 45,222 samples and 14 attributes (after removing subjects with

unknown attributes) for the task of binary prediction of income more than $50k for the

two major groups of Black and White. We remove the sensitive features of gender—female

(F) and male (M) and race (for the two major groups)—black (B) and white (W)—from

the data, to simulate settings where sensitive features are not available to the algorithm

training. We trained a base algorithm, p0, which is a neural network with two hidden layers

on 27,145 randomly selected individuals. The test set consists of an independent set of

15,060 persons.

We audit using a decision tree regression model (max depth 5) Ldt to fit the residual

p(x) � y(x). Ldt receives samples of validation data drawn from the same distribution as

training; that is D = D0. In particular, we post-process with 3,017 individuals sampled

from the same adult income dataset (disjoint from the training set of p0). The auditor is

given the same features as the original prediction model, and thus, is not given the gender



CHAPTER 4. MULTI-CALIBRATION AUDITING AND POST-PROCESSING 83

All F M B W BF BM WF WM

D 100.0 32.3 67.7 90.3 9.7 4.8 4.9 27.4 62.9
p0 19.3 9.3 24.2 10.5 20.3 4.8 15.8 9.8 24.9
MA 14.7 7.2 18.3 9.4 15.0 4.5 13.9 7.3 18.3
SS 19.7 9.5 24.6 10.5 19.9 5.5 15.3 10.2 25.3

Table 4.4: Results for Adult Income Data Set D denotes the percentages of each population in the data
distribution; p0 denotes the classification error (%) of the initial predictor; MA denotes the classification
error (%) of the model after post-processing with Multi-Accuracy-Boost; SS denotes the classification
error (%) of the subgroup-specific models trained separately for each population.

or race of any individual. We evaluate the post-processed classifier on the same independent

test set. Multi-Accuracy-Boost converges in 50 iterations with ⌘ = 1.

As a baseline, we trained four separate neural networks with the same architecture as

before (two hidden layers) for each of the four subgroups using the audit data. As shown

in Table 4.4, multi-accuracy post-processing achieves better accuracy both in aggregate

and for each of the subgroups. Importantly, the subgroup-specific models requires explicit

access to the sensitive features of gender and race. Training a classifier for each subgroup, or

explicitly adding subgroup accuracy into the training objective, assumes that the subgroup

is already identified in the data. This is not feasible in the many applications where, say,

race or more granular categories are not given. Even when the subgroups are identified, we

often do not have enough samples to train accurate classifiers on each subgroup separately.

This example illustrates that multi-accuracy can help to boost the overall accuracy of a

black-box predictor in a data e�cient manner.

Semi-Synthetic Disease Prediction We design a disease prediction task based on real

individuals, where the phenotype to disease relation is designed to be di↵erent for di↵erent

subgroups, in order to simulate a challenging setting. We used 40,000 individuals sampled

from the UK Biobank [SGA+15]. Each individual contains 60 phenotype features. To

generate a synthetic disease outcome for each subgroup, we divided the data set into four

groups based on gender—male (M) and female (F)—and age—young (Y) and old (O). For

each subgroup, we create synthetic binary labels using a di↵erent polynomial function of

the input features with di↵erent levels of di�culty. The polynomial function orders are 1,

4, 2, and 6 for OF, OM, YF, and YM subgroups respectively.

For p0, we trained a neural network with two hidden layers on 32,000 individuals, without



CHAPTER 4. MULTI-CALIBRATION AUDITING AND POST-PROCESSING 84

All F M O Y OF OM YF YM

D 100 39.6 60.4 34.6 65.4 15.0 19.7 24.6 40.7
p0 18.9 29.4 12.2 21.9 17.3 36.8 10.9 24.9 12.8
MA 16.0 24.1 10.7 16.4 15.7 26.5 9.0 22.7 11.6
SS 19.5 32.4 11.0 22.1 18.1 37.6 10.3 29.3 11.3

Table 4.5: Results for UK Biobank semi-synthetic data set. D denotes the percentages of each
population in the data distribution; p0 denotes the classification error (%) of the initial predictor; MA
denotes the classification error (%) of the model after post-processing with Multi-Accuracy-Boost; SS
denotes the classification error (%) of the subgroup-specific models trained separately for each population.

using the gender and age features. Hyperparameter search was done for the best weight-

decay and drop-out parameters. The p0 we discover performs moderately well on every

subpopulation, with the exception of old females (OF) where the classification error is

significantly higher. Note that this subpopulation had the least representation in D0. Again,

we audit using Ldt to run decision tree regression with validation data samples drawn from

D = D0. Specifically, the auditor receives a sample of 4,000 individuals without the gender

or age features. As a baseline, we trained a separate classifier for each of the subgroups

using the same audit data. As Table 4.5 shows, Multi-Accuracy-Boost significantly

lowers the classification error in the old female population.

Chapter Notes

This chapter is based o↵ of results originally reported in [HKRR18,KGZ19]. The equiv-

alence between multi-calibration auditing and weak agnostic learning was first discovered

by [HKRR18]. Inspired by the theoretical foundations developed in [HKRR18], the multi-

accuracy auditing and post-processing framework was developed in joint follow-up work

with Amirata Ghorbani and James Zou [KGZ19]. Related concurrent works [KNRW18,

KNRW19] study multi-group parity notions of fairness, also connecting the problem of

auditing to weak agnostic learning (both in theory and in experiments). Our empirical in-

vestigations on muti-accuracy auditing can also be viewed as studying information-fairness

tradeo↵s in prediction tasks, and is particularly related to the work on “fair representa-

tions” [ZWS+13,ES15,MCPZ18,CMJ+19].

Subsequent to our work, post-processing for multi-accuracy has been explored and ap-

plied in clinical settings. [BDR+19] studied how existing healthcare risk assessments could

be post-processed to ensure calibration across minority subpopulations within the Clalit

healthcare system. The multi-accuracy post-processing framework was also used in recent
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e↵orts to develop algorithmic predictions for COVID-19 risk in Israel [BRA+20]. With

limited data about the risk factors for COVID, the Israeli researchers post-processed a so-

phisticated flu predictor developed by Clalit to better match the marginal statistics available

about COVID.

A di↵erent approach to subgroup fairness in classification is studied by [DIKL17]. This

work investigates the question of how to learn a “decoupled” classifier, where separate classi-

fiers are learned for each subgroup and then combined to achieve a desired notion of fairness.

Decoupling the classification problem requires that important subgroups are identified in

the features and that the groups we wish to protect are partitioned by these attributes.

Even if this information is available, it may not always be obvious which subpopulations

require special attention.
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Chapter 5

Multi-Group Fairness Beyond

Calibration

Multi-calibration takes the approach that the starting point for fair prediction should be to

represent the true underlying risk as accurately as possible within a computational bound.

Sometimes, however, we may be concerned that fairness and accuracy are at odds with

one another. For instance, if the data themselves contain historical biases, then learning

a predictor that accurately reflects these data may further historical discriminations. In

this chapter, we turn our attention to notions of multi-group fairness that are not directly

tied towards accurately representing p⇤. The bulk of the chapter is dedicated towards

understanding a multi-group relaxation of the individual metric fairness notion of [DHP+12].

We conclude by discussing some other notions of multi-group fairness and their relation to

multi-calibration. In Chapter 6, we discuss how multi-calibration can be a useful tool for

understanding and addressing discrimination in prediction, even when the fairness goal is

not based on accuracy with p⇤.

5.1 Metric Fairness Beyond Individuals

In the influential work “Fairness through Awareness,” [DHP+12] proposed a framework

to resolve the apparent conflict between utility and fairness. This framework takes the

perspective that a fair classifier should treat similar individuals similarly and formalizes

this abstract goal by assuming access to a task-specific similarity metric d on pairs of

individuals. The proposed notion of fairness requires that if the distance between two

87
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individuals is small, then the predictions of a fair classifier cannot be very di↵erent. More

formally, for some small constant ⌧ � 0, we say a hypothesis f : X ! [�1, 1] satisfies

(d, ⌧)-metric fairness1 if the following (approximate) Lipschitz condition holds for all pairs

of individuals from the population X .

8x, x0 2 X ⇥ X :
��f(x)� f(x0)

��  d(x, x0) + ⌧ (5.1)

Subject to these intuitive similarity constraints, the classifier may be chosen to maximize

utility. The definition’s conceptual simplicity and modularity make fairness through aware-

ness a very appealing framework. Currently, there are many (sometimes contradictory) no-

tions of what it means for a classifier to be fair [KMR17,CG18,FPCG16,HPS16,HKRR18],

and there is much debate on which definitions should be applied in a given context. Bas-

ing fairness on a similarity metric o↵ers a flexible approach for formalizing a variety of

guarantees and protections from discrimination.

The issue with applying this notion in machine learning applications is that requiring

individual fairness to hold for all pairs of individuals may be information-theoretically pro-

hibitive. When the universe of individuals is very large, even writing down an appropriate

metric could be completely infeasible. In these cases, rather than require the metric value

to be specified for all pairs of individuals, we could instead ask a panel of experts to provide

similarity scores for a small sample of pairs of individuals. While we can’t enforce individ-

ual metric fairness from a small sample, inspired by the approach of multi-calibration, we

show that we can enforce a multi-group metric fairness guarantee. When a metric-based

fairness notion is applicable, but similarity scores are hard to come by, multi-group metric

fairness provides a strong, provable notion of fairness that maintains the theoretical appeal

and practical modularity of the fairness through awareness framework. As in [DHP+12],

we investigate how to learn a classifier that achieves optimal utility under similarity-based

fairness constraints, assuming a weaker model of limited access to the metric.

As in multi-calibration, we define our relaxation of metric fairness with respect to a

rich class of statistical tests on the pairs of individuals. Let a comparison be any subset

of the pairs of S ✓ X ⇥ X . The definition is parameterized by a collection of comparisons

C ✓ {0, 1}X⇥X and requires that a hypothesis appear Lipschitz on average according to all

of the statistical tests defined by the comparisons S 2 C.

1Note the definition given in [DHP+12] is slightly di↵erent; in particular, they propose a more general
Lipschitz condition, but fix ⌧ = 0.
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Definition 5.1 (Multi-metric fairness). Let C ✓ {0, 1}X⇥X be a collection of comparisons

and let d : X ⇥ X ! [0, 2] be a metric. For some constants ⌧ � 0, a hypothesis f is

(C, d, ⌧)-multi-metric fair if for all S 2 C,

E
(x,x0)⇠DS

⇥ ��f(x)� f(x0)
�� ⇤  E

(x,x0)⇠DS

⇥
d(x, x0)

⇤
+ ⌧. (5.2)

To begin, note that multi-metric fairness is indeed a relaxation of metric fairness; if we

take the collection C = {{(x, x0)} : x, x0 2 X ⇥ X} to be the collection of all pairwise com-

parisons, then (C, d, ⌧)-multi-metric fairness is equivalent to (d, ⌧)-metric fairness. When

we want to learn multi-metric fair predictors from a small sample of data, we will apply

the multi-group perspective, taking C to be an expressive class of large intersecting compar-

isons between subpopulations. Still, when we take C to be su�ciently expressive—enough

to identify comparisons between the most similar subpopulations—we may recover many of

the guarantees of the original individual fairness notion.

Proposition 5.2. Suppose there is some S 2 C, such that E(x,x0)⇠DS
[d(x, x0)]  ". Then if

f is (C, d, ⌧)-multi-metric fair, then f satisfies (d, (" + ⌧)/p)-metric fairness for at least a

(1� p)-fraction of the pairs in S.

That is, if there is some subset S 2 C that identifies a set of pairs whose metric distance

is small, then any multi-metric fair hypothesis must also satisfy the stronger individual

metric fairness notion on many pairs from S. This e↵ect will compound if many di↵erent

(possibly overlapping) comparisons are identified that have small average distance. If the

class C is rich enough to correlate well with various comparisons that reveal significant

information about the metric, then any multi-metric fair hypothesis will satisfy individual-

level metric fairness on a significant fraction of the population. In this sense, multi-metric

fairness ensures that a hypothesis will be fair on all comparisons identifiable within the

computational bound specified by C, providing “fairness through computationally-bounded

awareness.”

5.2 Learning a Multi-Metric Fair Hypothesis

Throughout, our goal is to learn a hypothesis from noisy samples from the metric that

satisfies multi-metric fairness. Specifically, we assume an algorithm can obtain a small

number of independent random metric samples (x, x0,�(x, x0)) 2 X ⇥ X ⇥ [0, 2] where
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(x, x0) ⇠M is drawn at random over the distribution of pairs of individuals, and �(x, x0)

is a random variable of bounded magnitude with E[�(x, x0)] = d(x, x0).

When we learn linear families, our goal will be to learn from a sample of labeled exam-

ples. We assume the algorithm can ask for independent random samples x, y ⇠ DX⇥Y . To

evaluate the utility guarantees of our learned predictions, we take a comparative approach.

Suppose H ✓ {0, 1}X⇥X is a collection of comparisons. For " � 0, we say a hypothesis f is

(H, ")-optimal with respect to F , if

E
x,y⇠DX⇥Y

[L(f(x), y)]  E
x,y⇠DX⇥Y

[L(f⇤(x), y)] + " (5.3)

where f⇤
2 F is an optimal (H, d, 0)-multi-metric fair hypothesis.

A convex program. As in [DHP+12], we formulate the problem of learning a fair

set of predictions as a convex program. Our objective is to minimize the expected loss

Ex,y⇠D[L(f(x), y)], subject to the multi-metric fairness constraints defined by C.2 Specif-

ically, we show that a simple variant of stochastic gradient descent due to [Nes09] learns

such linear families e�ciently.

Theorem 5.3. Suppose �, ⌧, � > 0 and C ✓ {0, 1}X⇥X is �-large. With probability at least

1 � �, stochastic switching subgradient descent learns a hypothesis w 2 F that is (C, d, ⌧)-

multi-metric fair and (C, O(⌧))-optimal with respect to F in O
⇣
B2n2 log(n/�)

⌧2

⌘
iterations from

m = Õ
⇣
log(|C|/�)

�⌧2

⌘
metric samples.

We give a description of the switching subgradient method in Algorithm 8. Intuitively,

the algorithm follows the same framework as Algorithm 1 for multi-calibration, but works

in a constrained optimization framework. In each iteration, the procedure checks to see

if any constraint defined by C is significantly violated. If it finds a violation, it takes a

(stochastic) step towards feasibility. Otherwise, it steps according a stochastic subgradient

for the objective.

For convenience of analysis, we define the residual on the constraint defined by S as

follows.

RS(w) = E
(x,x0)⇠DS

⇥ ��fw(x)� fw(x
0)
�� ⇤� E

(x,x0)⇠DS

⇥
d(x, x0)

⇤
(5.4)

2For the sake of presentation, throughout the theorem statements, we will assume that L is O(1)-Lipschitz
on the domain of legal predictions/labels to guarantee bounded error; our results are proved more generally.
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Algorithm 8 Switching-Multi-Metric-Descent

Given:

C ✓ {0, 1}X⇥X // Collection of comparisons

⌧ > 0 // approximation threshold

T 2 N // number of iterations

R̂S // residual oracle

Initialize:

w0 2 F = [�B,B]n // initial parameters

W = ? // feasible iterates

Repeat: for t = 0, 1, . . . , T

if 9S 2 C such that R̂S(wk) > 4⌧/5 then
Sk  any S 2 C such that R̂S(wk) > 4⌧/5 // some constraint violated

wk+1  wk �
⌧

M2rRSk(wk) // step according to constraint

else
W  W [ {wk} // update set of feasible iterates

wk+1  wk �
⌧

GMrL(wk) // step according to objective

end if

return w̄ = 1
|W |

·
P

w2W w // output average of feasible iterates

Note that RS(w) is convex in the predctions fw(x) and thus, for linear families is convex

in w. We describe the algorithm assuming access to the following estimators, which we can

implement e�ciently (in terms of time and samples). First, we assume we can estimate the

residual R̂S(w) on each S 2 C with tolerance ⌧ such that for all w 2 F ,
���RS(w)� R̂S(w)

��� 
⌧ . Next, we assume access to a stochastic subgradient oracle for the constraints and the

objective. For a function �(w), let @�(w) denote the set of subgradients of � at w. We

abuse notation, and letr�(w) refer to a vector-valued random variable where E[r�(w)|w] 2

@�(w). We assume access to stochastic subgradients for @RS(w) for all S 2 C and @L(w).

Overview of analysis. Here, we give a high-level overview of the analysis of Algorithm 8.

We refer to Kf as the set of “feasible iterations” where we step according to the objective;

that is,

Kf =
n
k 2 [T ] : R̂Sk(wk)  4⌧/5

o
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Fairness analysis. We begin by showing that the hypothesis w̄ that Algorithm 8 returns

satisfies multi-metric fairness.

Lemma 5.4. Suppose for all S 2 C, the residual oracle R̂S has tolerance ⌧/5. Then, w̄ is

(C, d, ⌧)-multi-metric fair.

Proof. We choose our final hypothesis w̄ to be the weighted average of the feasible iterates.

Note that the update rules forKf andW imply that w̄ is a convex combination of hypotheses

where no constraint appears significantly violated, w̄ = 1
|Kf |

·
P

k2Kf
wk. By convexity of

RS we have the following inequality for all S 2 C.

RS(w̄) = RS

0

@ 1

|Kf |

X

k2Kf

wk

1

A  1

|Kf |

X

k2Kf

RS(wk)

Further, for all S 2 C and all k 2 [T ], by the assumed tolerance of RS , we know that

���RS(wk)� R̂S(wk)
���  ⌧/5.

Given that for all k 2 Kf , R̂Sk(wk)  4⌧/5, then applying the triangle inequality, we

conclude that for each comparison S 2 C,

E
(x,x0)⇠DS

⇥ ��fw̄(x)� fw̄(x
0)
��� d(x, x0)

⇤
= RS(w̄)  ⌧.

Hence, w̄ is (C, d, ⌧)-multi-metric fair.

Utility and runtime analysis. We analyze the utility of Algorithm 8 using a duality

argument. For notational convenience, denote L(w) = Exi⇠D[L(fw(xi), yi)]. In addition

to the assumptions in the main body, throughout, we assume the following bounds on the

subgradients for all w 2 F .

8S 2 C : krRS(w)k1  m krL(w)k
1
 g

Assuming an `1 bound implies a bound on the corresponding second moments of the

stochastic subgradients; specifically, we use the notation krRS(w)k
2
2  M2 = m2n and

krL(w)k22  G2 = g2n.
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Consider the Lagrangian of the program L : F ⇥R
|C|

+ ! R.

L(w,�) = L(w) +
X

S2C

�SRS(w)

Let w⇤ 2 F be an optimal feasible hypothesis; that is, w⇤ is a (C, d, 0)-multi-metric fair

hypothesis such that L(w⇤)  L(w) for all other (C, d, 0)-multi-metric fair hypotheses w 2

F .3 By its optimality and feasibility, we know that w⇤ achieves objective value L(w⇤) =

infw2F sup
�2R

|C|
+

L(w,�). Recall, the dual objective is given as D(�) = infw2F L(w,�).

Weak duality tells us that the dual objective value is upper bounded by the primal objective

value.

sup
�2R

|C|
+

D(�)  L(w⇤)

As there is a feasible point and the convex constraints induce a polytope, Slater’s condition

is satisfied and strong duality holds. To analyze the utility of w̄, we choose a setting of dual

multipliers �̄ 2 R
|C|

+ such that the duality gap �(w,�) = L(w)�D(�) is bounded (with high

probability over the random choice of stochastic subgradients). Exhibiting such a setting

of �̄ demonstrates the near optimality of w̄.

Lemma 5.5. Let ⌧, � > 0 and F = [�B,B]n. After running Algorithm 8 for T >
302M2B2n log(n/�)

⌧2 iterations, then with probability at least 1 � 8� (over the stochastic sub-

gradients)

L(w̄)  L(w⇤) +
3G

5M
⌧.

We give the full proof of Lemma 5.5 subsequently.

Residual queries. Next, we describe how to answer residual queries RS(w) e�ciently, in

terms of time and samples. We will use the following proposition which follows by Cherno↵’s

inequality.

Proposition 5.6. Suppose C is �-large. Then with probability at least 1� �, for all S 2 C,

the empirical estimate for EDS [|f(x)� f(x0)|] of n samples (x, x0) ⇠M deviates from the

true expected value by at most ⌧ provided

n � ⌦̃

✓
B2 log(|C| /�)

� · ⌧2

◆
.

3Such a w
⇤ exists, as w = 0 2 R

n always trivially satisfies all the fairness constraints.
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Lemma 5.7. For ⌧, � > 0, for a �-large collection of comparisons C ✓ {0, 1}X⇥X , with

probability 1 � �, given access to n metric samples, every residual query RS(w) can be

answered correctly with tolerance ⌧ provided

n � ⌦̃

✓
log(|C| /�)

� · ⌧2

◆
.

Each residual query RS(w) can be answered after Õ
⇣
log(T ·|C|/�)

�·⌧2

⌘
evaluations of the current

hypothesis.

Proof. Recall the definition of RS(w).

RS(w) = E
(x,x0)⇠DS

⇥ ��fw(x)� fw(x
0)
�� ⇤� E

(x,x0)⇠DS

⇥
d(x, x0)

⇤

Proposition 5.6 shows that EDS [d(x, x
0)] can be estimated for all S 2 C from a small number

of metric samples. The proof follows a standard Cherno↵ plus union bound argument. Thus,

Lemma 5.7 follows by showing that at each iteration ES [|fw(x)� fw(x0)|] can be estimated

from a small number of evaluations of the current hypothesis fw.

We can estimate the expected value of the deviation on f over S 2 C with a small set of

unlabeled samples from X ⇥X ; we will evaluate the hypothesis f for each of these samples.

Using an identical argument as in the case of the expected metric value, which shows the

lemma.

Subgradient queries. Next, we argue that the subgradient oracles can be implemented

e�ciently without accessing any metric samples. First, suppose we want to take a step

according to RS(w); while RS(w) is not di↵erentiable, we can compute a legal subgradient

defined by partial subderivatives given as follows.

@RS(w)

@wl
= E

(x,x0)⇠DS

[sgn(hw, x� x0i) · (xl � x0l)]

The subgradient does not depend on d, so no samples from the metric are necessary. Further,

Algorithm 8 only assumes access to stochastic subgradient oracle with bounded entries. If we

sample a single (xi, xj) ⇠M, then sgn(hw, xi�xji)·(xil�xjl) will be an unbiased estimate of

a subgradient of RS(w); we claim, the entries will also be bounded. In particular, assuming

kxik1  1 implies each partial is bounded by 2, so that we can take M2 = 4n.



CHAPTER 5. MULTI-GROUP FAIRNESS BEYOND CALIBRATION 95

Detailed utility analysis. Here, we give a full proof of Lemma 5.5. We defer the proof

of certain technical lemmas for the sake of presentation.

Proof of Lemma 5.5 Let ⌧, � > 0 and F = {w 2 R
n : kwk

1
 B}. After running

Algorithm 8 for T > 302M2B2n log(n/�)
⌧2 iterations, then

L(w̄)  L(w⇤) +
3G

5M
⌧

with probability at least 1� 8� over the randomness of the algorithm.

Proof. As before, we refer to Kf ✓ [T ] as the set of feasible iterations, where we step

according to the objective, and [T ] \ Kf as the set of infeasible iterations, where we step

according to the violated constraints. Recall, we denote the set of subgradients of a function

L (orR) at w by @L(w) and denote byrL(w) a stochastic subgradient, whereE[rL(w)|w] 2

@L(w).

When we do not step according to the objective, we step according to the subgradient of

some violated comparison constraint. In fact, we show that stepping according to any convex

combination of such subgradients su�ces to guarantee progress in the duality gap. In the

case wher t 62 Kf , we assume that we can find some convex combination
P

S2C ↵k,SR̂S(wk) >

4⌧/5 where for all S 2 C, ↵k,S 2 �|C|�1. We show that if we step according to the

corresponding combination of the subgradients of RS(wk), we can bound the duality gap.

Specifically, for k 62 Kf , let the algorithm’s step be given by

X

S2C

↵k,SrRS(wk)

where for each S 2 C, we have E [rRS(wk)|wk] 2 @RS(wk). Let ⌘L = ⌧
GM and ⌘R = ⌧

M2

denote the step size for the objective and residual steps, respectively. Then, consider the

following choice of dual multipliers for each S 2 C.

�̄S =
⌘R

⌘L |Kf |

X

k 62Kf

↵k,S

Expanding the definition of w̄ and applying convexity, we can bound the duality gap as
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follows

�(w̄, �̄) = L(w̄)�D(�̄)


1

|Kf |

0

@
X

k2Kf

L(wk)

1

A� inf
w2F

(
L(w) +

X

S2C

�̄SRS(w)

)
(5.5)

= sup
w2F

8
<

:
1

|Kf |

0

@
X

k2Kf

L(wk)

1

A� L(w)�
X

S2C

�̄SRS(w)

9
=

;

= sup
w2F

8
<

:
1

⌘L |Kf |

0

@⌘L
X

k2Kf

(L(wk)� L(w))� ⌘R
X

k 62Kf

X

S2C

↵k,SRS(w)

1

A

9
=

; (5.6)

where (5.5) follows from expanding w̄ then applying convexity of L and the definition of

d(�̄) and (5.6) follows by our choice of �̄S for each S 2 C.

With the duality gap expanded into one sum over the feasible iterates and one sum

over the infeasible iterates, we can analyze these iterates separately. The following lemmas

show how to track the contribution of each term to the duality gap in terms of a potential

function uk defined as

uk(w) =
1

2
kw � wkk

2 .

For notational convenience, for each k 2 Kf , let e(wk) = E[rL(wk)|wk] � rL(wk) be the

noise in the subgradient computation.

Lemma 5.8. For all w 2 F and for all k 2 Kf ,

⌘L · (L(wk)� L(w))  uk(w)� uk+1(w) +
⌧2

2M2
+ ⌘Lhe(wk), wk � wi.

Again, for notational convenience, for each k 2 [T ] \Kf , let

e(wk) =
X

S2C

↵k,S (E[rRS(wk)|wk]�rRS(wk))

be the noise in the subgradient computation.

Lemma 5.9. For all w 2 F and for all k 2 [T ] \Kf ,

�⌘R
X

S2C

↵k,SRS(w)  uk(w)� uk+1(w)�
⌧2

10M2
+ ⌘Rhe(wk), wk � wi.
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We defer the proofs of Lemmas 5.8 and 5.9. Assuming Lemmas 5.8 and 5.9, we bound

the duality gap as follows.

sup
w2F

8
<

:
1

⌘L |Kf |

0

@
TX

k=1

⇥
uk�1(w)� uk(w)

⇤
+ ⌘L

X

k2Kf

he(wk), wk � wi

+ ⌘R
X

k 62Kf

he(wk), wk � wi+
⌧2

2M2
|Kf |�

⌧2

10M2
(T � |Kf |)

1

A

9
=

;


1

⌘L |Kf |
(⇤) +

G⌧

2M
+

G⌧

10M| {z }
(⇤⇤)

for

0

@sup
w2F

8
<

:u0(w) + ⌘L
X

k2Kf

he(wk), wk � wi+ ⌘R
X

k 62Kf

he(wk), wk � wi

9
=

;�
⌧2

10M2
T

1

A

| {z }
(⇤)

by rearranging. Noting that (⇤⇤) can be bounded by 3G
5M ⌧ , it remains to bound (⇤). We

show that for a su�ciently large T , then (⇤) cannot be positive.

Consider the terms in the supremum over w 2 F . Note that we can upper bound

sup {u0(w)}  2B2n. Additionally, we upper bound the error incurred due to the objective

subgradient noise with the following lemma.

Lemma 5.10. With probability at least 1 � 4�, the contribution of the noisy subgradient

computation to the duality gap can be bounded as follows.

sup
w2F

8
<

:⌘L
X

k2Kf

he(wk), wk � wi+ ⌘R
X

k 62Kf

he(wk), wk � wi

9
=

; 
⌧B

M

p
8Tn log(n/�)

Thus, we can bound (⇤) as follows.

(⇤)  2B2n+
⌧B

M

p
8Tn log(n/�)�

⌧2

10M2
T
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Assuming the lemma and that T > 302M2B2n log(n/�)
⌧2 , then, we can bound (⇤) by splitting

the negative term involving T to balance both positive terms.

(⇤) 

✓
2B2n�

⌧2

10M2
·
20T

302

◆
+

✓
⌧B

M

p
8n log(n/�) ·

p

T �
⌧2

10M2
·
(302 � 20)T

302

◆



✓
2B2n�

⌧2

10M2

20M2B2n log(n/�)

⌧2

◆

+

 
⌧B

M

p
8n log(n/�) ·

30MB
p
n log(n/�)

⌧
�

⌧2

10M2
·
(302 � 20)M2B2n log(n/�)

⌧2

!


�
2B2n� 2B2n log(n/�)

�
+
�
85B2n log(n/�)� 88B2n log(n/�)

�

Thus, the sum of (⇤) and (⇤⇤) is at most 3G
5M ⌧ .

Deferred proofs. First, we show a technical lemma that will be useful in analyzing the

iterates’ contributions to the duality gap. Recall our potential function uk : F ! R.

uk(w) =
1

2
kwk � wk22

We show that the update rule wk+1  ⇡F (wk � ⌘kgk) implies the following inequality in

terms of ⌘k, gk, uk(w), and uk+1(w).

Lemma 5.11. Suppose wk+1 = ⇡F (wk � ⌘kgk). Then, for all w 2 F ,

⌘khgk, wk � wi  uk(w)� uk+1(w) +
⌘2k
2
kgkk

2
2 .

Proof. Consider the di↵erentiable, convex function Bk : F ! R.

Bk(w) = ⌘khgk, w � wki+
1

2
kw � wkk

2
2 (5.7)

hrBk(wk+1), w � wk+1i = h⌘kgk + wk+1 � wk, w � wk+1i (5.8)

= h⇡F (wk � ⌘kgk)� (wk � ⌘kgk), w � ⇡F (wk � ⌘kgk)i (5.9)

� 0 (5.10)
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where (5.9) follows by substituting the definition of wk+1 twice; and (5.10) follows from the

fact that for any closed convex set F and w0 62 F ,

h⇡F (w0)� w0, w � ⇡F (w0)i � 0.

Rearranging (5.8) implies the following inequality holds for all w 2 F .

h⌘kgk + wk+1 � wk, w � wk+1i � 0

() ⌘khgk, wk+1 � wi  hwk+1 � wk, w � wk+1i (5.11)

We will use the following technical identity to prove the lemma.

Proposition 5.12. For all w 2 F ,

hwk+1 � wk, w � wk+1i = uk(w)� uk+1(w)�
1

2
kwk+1 � wkk

2 .

Proof.

uk(w)� uk+1(w) = kwk � wk2 � kwk+1 � wk2

= kwkk
2 + kwk2 � kwk+1k

2
� kwk2 + 2hwk+1 � wk, wi

= kwkk
2
� kwk+1k

2 + 2hwk+1 � wk, wi

= kwkk
2
� kwk+1k

2
� 2hwk � wk+1, wk+1i+ 2hwk+1 � wk, w � wk+1i

= kwk+1 � wkk
2 + 2hwk+1 � wk, w � wk+1i

Finally, we can show the inequality stated in the lemma.

⌘khgk, wk � wi = ⌘khgk, (wk+1 + ⌘gk)� wi

 hwk+1 � wk, w � wk+1i+ ⌘2k kgkk
2
2 (5.12)

 uk(w)� uk+1(w)�
1

2
kwk+1 � wkk

2
2 + ⌘2k kgkk

2
2 (5.13)

= uk(w)� uk+1(w) +
⌘2k
2
kgkk

2
2 (5.14)

where (5.12) follows from (5.11); (5.13) follows by using Proposition 5.12 to write the
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expression in terms of uk’s; and (5.14) follows by the gradient step wk+1 � wk = ⌘kgk.

Proof of Lemma 5.8 Here, we bound the contribution to the duality gap of each of the

feasible iterations k 2 Kf as follows.

⌘L · (L(wk)� L(w))  uk(w)� uk+1(w) +
⌧2

2M2
+ ⌘LheL(wk), wk � wi

Proof. Let eL(wk) = gL(wk)�rL(wk) where gL(wk) = E[rL(wk)] 2 @L(wk).

⌘L · (L(wk)� L(w))  ⌘hgL(wk), wk � wi

 ⌘hrL(wk) + eL(wk), wk � wi (5.15)

 uk(w)� uk+1(w) +
⌘2L
2
krL(wk)k

2
2 + ⌘LheL(wk), wk � wi (5.16)

 uk(w)� uk+1(w) +
⌧2

2M2
+ ⌘LheL(wk), wk � wi (5.17)

where (5.15) follows by substituting gL; (5.16) follows by expanding the inner product and

applying Lemma 5.11 to the first term; (5.17) follows by our choice of ⌘L = ⌧/GM .

Proof of Lemma 5.9 Here, we bound the contribution to the duality gap of each of the

infeasible iterates k 2 [T ] \Kf . We assume R̂Sk(wk) has tolerance ⌧/5. Then we show

�⌘R
X

S2C

↵k,SRS(w)  uk(w)� uk+1(w)�
⌧2

10M2
+ ⌘RheR(wk), wk � wi.

Proof. Recall, we let e(wk) =
P

S2C ↵k,S (E[rRS(wk)|wk]�rRS(wk)). For each S 2 C, for

any gS(wk) 2 @RS(wk), we can rewrite �RS(w) as follows.

�RS(w) = RS(wk)�RS(w)�RS(wk)

 hgS(wk), wk � wi �RS(wk)

Multiplying by ⌘R and taking the convex combination of S 2 C according to ↵k, we apply
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Lemma 5.11 to obtain the following inequality.

�⌘R
X

S2C

↵k,SRS(w)

 ⌘R

*
X

S2C

↵k,SrRS(wk) + eR(wk), wk � w

+
� ⌘R

X

S2C

↵k,SRS(wk) (5.18)

 uk(w)� uk+1(w) +
⌘2R
2

�����
X

S2C

↵k,SrRS(wk)

�����

2

2

� ⌘R
X

S2C

↵k,SRS(wk) + ⌘RheR(wk), wk � wi

(5.19)

 uk(w)� uk+1(w) +
⌧2

2M2
�

⌧

M2
·

X

S2C

↵k,SRS(wk) + ⌘RheR(wk), wk � wi (5.20)

 uk(w)� uk+1(w)�
⌧2

10M2
+ ⌘RheR(wk), wk � wi (5.21)

where (5.18) follows by substituting rRS(wk) for each gS(wk) and the definition of eR(wk);

(5.19) follows by expanding the inner product and applying Lemma 5.11; (5.20) follows by

our choice of ⌘k = ⌧2/M2; (5.21) follows by the fact that when we update according to a

constraint, we know
P

S2C ↵k,SR̂S(wk) � 4⌧/5 with tolerance ⌧/5, so
P

S2C ↵k,SRS(wk) �

3⌧/5.

Proof of Lemma 5.10 Here, we show that with probability at least 1 � 4�, the contri-

bution of the noisy subgradient computation to the duality gap can be bounded as follows.

sup
w2F

8
<

:⌘L
X

k2Kf

he(wk), wk � wi+ ⌘R
X

k 62Kf

he(wk), wk � wi

9
=

; 
⌧B

M

p
8Tn log(n/�)

Proof. Let " = ⌘L · g = ⌘R ·m = ⌧
M

p
n
. Further, let ⌘k = ⌘L for k 2 Kf and ⌘R for k 62 Kf .

Then, we can rewrite the expression to bound using ⌘k and expand as follows.

sup
w2F

X

k2[T ]

h⌘ke(wk), wk � wi = sup
w2F

X

k2[T ]

nX

l=1

⌘ke(wk)l · (wk � w)l

=
nX

l=1

(wk)l
X

k2[T ]

⌘ke(wk)l +
nX

l=1

sup
(w)l

8
<

:(w)l ·
X

k2[T ]

⌘ke(wk)l

9
=

;
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Consider the second summation, and consider the summation inside the supremum. Note

that this summation is a sum of mean-zero random variables, so it is also mean-zero. Recall,

we assume the estimate of the kth subgradient is independent of the prior subgradients,

given wk. Further, by the assumed `1 bound on the subgradients, each of these random

variables is bounded in magnitude by ". Using the bounded di↵erence property, we apply

Azuma’s inequality separately for each l 2 [n].

Pr

2

4

������

X

k2[T ]

⌘ke(wk)l

������
> Z

3

5  2 · exp

✓
�

Z2

2T"2

◆

Taking this probability to be at most 2�/n, we can upper bound Z by "
p
2T log(n/�) =

⌧
M

p
2Tn log(n/�). Then, noting that |(w)l| < B for any w 2 F , we can take a union bound

to conclude with probability at least 1� 2� the following inequalities hold.

nX

l=1

sup
(w)l

8
<

:(w)l ·
X

k2[T ]

⌘ke(wk)l

9
=

;  Bn · Z

=
⌧B

M

p
2Tn log(n/�)

Further, we note that the first summation concentrates at least as quickly as the second, so

by union bounding again,

sup
w2F

X

k2[T ]

⌘khe(wk), wk � wi 
⌧B

M

p
8Tn log(n/�)

with probability at least 1� 4�.

Chapter Notes

This chapter is based entirely o↵ of joint work with Omer Reingold and Guy N. Rothblum.

Recent years have seen a number of works investigating how to make individual metric

fairness of [DHP+12] more practical.

Most pertinent to this chapter is the work of [RY18] which introduces the notion of

PACF learning—probably approximately correct and (metric) fair learning—and follow-up

work [JKN+19]. Collectively, these works show how to obtain a PAC-style guarantee for

metric fairness satisfaction as well as optimality over linear hypotheses, from a small set
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of individual-outcome and metric samples. Rather than taking the multi-group approach,

these works show that for a su�ciently simple class of hypotheses, small metric fairness

loss (i.e., degree of individual fairness violations) in sample translates into bounds on the

distributional metric fairness violations. The guarantees of PACF are incomparable to

multi-metric-fairness: PACF provides a stronger guarantee against violating the metric (by

essentially protecting all groups), but multi-metric fairness may obtain better utility.

Two other works have taken interesting steps at making individual fairness notions

practically realizable. [Ilv20] demonstrates settings in which it is feasible to learn the fairness

metric directly using limited human input. [KRSM19] propose an alternative to metric

fairness, focusing instead of “individual error rate parity.” To do this, they work with not

only a distribution over individuals, but also a distribution over classification instances and

show how to equalize each individual’s error rates across the distribution of instances.



Chapter 6

Refining Information in the Service

of Fairness

While most researchers studying algorithmic fairness can agree on the high-level objectives

of the field—to ensure individuals are not mistreated on the basis of protected attributes; to

promote social well-being and justice across populations—there is much debate about how to

translate these aspirations into a concrete, formal definition of what it means for a prediction

system to be fair. Indeed, as this nascent field has progressed, the e↵orts to promote

“fair prediction” have grown increasingly divided, rather than coordinated. Exacerbating

the problem, [MPB+18] identifies that each new approach to fairness makes its own set

of assumptions, often implicitly, leading to contradictory notions about the right way to

approach fairness [Cho17,KMR17]. Complicating matters further, recent works [LDR+18,

CG18] have identified shortcomings of many well-established notions of fairness. At the

extreme, these works argue that blindly requiring certain statistical fairness conditions may

in fact harm the communities they are meant to protect.

In this thesis, our focus has been on multi-calibration as one notion of fairness that

ensures high-quality predictions, not just overall but on structured subpopulations. Multi-

calibration, however, is not the only proposal for subpopulation fairness. In Chapter 5,

we discussed multi-metric fairness based on the metric fairness notion of [DHP+12]. Other

works in recent years have proposed multi-group fairness notions based on parity between

subgroups [KNRW18,KNRW19, HSNL18]. Often, there are not clear technical directives

of when each notion is appropriate, and instead have left it a matter to be decided by

practitioners and experts of the application domain. In the hopes of providing more explicit

104
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directives and unifying the many directions of research in the area, we take a step back and

ask whether there are guiding principles that broadly serve the high-level goals of “fair”

prediction, without relying too strongly on any specific notion of fairness.

In this chapter, we argue that understanding the “informativeness” of predictions needs

to be part of any sociotechnical conversation about the fairness of a prediction system. We

show that multi-calibrated predictors may serve as a principled intermediary in learning a

fair classifier, even when our notion of fairness is based on parity. Specifically, rather than

enforcing a multi-parity-style notion of fairness on a decision rule directly, we may first learn

a multi-calibrated predictor p̃, then select an optimal selection rule (based on p̃) trading

o↵ utility, disparity, and impact on groups of interest. In this sense, multi-calibration may

provide an e↵ective way to enforce parity-based notions of fairness, running counter to the

conventional wisdom that calibration and parity are inherently at odds.

Information in predictors. In Section 6.1, we provide a self-contained exposition of the

framework we use to study the information content of a predictor. Information content

formally quantifies the uncertainty over individuals’ outcomes given their predictions. To

compare the information content of multiple predictors, we leverage the concept of refine-

ments [DF81]. Refinements provide the technical tool for reasoning about how to improve

the information content of a predictor.

In Section 6.2, we show a formal connection between refinements and multi-calibration.

In particular, we show that the multi-calibration guarantee, parameterized by a class of

boolean functions, is essentially equivalent to a strong notion of simultaneous refinement,

parameterized by a class of calibrated predictors. In this sense, we can equivalently define

multi-calibration in terms of refinement of calibrated predictors.

In Section 6.3, we revisit the question of finding an optimal fair selection rule, in a

setting adapted from [LDR+18]. For prominent parity-based fairness desiderata, we show

that improving the information content of the underlying predictions via refinements results

in a Pareto improvement of the resulting program in terms of utility, disparity, and long-

term impact. As one concrete example, if we hold the selection rule’s utility constant,

then refining the underlying predictions causes the disparity between groups to decrease.

Notably, refinements play a key role in the arguments.
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6.1 Tracking Information in Binary Predictions

In this section, we give a self-contained exposition of a formal notion of information content

in calibrated predictors. These notions have been studied extensively in the forecasting

literature (see [GBR07,GR07] and references therein) and can be viewed through the lens

of proper scoring rules [Bri50]. For the sake of exposition, throughout the chapter, we will

typically discuss exactly calibrated predictors.

Risk distributions. Throughout this chapter, it will be useful to reason not only about

predictors, but about their induced risk distributions. Given a predictor and a distribution

over individuals, the associated risk distribution is the histogram of scores output by the

predictor.

Definition 6.1 (Risk distribution). For a subset S ✓ X , given a predictor p : X ! [0, 1],

the risk distribution over S, Rp
S : supp(p)! [0, 1] is defined as

R
p
S(v) = Pr

x⇠DS

[ p(x) = v ] .

Throughout, we will continue to assume that predictors have discrete support and will

only consider risk distributions over calibrated predictors. Additionally, we will abuse nota-

tion and consider sampling a score from risk distributions where v ⇠ R
p
S denotes a sample

from the support of p drawn with probability Prx⇠DS [p(x) = v].

Information content. In the context of binary prediction, a natural way to measure

the “informativeness” of a predictor is by the uncertainty in an individual’s outcome given

their score. Viewing the outcome as a Bernoulli random variable with parameter v, we have

perfect information (zero uncertainty) about the outcome if v = 0 or v = 1, whereas we have

no information (maximal uncertainty) in a trial where v = 1/2. We quantify this notion of

uncertainty through Shannon entropy. The Shannon entropy of a Bernoulli random variable

with parameter v is given by the binary entropy function H2(v) where

H2(v) = �v · log(v)� (1� v) · log(1� v).

Consider a random draw x, y ⇠ DX⇥Y . Given access to a calibrated predictor p, then

the conditional distribution over y given p(x) follows Ber(p(x)). This observation suggests
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the following definition for the information content of a predictor.

Definition 6.2 (Information content). Suppose for S ✓ X , p : X ! [0, 1] is calibrated over

S. The information content of p over S is given as

IS(z) = 1� E
x⇠S

[H2(x)] .

We define information content over subsets of individuals; we use I(p) = IX (p) to denote

the information content of p over the entire domain. At the extremes, a perfect binary

classifier has information content 1, whereas a calibrated predictor that always outputs 1/2

has 0 information.

Another motivation for this definition of information content is its connection to the

log-likelihood of the predictor. If we view a calibrated predictor p as parameterizing a

conditional distribution of outcomes, the likelihood of a sample (x, y) is given as

L (p; (x, y)) = p(x)y · (1� p(x))1�y

Correspondingly, the log-likelihood is given as

`(p; (x, y)) = y · log(p(x)) + (1� y) · log(1� p(x)).

We observe that information content is simply a shift of the expected log-likelihood over

samples drawn from the joint individual-outcome distribution.

Lemma 6.3. Suppose for S ✓ X , p : X ! [0, 1] is calibrated over S. Then,

IS(p) = E
(x,y)⇠DS⇥Y

[ `(p; (x, y)) ] + 1
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Proof. We expand the expected log-likelihood as follows.

E
(x,y)⇠DS⇥Y

[ `(p; (x, y)) ]

= E
(x,y)⇠DS⇥Y

[ y · log(p(x)) + (1� y) · log(1� p(x)) ]

=
X

v2supp(p)

R
p
S(v) · E

x⇠DS


E

y⇠DY|X
[ y · log(v) + (1� y) · log(1� v) | x ]

���� p(x) = v

�
(6.1)

=
X

v2supp(p)

R
p
S(v) · E

x⇠DS

[ v · log(v) + (1� v) · log(1� v) | p(x) = v ] (6.2)

= � E
x⇠DS

[ H2(p(x)) ] (6.3)

= IS(p)� 1

where (6.1) follows by Bayes rule and the definition of the risk distribution of p; (6.2) follows

by the assumption that p is calibrated over S; and (6.3) follows by the definition of Shannon

entropy and reversing the equality from (6.1).

Thus, as the information content increases, the expected likelihood of the predictor also

increases; at the extreme, the calibrated predictor that maximizes information content is

the max (expected) likelihood predictor.

Refinements. Intuitively, as the information content of a predictor improves, so too

should the resulting decisions derived from the predictor in terms of utility and fairness.

To make this intuition formal, we formalize the idea of improving a predictor’s information

content using the notion of refinement, first proposed by [DF81]. Specifically, refinements

define a partial order over calibrated predictors, where given calibrated p̃ and p, we say that

p̃ refines p if p̃ incorporates all of the information in p, and possibly additional information.

[DF81] defined the notion of a refinement in terms of another concept called a stochastic

transformation.

Definition 6.4 (Stochastic Transformation [DF81]). Given predictors p : X ! [0, 1] and
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q : X ! [0, 1], a stochastic transformation ⌧ : supp(p)⇥ supp(q)! [0, 1] is a map such that

⌧(u, v) � 0 8u 2 supp(p), v 2 supp(q)
X

v2supp(q)

⌧(u, v) = 1 8u 2 supp(p).

A stochastic transformation can be viewed as randomly mapping the risk distribution

of p into that of q, where ⌧(u, v) controls the conditional “probability” that a unit where

p(x) = u is mapped to q(x) = v. With this notion in place, we can define refinements

formally.

Definition 6.5 (Refinement [DF81]). For a subset S ✓ X , suppose predictors p̃ : X ! [0, 1]

and p : X ! [0, 1] are calibrated over S. p̃ is a refinement of p over S if there exists a

stochastic transformation ⌧ : supp(p̃)⇥ supp(p)! [0, 1] such that for all v 2 supp(p):

X

u2supp(p̃)

⌧(u, v) · Rp̃
S(u) = R

p
S(v), and (6.4)

X

u2supp(p̃)

⌧(u, v) · Rp̃
S(u) · u = R

p
S(v) · v. (6.5)

In other words, p̃ refines p if the risk distribution of p can be derived from that of p̃

by a stochastic transformation that preserves calibration. Such a map may merge units

from multiple risk scores under p̃ into a single score in p. For our subsequent analysis, the

following equivalent formulation of refinements will be easier to work with.1

Lemma 6.6 (Alternative characterization of refinements). For a subset S ✓ X , suppose

predictors p̃ : X ! [0, 1] and p : X ! [0, 1] are calibrated over S. p̃ is a refinement of p

over S if and only if

E
x⇠DS

[ p̃(x) | p(x) = v ] = v.

Proof. We show that assuming that condition (6.4) holds, we can rewrite the expression

1 [GKR19] takes this formulation to be the definition of refinements.
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(6.5) as the desired conditional expectation.

v =

P
u2supp(p̃) ⌧(u, v) · R

p̃
S(u) · u

R
p
S(v)

=

P
u2supp(p̃)PrDS [ p(x) = v | p̃(x) = u ] ·PrDS [ p̃(x) = u ] · u

PrDS [ p(x) = v ]
(6.6)

= E
x⇠DS

[ p̃(x) | p(x) = v ] (6.7)

where (6.6) follows by the definition of the risk distribution and the interpretation of the

stochastic transformation as a conditional probability; and (6.7) follows by Bayes rule and

the definition of the conditional expectation. The reverse direction follows by defining ⌧ in

terms of the sets Xuv = {x : p̃(x) = u}\{x : p(x) = v} to be a stochastic transformation.

Note that this characterization establishes that p⇤ refines all other calibrated predictors.

Corollary 6.7. For a given set of features X and any calibrated predictor p : X ! [0, 1],

the Bayes optimal predictor p⇤ : X ! [0, 1] is a refinement of p.

This corollary follows directly by Lemma 6.6 and the restriction to calibrated predictors.

In this sense, given a predictor p, any refinement p̃ can be viewed as a candidate optimal

predictor. Importantly, this logic depends on refinements, not simply greater information

content. To see this, suppose that there is some v 2 supp(p) such that E[p̃(x)|p(x) = v] 6= v

(even if I(p̃) > I(p). Because p is calibrated, the inequality suggests that E[p̃(x)|p(x) =

v] 6= E[p⇤(x)|p(x) = v]. This disagreement provides evidence that p has some consistency

with the optimal predictor p⇤ that p̃ lacks.

Refinement distance as information loss. Refinements establish a binary relation over

calibrated predictors, which we can use to establish qualitatively that a refined predictor

p̃ has more information than p. Next, we define a notion of refinement distance which

makes such comparisons between risk distributions quantitative. Suppose p̃ is a refinement

of p; refinement distance aims to measure how far the predictions according to p will be

compared to those of p̃. More formally, given p, imagine sampling a risk score v ⇠ R
p, then

sampling an individual x ⇠ D{x:p(x)=v}. We wish to measure the di↵erence in the belief

about the outcome under the distributions Ber(p(x)) and Ber(p̃(x)). Specifically, we denote

by DKL(p; q) the KL-divergence between two Bernoulli distributions with parameters p and
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q, respectively, defined as

DKL(p; q) = p · log

✓
p

q

◆
+ (1� p) · log

✓
1� p

1� q

◆
.

We define the refinement distance in terms of the expected KL-divergence between a risk

distribution and its refinement.

Definition 6.8 (Refinement distance). For a subset S ✓ X , suppose that p̃ : X ! [0, 1]

refines p : X ! [0, 1] over S. The refinement distance from p̃ to p over S is given as

DR

S (p̃; p) = E
v⇠R

p
S


E

x⇠DS

[ DKL (p̃(x); v) | p(x) = v ]

�

While we define the refinement distance in terms of sampling from the risk distribution,

we can express this distance as an information loss. Specifically, the refinement distance is

equal to the lost information content from p̃ to p.

Lemma 6.9. For a subset S ✓ X , suppose that p̃ : X ! [0, 1] refines p : X ! [0, 1] over S.

Then,

D
R

S (p̃, p) = IS(p̃)� IS(p).

In this sense, the di↵erence information content between a predictor and its refinement

captures a natural notion of distance between their induced risk distributions. We observe

that for calibrated predictors, the refinement distance from p⇤ to p can be used as a progress

measure to analyze the convergence of Algorithm 2. In the light of Lemma 6.9, we can

understand the progress of each iteration of the algorithm as changes to DR(p⇤, p), and

thus, improved information about p⇤. We make the connection between information content

and multi-calibration explicit in the subsequent section.

Note that because the KL-divergence is a nonnegative quantity, Lemma 6.9 and Corol-

lary 6.7 immediately establish the fact that p⇤ is the most informative predictor.

Corollary 6.10. For a given set of features X , the Bayes optimal predictor p⇤ : X ! [0, 1]

maximizes information content.

p⇤ = argmax
p:X![0,1]

I(p)

This observation provides another lens into the fact that p⇤ is the predictor that maxi-

mizes the expected likelihood over samples from DX⇥Y .
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Proof of Lemma 6.9. We expand the refinement distance leveraging the alternative char-

acterization of refinements.

DR

S (p̃; p) = E
v⇠R

p
S


E

x⇠DS

[ DKL (p̃(x); v) | p(x) = v ]

�

=
X

v2supp(p)

R
p
S(v) · E

x⇠DS


p̃(x) · log

✓
p̃(x)

v

◆
+ (1� p̃(x)) · log

✓
1� p̃(x)

1� v

◆ ���� p(x) = v

�

(6.8)

We split (6.8) into a term that depends only on p̃, that results in its expected entropy.

(6.8) + E
x⇠DS

[ H2(p̃(x)) ]

= �
X

v2supp(p)

R
p
S(v) · E

x⇠DS

[ p̃(x) · log(v) + (1� p̃(x)) · log(1� v) | p(x) = v ]

= �
X

v2supp(p)

R
p
S(v) ·

⇣
E

x⇠DS

[ p̃(x) | p(x) = v ] · log(v)

+(1� E
x⇠DS

[ p̃(x) | p(x) = v ]) · log(1� v)
⌘ (6.9)

=
X

v2supp(p)

R
p
S(v) ·H2(v) (6.10)

= E
x⇠DS

[ H2(p(x)) ]

where (6.9) follows by linearity of expectation; and (6.10) follows by the assumption that p̃

refines p. In all, this shows that

D
R

S (p̃; p) = E
x⇠DS

[ H2(p̃(x))�H2(p(x)) ]

= IS(p̃)� IS(p).

⇤

6.2 Multi-Calibration as Simultaneous Refinement

Corollaries 6.7 and 6.10 demonstrate that p⇤ is a refinement of every calibrated predictor and

maximizes the information content. As we’ve discussed, however, in many cases p⇤ may be

unattainable due to data and computational limitations. Still, we may ask for a predictor
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that captures the information contained in a “meaningful” bounded class of calibrated

predictors. In this section, we demonstrate that multi-calibration already gives us such a

solution concept. We show that the multi-calibration constraints can be characterized as

simultaneous refinement over a class of calibrated predictors.

Simultaneous refinement. We start by defining a notion of multi-refinement that cap-

tures the idea that a predictor p̃ is a refinement of every predictor in a class of calibrated

predictors, simultaneously.

Definition 6.11 (Multi-Refinement). Let ↵ � 0. Suppose P ✓ {p : X ! [0, 1]} is a set of

predictors ↵-calibrated over DX⇥Y . Then, p̃ : X ! [0, 1] is a (P,↵)-multi-refinement if p̃ is

↵-calibrated over DX⇥Y , and for all p 2 P and all v 2 supp(p)

���� Ex⇠D

[ p̃(x) | p(x) = v ]� v

����  ↵.

That is, a multi-refinement simultaneously (approximately) refines each predictor in the

given class of calibrated predictors. Again, p⇤ is a (P, 0)-multi-refinement for any class of cal-

ibrated predictors P, but as we bound the complexity of P, the set of multi-refinements will

grow beyond p⇤. Intuitively, the motivation and properties of multi-refinement seem similar

to multi-calibration. We show that the notions are closely related; in fact, multi-refinements

are equivalent to calibrated multi-accurate predictors, whereas the multi-calibration con-

straints are even more restrictive.

This characterization of multi-refinements allows us to interpret the guarantees of multi-

calibration in terms of the information-theoretic quantities defined in the prior section.

Colloquially, a multi-calibrated predictor captures all of the information about p⇤ captured

by C. We begin with the characterization of multi-refinements.

Theorem 6.12 (Characterizing Multi-Refinement). Let ↵ � 0.

(a) For every class of boolean functions C ✓ {c : X ! {0, 1}}, for any " > 0, there is an

explicit class of "-calibrated predictors P
C
✓ {p : X ! [0, 1]} such that for all p̃ : X !

[0, 1]

p̃ is a (PC ,↵)-multi-refinement =) p̃ is ↵-calibrated and (C,↵+ ")-multi-accurate.
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(b) For every class of calibrated predictors P ✓ {p : X ! [0, 1]}, there is an explicit class

of boolean functions C
P
✓ {c : X ! {0, 1}} such that for all p̃ : X ! [0, 1]

p̃ is ↵-calibrated and (CP ,↵)-multi-accurate =) p̃ is a (P, 2↵)-multi-refinement.

Proof. (a) Given a boolean function c : X ! {0, 1}, denote the conditional expectations

as follows.

vc0 = E
x⇠D

[ p⇤(x) | c(x) = 0 ]

vc1 = E
x⇠D

[ p⇤(x) | c(x) = 1 ]

For each such c, for any arbitrarily small " > 0, there is an "-calibrated predictor pc : X !

[0, 1] defined as

pc(x) =

8
<

:
vc0 � " if c(x) = 0

vc1 + " if c(x) = 1

Note that the addition and subtraction of " is used to break ties if vc0 = vc1 (where we

truncate pc(x) to [0, 1] if vc0 2 [0, "] or vc1 2 [1 � ", "]). In other words, for every x 2 X ,

pc(x) is roughly the average value amongst x0 such that c(x0) = c(x). For a class of boolean

functions C ✓ {c : X ! {0, 1}}, consider the class of "-calibrated predictors defined as

P
C = {pc : c 2 C} .

Suppose p̃ is a (PC ,↵)-multi-refinement. First, note that by definition of multi-refinement,

p̃ must be ↵-calibrated overall. Second, note that by the construction of pc, for each c 2 C,

we maintain that a bijection where c(x) = 0 if and only if pc(x) = vc0 (and similarly for

c(x) = 1). With this observation, we show that p̃ satisfies the multi-accuracy constraint on

c.

E
x⇠D

[ p̃(x) | c(x) = 1 ] = E
x⇠D

[ p̃(x) | pc(x) = vc1 ] (6.11)

 vc1 + ↵ (6.12)

 E
x⇠D

[ p⇤(x) | c(x) = 1 ] + ↵+ " (6.13)

where (6.11) follows by the bijection established by construction of pc; (6.12) follows by
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the assumption that p̃ is a multi-refinement; and (6.13) follows by the construction of vc1.

The other multi-accuracy inequalities follow similarly. Thus, a (PC ,↵)-multi-refinement is

↵-calibrated and (C,↵)-multi-accurate.

(b) For a class of ↵-calibrated predictors P, consider the following class of boolean

functions.

C
P = { 1 {p(x) = v} : p 2 P, v 2 supp(p) }

Suppose that p̃ is (CP ,↵)-multi-accurate. We show that p̃ also satisfies the multi-refinement

constraints.

E
x⇠D

[ p̃(x) | p(x) = v ]  E
x⇠D

[ p⇤(x) | 1 {p(x) = v} = 1 ] + ↵ (6.14)

 v + 2↵ (6.15)

where (6.14) follows by the definition of multi-accuracy and construction of CP ; and (6.15)

follows by the assumption that every p 2 P is ↵-calibrated. Thus, if p̃ is ↵-calibrated and

(CP ,↵)-multi-accurate, then p̃ is a (P, 2↵)-refinement.

We conclude this section by observing that multi-calibration can be characterized by

a stronger form of refinements, which we call reflexive refinements. Specifically, we say

that p̃ is a reflexive refinement of p if p̃ refines p, not just overall, but also over the sets

{x : p(x) = v} for all v 2 supp(p). For a class of calibrated predictors P, we say that p̃ is

a P-multi-reflexive-refinement if p̃ reflexively refines every p 2 P . In fact, this strengthen

notion of multi-refinement is equivalent to multi-calibration.

Theorem 6.13 (Characterizing Multi-Reflexive-Refinement, informal). For every C, there

exists a P
C such that

p̃ is a P
C-multi-reflexive-refinement =) p̃ is C-multi-calibrated.

For every P, there exists a C
P such that

p̃ is C
P-multi-calibrated =) p̃ is a P-multi-reflexive-refinement.
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We state this theorem informally and exclude its proof. The formal statement of Theo-

rem 6.13 and its proof exactly follow that of Theorem 6.12 in structure and constructions,

applying the definition of reflexive-refinement where necessary.

6.3 The Value of Information in Fair Prediction

In this section, we argue that reasoning about the information content of calibrated predic-

tors provides a lens into understanding how to improve the utility and fairness of predictors,

even when the eventual fairness desideratum is based on parity. Our findings demonstrate

the importance of maintaining information content—not just overall, but also on sensitive

subpopulations—to ensure e↵ective fair decision-making. The conclusions serve as yet an-

other rebuke of the approach of “fairness through blindness” [DHP+12]. Combined with

Section 6.2, the findings also suggest that multi-calibrated predictions may play an impor-

tant role in obtaining fair decisions, even when applying parity-based fairness notions.

We study a prediction setting from [LDR+18] where a lender selects individuals to give

loans from a pool of applicants. While we use the language of predicting creditworthiness,

the setup is generic and can be applied to diverse prediction tasks. [LDR+18] introduced a

notion of “delayed impact” of selection policies, which models the potential negative impact

on communities of enforcing parity-based fairness as a constraint.

The concern for delayed impact is based on the following line of reasoning: while giving

out more loans to disadvantaged communities might ideally be considered desirable, if many

of these loans will result in default, then the increased default rate could end up hurting the

community. Indeed, [LDR+18] show that in their model, blindly enforcing parity between

subpopulations while maximizing the lender’s utility may lead to worse outcomes for the

disadvantaged population than under unconstrained utility maximization.

We revisit the question of delayed impact as part of a broader investigation of the role of

information in fair prediction. [LDR+18] argues that when there are di↵erences in the risk

score distributions between populations, seemingly-natural approaches to ensuring fairness,

like enforcing parity amongst groups, may result in a disservice to the underrepresented

population. We observe that this delayed impact can arise from di↵erences in the predicted

risk scores, not only the true risk scores. If the predicted risk distributions are di↵erent

between populations due to disparate information loss, then enforcing parity-based fairness

could still cause harm, even if the populations are identically distributed. We show that
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counteracting the information disparity by refining the underlying predictions used to choose

a selection policy may help to counteract the e↵ect of negative impacts.

6.3.1 Fair prediction setup

We consider a standard prediction setting where a decision maker, who we call the lender,

has access to a calibrated predictor p : X ! [0, 1]; from the predicted risk score p(x), the

decision maker must choose whether to accept or reject the individual x 2 X , i.e. whether

to give x a loan or not. For simplicity, we assume there are two disjoint subpopulations

A,B ✓ X , and that predictors are calibrated over A and B separately.

When deciding how to select qualified individuals, the lender’s goal is to maximize some

expected utility. The utility function u : [0, 1] ! [�1, 1] specifies the lender’s expected

utility from an individual based on their score and a fixed threshold2 ⌧u 2 [0, 1] as given

in (6.16). When considering delayed impact, we will measure the expected impact per

subpopulation. The impact function ` : [0, 1]! [�1, 1] specifies the expected benefit to an

individual from receiving a loan based on their score and a fixed threshold ⌧` also given in

(6.16).

u(v) = v � ⌧u `(v) = v � ⌧` (6.16)

[LDR+18] models a risk-averse lender by assuming that ⌧u > ⌧`; that is, by choosing ac-

cepting individuals with p(x) 2 (⌧`, ⌧u), the impact on subpopulations may improve beyond

the lender’s utility-maximizing policy.

To accept/reject individuals, the lender picks a (randomized) group-sensitive selection

policy f : [0, 1]⇥{A,B}! [0, 1] that selects individuals on the basis of their predicted score

and their sensitive attribute. For every individual x 2 X , the probability that x is selected is

given as f(p(x),A(x)). As in [LDR+18], we restrict our attention to threshold policies; that

is, for sensitive attribute A (resp., B), there is some ⌧A 2 [0, 1], such that f(v,A) is given as

f(v,A) = 1 if v > ⌧A, f(v,A) = 0 if v < ⌧A and f(v,A) = pA for v = ⌧A, where pA 2 [0, 1]

is a probability used to randomly break ties on the threshold. The motivation for focusing

2Assuming such an a�ne utility function is equivalent in expectation to assuming that the lender receives
u+ from repayments, u� from defaults, and 0 from individuals that do not receive loans. In this case, the
expected utility for score v is vu+ + (1� v)u� = cu · u(v) for some constant cu. A similar rationale applies
to the individuals’ impact function.
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on threshold policies is their intuitiveness, widespread use, computational e�ciency.3

Given this setup, we can write the expected utility Up(f) of a policy f based on a

predictor p, that is calibrated on both subpopulations, A and B, as follows.

Up(f) =
X

S2{A,B}

Pr
x⇠D

[ x 2 S ] ·

0

@
X

v2supp(p)

R
p
S(v) · f(v, S) · u(v)

1

A (6.17)

Recall, Rp
S(v) = Prx⇠S [p(x) = v].

Similarly, the expected impact over the subpopulations S 2 {A,B} are given as

ImppS(f) =
X

v2supp(p)

R
p
S(v) · f(v, S) · `(v). (6.18)

Often, it may make sense to constrain the net impact to each group as defined in (6.18) to

be positive, ensuring that the selection policies do not do harm as in [LDR+18].

The following quantities will be of interest to the lender when choosing a selection

policy f as a function of p. First, the lender’s overall utility U(f) is given as in (6.17).

Demographic parity, which serves as our running example, compares the selection rates

�S = Prx⇠S [x selected], given formally as

�p
S(f) =

X

v2supp(p)

R
p
S(v) · f(v, S).

Equalized opportunity and related notions compare the true positive rates and false positive

rates. Recall, TPR = Pr[x selected|y = 1] and FPR = Pr[x selected|y = 0]; in this context,

we can rewrite these quantities as follows.

TPRp
S(f) =

1

rS
·

X

v2supp(p)

R
p
S(v) · f(v, S) · v

FPRp
S(f) =

1

1� rS
·

X

v2supp(p)

R
p
S(v) · f(v, S) · (1� v),

where rS represents the base rate of the subpopulation S; that is, rS = Pr(x,y)⇠DS
[y = 1].

3Indeed, without the restriction to threshold policies, many of the information-theoretic arguments be-
come trivial. As p̃ is a refinement of p, we can always simulate decisions derived from p given p̃, but in
general, we cannot do this e�ciently.
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Another quantity we will track is the positive predictive value, PPV = Pr[y = 1|x selected].

PPVp
S(f) =

1

�p
S(f)

·

0

@
X

v2supp(p)

R
p
S(v) · f(v, S) · v

1

A

For notational convenience, we may drop the superscript of these quantities when p is clear

from the context.

6.3.2 Refinements in the service of fair prediction

Note that the quantities4 described in Section 6.3.1 can be written as linear functions of

f(v, S). As such, we can formulate a generic policy-selection problem as a linear program

where p controls many coe�cients in the program. Recalling that di↵erent contexts may

call for di↵erent notions of fairness, we consider a number of di↵erent linear programs the

lender (or regulator) might choose to optimize. At a high-level, the lender can choose to

maximize utility, minimize disparity, or maximize positive impact on groups, while also

maintaining some guarantees over the other quantities. Across all such programs, we show

how refining the predictor p used for determining the selection rule can improve the utility,

parity, and impact of the optimal selection rule.

We will consider selection policies given a fixed predictor p : X ! [0, 1]. We refer

generically to the fairness quantities by some h 2 {�,TPR,FPR}; rather than requiring

equality, we will consider the disparity
��hpA(f)� hpB(f)

�� and in some cases, constrain it to

be less than some constant ". We also use ti, tu to denote lower bounds on the desired

impact and utility, respectively. For simplicity’s sake, we assume that B is the “protected”

group, so we only enforce the positive impact constraint for this group; more generally,

we could include an impact constraint for each group. Formally, we consider the following

constrained optimizations.

Optimization 1 Optimization 2 Optimization 3

maxf Up(f) minf
��hpA(f)� hpB(f)

�� maxf ImppB(f)

s.t. ImppB(f) � ti s.t. ImppB(f) � ti s.t. Up(f) � tu��hpA(f)� hpB(f)
��  " Up(f) � tu

��hpA(f)� hpB(f)
��  ✏

(Utility Maximization) (Disparity minimization) (Impact Maximization)
4Excluding positive predictive value.
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Lemma 6.14. Let h 2 {�,TPR,FPR}. Given a calibrated predictor p : X ! [0, 1], Op-

timization 1,2, and 3 are linear programs in the variables f(v, S) for v 2 supp(p) and

S 2 {A,B}. Further, for each program, there is an optimal solution f⇤ that is a threshold

policy.

We sketch the proof of the lemma. The fact that the optimizations are linear programs

follows immediately from the observations that each quantity of interest is a linear function

in f(v, S). The proof that there is a threshold policy f⇤ that achieves the optimal value in

each program is similar to the proof of Theorem 6.15 given below. Consider an arbitrary

(non-threshold) selection policy f0; let hS,0 = hS(f0). The key observation is that for

the fixed value of hS,0, there is some other threshold policy f where hpS(f) = hS,0 and

Up(f) � U(f0) and ImppS(f) � ImpS(f0). Leveraging this observation, given any non-

threshold optimal selection policy, we can construct a threshold policy, which is also optimal.

We remark that our analysis applies even if considering the more general linear maxi-

mization:

Optimization 4

maxf �U · Up(f) + �I · ImppB(f)� �� ·
��hpA(f)� hpB(f)

��

for any fixed �U ,�I ,�� � 0.5 In other words, the arguments hold no matter the relative

weighting of the value of utility, disparity, and impact.

Improving the cost of fairness. We argue that in all of these optimizations, increasing

information through refinements of the current predictor on both the subpopulations A and

B improves this value of the program. We emphasize that this conclusion is true for all of

the notions of parity-based fairness we mentioned above. Thus, independent of the exact

formulation of fair selection that policy-makers deem appropriate, information content of p

is a key factor in determining the properties of the resulting selection rule. We formalize

this statement in the following theorem.

Theorem 6.15. Let p, p̃ : X ! [0, 1] be two predictors that are calibrated on disjoint sub-

populations A,B ✓ X . For any of the Optimization 1, 2, 3, 4 and their corresponding fixed

5In particular, each of Optimizations 1, 2, and 3 can be expressed as an instance of Optimization 4 by
choosing �U ,�I ,�� to be the optimal dual multipliers for each program. We note that the dual formulation
actually gives an alternate way to derive results from [LDR+18]. Their main result can be restated as
saying that there exist distributions of scores such that the dual multiplier on the positive impact constraint
in Optimization 1 is positive; that is, without this constraint, the utility-maximizing policy will result in
negative impact to group B.
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parameters, let OPT(p) denote their optimal value under predictor p. If p̃ is a refinement of

p over A and B, then OPT(p̃) � OPT(p) for Optimization 1, 3, 4 and OPT(p̃)  OPT(p)

for Optimization 2.

One way to understand Theorem 6.15 is through a “cost of fairness” analysis. Focusing

on the utility maximization setting, let U⇤ be the maximum unconstrained utility achiev-

able by the lender given the optimal predictions p⇤. Let OPT(p) be the optimal value of

Optimization 1 using predictions p; that is, the best utility a lender can achieve under a

parity-based fairness constraint (" = 0) and positive impact constraint (ti = 0). If we take

the cost of fairness to be the di↵erence between these optimal utilities, U⇤
�OPT(p), then

Theorem 6.15 says that by refining p to p̃, the cost of fairness decreases with increasing

informativeness; that is, U⇤
� OPT(p) � U⇤

� OPT(p̃). This corollary of Theorem 6.15

corroborates the idea that in some cases the high perceived cost associated with requiring

fairness might actually be due to the low informativeness of the predictions in minority pop-

ulations. No matter what the true p⇤ is, this cost will decrease as we increase information

content by refining subpopulations.

For S 2 {A,B}, we use TPRp
S(�) to denote the true positive rate of the threshold

policy with selection rate � for the subpopulation S while using the predictor p.6 Similarly,

PPVp
S(�), FPR

p
S(�) are defined. The following lemma, which plays a key role in each proof,

shows that refinements broadly improve selection policies across these three statistics of

interest.

Lemma 6.16. If p̃ is a refinement of p on subpopulations A and B, then for S 2 {A,B},

for all � 2 [0, 1],

TPRp̃
S(�) � TPRp

S(�), FPRp̃
S(�)  FPRp

S(�), PPVp̃
S(�) � PPVp

S(�).

In particular, the proof of Theorem 6.15 crucially uses the fact that the positive pre-

dictive values, true positive rates, and false positive rates improve for all selection rates.

Leveraging properties of refinements, the improvement across all selection rates guarantees

improvement for any fixed objective. As we’ll see, the proof actually tells us more: for any

selection policy using the predictor p, there exists a threshold selection policy that uses the

refined predictor p̃ and simultaneously has utility, disparity, and impact that are no worse

than under p.

6Given a predictor, there is a bijection between selection rates and threshold policies.
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Before giving the proofs, we observe that, paired with earlier sections of Chapter 6,

Lemma 6.16 suggests another do-no-harm property of multi-calibrated predictors. In par-

ticular, if we post-process p into a refinement p̃ that satisfies multi-calibration over the

class C—and thus, multi-refinement over P
C—then the conditions of the lemma are satis-

fied for all S 2 C. For convenience, we state the corollary in terms of exact multi-calibrated

predictors.

Corollary 6.17. Suppose p̃ is a C-multi-calibrated predictor that refines p. Then for all

subpopulations S 2 C and all selection rates � 2 [0, 1],

TPRp̃
S(�) � TPRp

S(�), FPRp̃
S(�)  FPRp

S(�), PPVp̃
S(�) � PPVp

S(�).

Proofs. Next, we prove Lemma 6.16 and Theorem 6.15.

Proof of Lemma 6.16. Note that for a fixed selection rate �, the quantities PPV,TPR, and

FPR are maximized by selecting the top �-fraction of the individuals ranked according to

the optimal predictor p⇤. Recall, we can interpret a refinement as a “candidate” optimal

predictor. Because p̃ refines p over A and B, we know that p is calibrated not only with

respect to the true Bayes optimal predictor p⇤, but also with respect to the refinement p̃

on both subpopulations. Imagining a world in which p̃ is the Bayes optimal predictor, the

PPV, TPR, and FPR must be no worse under a threshold policy derived from p̃ compared

to that of p by the initial observation. Thus, the lemma follows. ⇤
Using Lemma 6.16, we are ready to prove Theorem 6.15.

Proof of Theorem 6.15. Let f be any threshold selection policy under the predictor p. Using

f , we will construct a selection policy f 0 that uses the refined score distribution p̃ such that

where U p̃(f 0) � Up(f), Impp̃B(f
0) � ImppB(f), and hp̃A(f

0) = hpA(f) and hp̃B(f
0) = hpB(f).

Here, h 2 {�,TPR,FPR} specifies the parity-based fairness definition being used. Thus,

taking f to be the optimal solution to any of the Optimizations 1, 2, 3, or 4, we see that f 0

is a feasible solution to the same optimization and has the same or a better objective value

compared to f . Therefore, after optimization, objective values can only get better.

We separately construct f 0 for each fairness notion as follows:

(Demographic Parity) h = �:

For S 2 {A,B}, let �S = �p
S(f) be the selection rate of f in the population S. Let f 0

be the threshold policy that uses the predictor p̃ and achieves selection rates �A and �B

in the subpopulations A and B, respectively. By Lemma 6.16, PPVp̃
S(�S) � PPVp

S(�S) for
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S 2 {A,B}. The utility of the policy f 0 can be written as

U(f 0) =
X

S2{A,B}

Pr
x⇠D

[x 2 S] ·

0

@
X

v2supp(p̃)

R
p̃
S(v) · f

0(v, S) · v �
X

v2supp(p̃)

R
p̃
S(v) · f

0(v, S) · ⌧u

1

A

=
X

S2{A,B}

Pr
x⇠D

[x 2 S] ·
⇣
�S · (PPVp̃

S(�S)� ⌧u)
⌘

�

X

S2{A,B}

Pr
x⇠D

[x 2 S] ·
�
�S · (PPVp

S(�S)� ⌧u)
�

= U(f)

Similarly, we can show that the impact on the subpopulation B under f 0 is at least as good

as under f .

(Equalized Opportunity) h = TPR:

Let (�A,�B) be the selection rates of policy f on the subpopulations A and B. We

know that TPRp̃
S(�S) � TPRp

S(�S) (S 2 {A,B}) through Lemma 6.16. Let f 0 be the

threshold selection policy corresponding to a selection rates of �0

S , (S 2 {A,B}) such that

TPRp̃
S(�

0

S) = TPRp
S(�S) ( TPRp̃

S(�S)). As the true positive rates increase with increasing

selection rate, �0

S  �S . The utility of the policy f 0 can be written as

U(f 0) =
X

S2{A,B}

Pr
x⇠D

[x 2 S] ·

0

@
X

v2supp(p̃)

R
p̃
S(v) · f

0(v, S) · v �
X

v2supp(p̃)

R
p̃
S(v) · f

0(v, S) · ⌧u

1

A

=
X

S2{A,B}

Pr
x⇠D

[x 2 S] ·
⇣
rS · TPRp̃

S(�
0

S)� �0

S · ⌧u
⌘

�

X

S2{A,B}

Pr
x⇠D

[x 2 S] ·
�
rS · TPRp

S(�S)� �S · ⌧u
�

= U(f)

Similarly, we can show that the impact on the subpopulation B under f 0 is at least as good

as under f .

(Equalized False Positive Rate) h = FPR:

Let (�A,�B) be the selection rates of policy f on the subpopulations A and B. We

know that FPRp̃
S(�S)  FPRp

S(�S) (S 2 {A,B}) through Lemma 6.16. Let f 0 be the

threshold selection policy corresponding to a selection rates of �0

S , (S 2 {A,B}) such that
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FPRp̃
S(�

0

S) = FPRp
S(�S) (� FPRp̃

S(�S)). As the false postive rates increase with increasing

selection rate, �0

S � �S . The utility of the policy f 0 can be written as

U(f 0) =
X

S2{A,B}

Pr
x⇠D

[x 2 S] ·

0

@
X

v2supp(p̃)

R
p̃
S(v) · f

0(v, S) · v �
X

v2supp(p̃)

R
p̃
S(v) · f

0(v, S) · ⌧u

1

A

=
X

S2{A,B}

Pr
x⇠D

[x 2 S] ·
⇣
�0

S � (1� rS) · FPR
p̃
S(�

0

S)� �0

S · ⌧u
⌘

=
X

S2{A,B}

Pr
x⇠D

[x 2 S] ·
⇣
�0

S · (1� ⌧u)� (1� rS) · FPR
p̃
S(�

0

S)
⌘

�

X

S2{A,B}

Pr
x⇠D

[x 2 S] ·
�
�S · (1� ⌧u)� (1� rS) · FPR

p
S(�S)

�

= U(f)

Similarly, we can show that the impact on the subpopulation B under f 0 is at least as good

as under f .

This completes the proof of the theorem. ⇤

Chapter Notes

Chapter 6 is based on [GKR19], a joint work with Sumegha Garg and Omer Reingold. The

connection between refinement theory and multi-calibration in Section 6.2 is novel to this

thesis, but is based on an informal observation made in the Discussions of [GKR19].

The influential work of [DHP+12] provided two observations that are of particular rele-

vance to this chapter. First, [DHP+12] emphasized the pitfalls of hoping to achieve “fairness

through blindness” by censoring sensitive information during prediction. Second, the work

highlighted how enforcing broad-strokes demographic parity conditions—even if desired or

expected in fair outcomes—is insu�cient to imply fairness. This chapter provides further

evidence for these perspectives.

A few works have (implicitly or explicitly) touched on the relationship between informa-

tion and fairness. [CJS18] argues that discrimination may arise in prediction systems due

to disparity in predictive power; they advocate for addressing discrimination through data

collection. Arguably, much of the work on fairness in online prediction [JKMR16] can be

seen as a way to gather information while maintaining fairness. From the computational
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economics literature, [KLMR18] presents a simple planning model that draws similar qual-

itative conclusions to this work, demonstrating the significance of trustworthy information

as a key factor in algorithmic fairness.

Some works frame informativeness di↵erently and arrive at qualitatively di↵erent con-

clusions. Specifically, the original work on delayed impact [LDR+18] suggests that some

forms of misestimation (i.e. loss of information) may reduce the potential for harm from

applying parity-based fairness notions. If the lender’s predictor p is miscalibrated in a way

that underestimates the quality of a group S, then increasing the selection rate beyond the

global utility-maximizing threshold may be warranted. Other works [KRZ19, ILZ19] have

investigated the role of hiding information through strategic signaling. In such settings, it

may be strategic for a group to hide information about individuals in order to increase the

overall selection rate for the group. These distinctions highlight the fact that understanding

exactly the role of information in “fair” prediction is subtle and also depends on the exact

environment of decision-making.

The present work can also be viewed as further investigating the tradeo↵s between cal-

ibration and parity. Inspired by investigative reporting on the “biases” of the COMPAS

recidivism prediction system [ALMK16], the incompatibility of calibration and parity-based

notions of fairness has received lots of attention in recent years [Cho17,KMR17,PRW+17].

Perhaps counterintuitively, our work shows how to leverage properties of calibrated predic-

tors to improve the disparity of the eventual decisions.

Outside the literature on fair prediction, our notions of information content and refine-

ments are related to other notions from the fields of online forecasting and information

theory. In particular, the idea of refinements was first introduced in [DF81]. The con-

cept of information content of calibrated predictions is related to ideas from the forecasting

literature [GBR07,GR07], including sharpness and proper scoring rules [Bri50]. The con-

cept of a refinement of a calibrated predictor can be seen as a special case of Blackwell’s

informativeness criterion [Bla53,Cré82,DF81].



Chapter 7

Evidence-Based Rankings

In this final chapter, we study the learning-to-rank problem from the perspective of multi-

group fairness. As in the rest of the thesis, we continue to assume that the learner has access

to samples of individuals and their binary outcomes (x, y) ⇠ DX⇥Y . Our goal, however,

will be to recover a ranking close to the ordering given by p⇤(x), even without access to

direct pairwise comparisons, p⇤(x) < p⇤(x0). In this setting, a natural approach to ranking

(both in theory and practice) is to start by learning a predictor p : X ! [0, 1], and then

transform it into a ranking r : X ! [0, 1]. When we reduce the problem of ranking to that

of prediction, however, we may be concerned that we fail to maintain important properties,

like fairness. We may worry that even if we learn a “fair” predictor, the resulting ranking

may be unfair, due to the qualitative di↵erences between the objective of ranking (relative

ordering of individuals) and that of prediction (absolute loss).

In this chapter, we investigate these concerns, presenting a novel framework for rea-

soning about fairness in the context of rankings. We begin by formalizing the notion of

ranking in our context, and then introduce some natural fairness desiderata in rankings.

Our first notion—domination-compatibility—focuses on the relative ranking of groups: con-

sider a pair S, T of disjoint sets, and suppose that a larger fraction of the members of

S have positive outcomes than than do the members of T ; any ranking that puts all of

the individuals from T ahead of those in S seems blatantly discriminatory. Domination-

compatibility precludes this form of systematic misrepresentation of groups. Applying the

multi-group perspective, we require compatibility simultaneously across a rich class C of

possibly-intersecting subpopulations. The next notion—evidence-consistency—makes the

connection to prediction explicit: a ranking r is C-evidence-consistent if it arises as the

126
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induced ranking of a C-multi-accurate predictor p̃. In this sense, the consistent predictor p̃

demonstrates consistency with the “evidence” provided by the statistical tests defined by

the subpopulations in C. We show that this global notion of evidence-consistency implies

the pairwise notion of domination-compatibility.

Despite the appeal of these notions of evidence-based fairness, we show that enforcing

domination-compatibility and evidence-consistency over a predefined class of subpopula-

tions C may allow for insidious forms of discrimination in the ranking. This weakness is

similar to the weakness of multi-accuracy in comparison to multi-calibration. Drawing in-

spiration from multi-calibration, we redefine both notions of evidence-based rankings in a

way to protect subpopulations defined by the ranking itself. Somewhat surprisingly, when

the notions protect these self-referential subpopulations there is tight equivalence between

them: domination-compatibility, evidence-consistency, and multi-calibration all encode es-

sentially the same notion of fairness in rankings.

7.1 Rankings and Predictors

In this chapter, our goal will be to learn rankings of individuals from a discrete universe X

over a fixed, but unknown distribution D. Our goal will be to rank in accordance with the

underlying true p⇤(x) = Pr[y = 1|x]. Nevertheless, we will continue to assume a learning

model where we may access individual-outcome pairs (x, y) ⇠ DX⇥Y from the underlying

distribution. Specifically, in this learning from outcomes model, we do not get to see p⇤(x),

so cannot easily compare p⇤(x) and p⇤(x0) for individuals x, x0 2 X ⇥ X .

In the case where we have a finite collection of individuals X = [n], a natural way to

represent a ranking is as a permutation ⇡, where the “best” individual x 2 X is ⇡�1(1)

and the “worst” ⇡�1(n). When we want to learn rankings from a small set of samples,

however, we need to generalize the idea of a permutation-based ranking to account for

unseen individuals. As with predictors, we will consider rankings as functions from X to

[0, 1], with discrete and finite support. Formally, we require the following property to be a

ranking function.

Definition 7.1 (Ranking). A function r : X ! [0, 1] is a ranking over D if for all ⌧ 2

supp(r)

Pr
x⇠D

[ r(x) < ⌧ ] = ⌧.
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We denote by R ✓ {r : X ! [0, 1]} the set of all ranking functions.

A ranking function is e↵ectively a CDF-style function over the individuals (except with

a strict inequality). As with the permutation-based ranking, the top-ranked individuals

will receive minimum rank value (in this case, r(x) = 0), with the magnitude of the rank

increasing as we moved down the ranking. Note that this definition allows rankings to

specify groups of individuals at the same rank; specifically, for any threshold ⌧ 2 [0, 1], the

top ⌧ -fraction of the distribution of individuals D will have r(x)  ⌧ . In other words, r(x)

specifies the quantile of x under the ranking r.

Definition 7.2 (Quantiles according to a ranking). For a subset S ✓ X , given a ranking

r 2 R, the quantiles of S according to r partition S as

QS(r) = {Sr
⌧ : ⌧ 2 supp(r)}

where Sr
⌧ = {x : r(x) = ⌧}. We let Q(r) = QX (r) denote the quantiles of X .

This notion of ranking has the appealing property that it does not require the ranking

to distinguish between every pair of individuals when there is not enough information.

In particular, the quantiles according to a ranking r 2 R define equivalence classes of

individuals according to their rank r(x). Technically, these properties are essential for

learning meaningful rankings from a small set of data.

7.1.1 From Predictors to Rankings

Every predictor p : X ! [0, 1] yields a natural ranking rp 2 R that orders individuals in

order according to their values under p, defined as follows. Due to our convention—that

the lowest magnitude rank is the “top” of the ranking—the induced ranking will give the

individuals with the largest p-values the smallest rp-values.

Definition 7.3 (Induced ranking). Given a predictor p : X ! [0, 1], the induced ranking

rp 2 R is defined as follows.

rp(x) = Pr
x0⇠D

⇥
p(x0) > p(x)

⇤

Note that a predictor p and its induced ranking rp can be related by a transformation

between their supports. Specifically, the partition of any subset S ✓ X according to the
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level sets of p gives rise to the quantiles of S according to rp. That is, for each v 2 supp(p),

there exists some ⌧v 2 supp(rp) such that

{x : p(x) = v} = {x : rp(x) = ⌧v} .

Given a predictor that we believe to be accurate or fair (e.g., a multi-calibrated p̃), we

may want to obtain and understand its induced ranking. While rp is well-defined for every

predictor p, without some access to the distribution D over individuals, we may not be able

to compute rp. Still, we argue that a small set of unlabeled samples su�ce to transform p

into rp. Given access to p and su�ciently many samples x0 ⇠ D, we can implement this

comparison oracle and accurately recover the induced ranking rp, in the following sense.

Proposition 7.4. Let ↵,� > 0. For a predictor p : X ! [0, 1], let rp 2 R denote the

induced ranking of p. There exists an e�cient algorithm that, given oracle access to p and

m �
2 log(2/↵�)

↵2
unlabeled samples x1, . . . , xm ⇠ DX , produces a ranking r̂p : X ! [0, 1]

such that with probability at least 1� �, for all x 2 X ,

|rp(x)� r̂p(x)|  ↵

and for every X⌧ 2 Q(rp), there exists some X⌧ 0 2 Q(r̂p), such that X⌧ ✓ X⌧ 0.

The final guarantee says that the approximation will preserve the quantiles of rp, but

possibly merge them; equivalently, if rp(x) = rp(x0), then r̂p(x) = r̂p(x0).

Proof. For a threshold ⌧ 2 [0, 1], consider a Bernoulli random variable X⌧ distributed

according the the indicator of 1[rp(x) < ⌧ ] for x ⇠ DX . Note that, by the definition of

a ranking, Ex⇠DX [X⌧ ] = ⌧ . Consider the empirical estimate over m independent samples

xi ⇠ DX .

X̄⌧ =
1

m

mX

i=1

1[rp(xi) < ⌧ ]

Let T =
�
0,↵/2,↵, . . . ,

⌅
2
↵

⇧
· ↵/2

 
be a set of 2/↵ equally spaced thresholds. We can

use Hoe↵ding’s inequality and a union bound to bound the probability that the empirical

estimates X̄⌧ will be more than ↵/2 away from the true expectation.

Pr
⇥��X̄⌧ � ⌧

�� > ↵/2
⇤
 exp

✓
�m↵2

2

◆
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Thus, if m �
2 log(2/↵�)

↵2
with probability at least 1� �, the empirical estimates of X̄⌧ for

all 2/↵ thresholds ⌧ 2 T will be accurate up to ↵/2.

Given the predictor p, we can implement a comparison oracle that, given a pair of inputs

x, x0 2 X ⇥ X , returns the indicator of 1[p(x) > p(x0)]. Thus, given some x 2 X and the

unlabeled sample, we can estimate rp(x) as follows.

r̂p(x) , 1

m

mX

i=1

1[p(xi) > p(x)]

=
1

m

mX

i=1

1[rp(xi) < rp(x)]

Note that r̂p(x) only depends on the value p(x), or equivalently the value of rp(x); thus, for

all X⌧ 2 Q(rp), every x 2 X⌧ will be mapped to the same r̂p(x) value, establishing the final

property on the quantiles.

We can bound the estimate from below and above as follows. Suppose rp(x) 2 [⌧�, ⌧+]

for consecutive ⌧�  ⌧+ 2 T .

1

m

mX

i=1

1[rp(xi) < ⌧�]  r̂p(x) 
1

m

mX

i=1

1[rp(xi) < ⌧+] (7.1)

Pr
x0⇠DX

[rp(x0) < ⌧�]� ↵/2  r̂p(x)  Pr
x0⇠DX

[rp(x0) < ⌧+] + ↵/2 (7.2)

Pr
x0⇠DX

[rp(x0) < rp(x)]� ↵  r̂p(x)  Pr
x0⇠DX

[rp(x0) < rp(x)] + ↵ (7.3)

where (7.1) follows by the assumption that rp(x) 2 [⌧�, ⌧+]; (7.2) follows by the accuracy

of the empirical estimates for all ⌧ 2 T ; and (7.3) follows by the fact that ⌧+ � ⌧� = ↵/2

for all consecutive ⌧� < ⌧+ 2 T . Thus, the empirical estimate r̂p(x) will be within ↵ of the

true rp(x).

In particular, note that given the sample of unlabeled data, we can build a data structure

that, given oracle access to p, can e�ciently approximate the rank rp(x) for any (including

unseen) x 2 X . Further, note that all of the arguments used to prove Proposition 7.4

work equally well if we restrict our attention to some subset S ✓ X . Thus, if we have

access to samples from DS , we can similarly evaluate the ranking of individuals within the

subpopulation DS . Such a procedure may be useful for identifying individuals in the most

qualified individuals across di↵erent subsets.
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Corollary 7.5. Suppose ↵,�, ⌧ > 0. Given access to a predictor p : X ! [0, 1], a subset

S ✓ X , and Õ
�
log(1/�)/↵2

�
unlabeled samples from DS, there is an e�cient procedure

that identifies the top ⌧ 0-fraction of individuals over DS for some ⌧ 0 2 [⌧ � ↵, ⌧ + ↵] with

probability at least 1� �.

Determining the top percentiles of individuals within a subpopulation may be particu-

larly useful for a�rmative action mechanisms based on selecting the top-qualified individ-

uals based on their standing within a stratum (e.g., high school graduating class, mother’s

education level, etc.) rather than based on absolute qualification, à la [Roe98].

7.1.2 From Rankings to Consistent Predictors

The previous section demonstrated that given a predictor and an unlabeled set of individ-

uals, we can recover the ranking induced by the predictor. Perhaps less obviously, in this

section we show that rankings also give rise to predictors. Specifically, every ranking will

have a set of consistent predictors (that respect the ordering of the ranking), and further,

given a small set of labeled data, we can recover a predictor that is close to the optimal

consistent predictor. Given a ranking r, we can imagine a set of predictors that would

respect the ordering given by the ranking.

Definition 7.6 (Consistency with a ranking). For a ranking r : X ! [0, 1], a predictor

p : X ! [0, 1] is r-consistent (or consistent with r) if for all x, x0 2 X ⇥ X :

• if r(x) < r(x0), then p(x) � p(x0), and

• if r(x) = r(x0), then p(x) = p(x0).

We denote by P(r) ✓ [0, 1]X the set of all r-consistent predictors.

Note that by convention r-consistency allows for the level-sets that arise from the pre-

dictor to merge distinct quantiles. For instance, any constant predictor—that makes no

distinctions between individuals—is consistent with any ranking r 2 R. While there are

generally many consistent predictors that form the collection P(r), one a natural predictor

pr we can derived from r gives the expected value of p⇤ on each quantile. Naturally, the

predictor will be well-calibrated, so we call pr the calibration of r.
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Definition 7.7 (Calibration of a ranking). For a ranking r 2 R, the calibration of r is the

predictor pr : X ! [0, 1] where for each X⌧ 2 Q(r), for all x 2 X⌧ ,

pr(x) = E
x0⇠DX⌧

⇥
p⇤(x0)

⇤
= E

x0⇠D

⇥
p⇤(x0)

�� r(x0) = ⌧
⇤
.

Using arguments as in Chapter 3, we can estimate the calibration of a ranking using a

small set of labeled samples. In particular, if the quantiles are not too small, then we can

obtain a close approximation of pr for each value v 2 supp(pr).

Proposition 7.8. Suppose r 2 R is a ranking such that PrD [ r(x) = ⌧ ] � � for each

⌧ 2 supp(r). Then, there exists an e�cient algorithm that, given oracle access to r and

m � ⌦

✓
log(1/↵��)

↵2�

◆
labeled samples (x1, y1), . . . , (xm, ym) ⇠ DX⇥Y , produces a predictor

p̂r : X ! [0, 1] such that for all x 2 X

|pr(x)� p̂r(x)|  ↵

with probability at least 1� �.

The proposition follows directly by an application of Hoe↵ding’s inequality. Amongst

all of the possible consistent predictors, we argue that when r is a highly accurate ranking

(in a particular sense we define next), the calibration pr is the most accurate predictor we

can obtain using r and labeled samples alone.

Recovering a ranking. Suppose we want to recover a ranking close to the induced rank-

ing p⇤. We need to be a bit careful about how we measure “recovery” of the ranking; in

particular, very small changes in the underlying Bayes risk may introduce large di↵erences

in the resulting numerical values of the induced ranking. Such small changes may not be

detectable statistically from a small sample. Intuitively, however, if p⇤ and p̃ are indis-

tinguishable, then our measure of quality of a ranking should not distinguish between the

induced rankings rp̃ and rp
⇤
that arise from these predictors. Information-theoretically, we

can measure distinguishability using the statistical distance defined as follows.

kp� p⇤k1 = E
x⇠D

[ |p(x)� p⇤(x)| ]

We introduce a notion of adjacency to capture the idea that a ranking arises as the induced

ranking of some predictor that is statistically close to the optimal predictor.



CHAPTER 7. EVIDENCE-BASED RANKINGS 133

Definition 7.9 (Adjacency). A ranking r is "-adjacent to p⇤ if there exists an r-consistent

predictor pr 2 P(r) such that kpr � p⇤k1  ".

Leveraging this notion of closeness, we show that the calibration of a ranking is a good

approximation to the best possible consistent predictor. Specifically, given an "-adjacent

ranking r, we show that the calibration pr is within 2" of p⇤.

Proposition 7.10. For any r 2 R, let pr denote the calibration of r. If r is "-adjacent to

p⇤ for some " � 0, then

kp⇤ � prk1  2".

Proposition 7.10 follows as a consequence of a more general lemma.

Lemma 7.11. Suppose for t 2 N, S = {Si}i2[t] is a partition of X . Let pS : X ! [0, 1]

give the expected value of p⇤ on each partition; that is, for each i 2 [t], for x 2 Si, pS(x) =

Ex0⇠DSi
[p⇤(x)]. Let pS0 : X ! [0, 1] be any piecewise constant predictor over the partition

S; that is, for each i 2 [t], for x 2 Si, pS0 (x) = vi for some constant vi 2 [0, 1]. Then,

��pS � pS0
��
1

��p⇤ � pS0

��
1
,

��pS � p⇤
��
1
 2 ·

��pS0 � p⇤
��
1
.

Proof. Consider
��pS � p⇤

��
1
. First, we apply the triangle inequality as follows.

��pS � p⇤
��
1

��pS � pS0

��
1
+
��pS0 � p⇤

��
1

Next, we show that
��pS � pS0

��
1

��pS0 � p⇤

��
1
.

��pS � pS0
��
1
=
X

i2[t]

Pr
x⇠X

[x 2 Si] ·

���� E
x⇠DSi

[p⇤(x)]� vi

����



X

i2[t]

Pr
x⇠X

[x 2 Si] · E
x⇠DSi

[|p⇤(x)� vi|] (7.4)

=
��p⇤ � pS0

��
1

where (7.4) follows by Jensen’s inequality.

With this lemma in place, we can easily prove Proposition 7.10. Proof of Proposi-

tion 7.10. For a ranking r 2 R that is "-adjacent to p⇤, let p1 = argminp2P(r) kp� p⇤k1.
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Note that by r-consistency, we know that p0 is piecewise constant on the quantiles of r.

Thus, by applying Lemma 7.11, we can conclude

kpr � p⇤k1  2 · kp0 � p⇤k1 .

Thus, kpr � p⇤k1  2". ⇤
We argue that in any learning model that only has access to binary samples (x, y) ⇠

DX⇥Y , the factor of 2 loss between the adjacency and the `1-distance of the recovered

predictor is actually optimal.

Observation 7.12 (Informal). For any c < 2, there is an " > 0 and a distribution DX⇥Y ,

such that given access to a ranking r 2 R that is "-adjacent to p⇤ and a bounded number of

labeled samples (x, y) ⇠ DX⇥Y , no algorithm can produce a predictor p where

kp� p⇤k1  c · ".

Proof Sketch. Let X = [N ] be a finite universe and DX be the uniform distribution over

X . Suppose r 2 R is the constant ranking; that is, r(x) = 0 for all x 2 X . We construct a

hard distribution over the choice of p⇤ : X ! [0, 1], where we can bound the adjacency of r

to p⇤, but it is impossible to recover a predictor that always achieves the optimal `1 error.

For some " > 0, let p" : X ! [0, 1] be defined as p"(x) = " for all x 2 X . For some subset

S ✓ X , let pS : X ! 0, 1 be defined as pS(x) = 1 if x 2 S and pS(x) = 0 for x 62 S. Let

S" ✓ X be a random subset sampled by independently sampling x 2 S" with probability "

for each x 2 X . Then, consider the following distribution over the choice of p⇤:

p⇤ =

8
<

:
p" w.p. 1/2

pS" w.p. 1/2

for a randomly drawn S". Note for a bounded set of samples (say, o(
p
N) samples), with

probability 1 � o(1), there will be no x 2 X sampled more than once; conditioned on this

event, the labeled samples (x, y) ⇠ DX ,Y for either choice of p⇤ are identically distributed.

Despite the identical distribution of labeled samples, the feasible minimizer of kpr � p⇤k1
is not the same. In particular, because r is the constant ranking, to be consistent pr 2 P(r)

must be constant over X . When p⇤ = p", then p" is the minimizer, and r is 0-adjacent to

p⇤. In other words, if we output any predictor pr other than p", then with probability 1/2,
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then kpr � p⇤k1 > c · " for every constant c. Thus, to get any multiplicative approximation

to the best `1 error, every algorithm must output p".

But consider when p⇤ = pS" ; in this case, the constant predictor p0(x) = 0 for all x 2 X

will minimize the `1 error to p⇤, with kp0 � p⇤k1  "+ o(1). Using p" as the estimate of p⇤,

we can bound the expected `1 error as follows.

E [kp" � p⇤k1] = Pr[p⇤(x) = 1] · (1� ") +Pr[p⇤(x) = 0] · "

= " · (1� ") + (1� ") · "

= 2"� 2"2

Taking " > 0 to be an arbitrarily small constant, we can see that the recovery guarantee

approaches 2", which approaches a factor-2 worse than optimal. ⇤
In all, we have shown that a highly accurate ranking plus a set of labeled samples suggest

an accurate predictor. Specifically, in the small error regime, the calibration of a ranking

achieves the information-theoretic optimal approximate predictor. This formalizes the idea

that a good understanding of the relative risk of individuals plus historical evidence may

translate into an understanding of the absolute risk of individuals. Next, we introduce fair-

ness notions for rankings, motivated by the common setting where highly-accurate rankings

may not be attainable.

7.2 Domination-Compatibility and Evidence-Consistency

In this section, we introduce formally the notions of evidence-based fairness in rankings.

The notions are designed with two competing goals in mind: to protect individuals from

systematic misrepresentation within a ranking; and to allow for e�cient learning from a

small set of labeled samples from DX⇥Y . As with our earlier notions of fairness developed

for prediction, we settle on a multi-group perspective that aims to protect significant sub-

populations in a way that can be e�ciently audited from data through statistical queries.

Domination-Compatibility. Intuitively, if a “fair” ranking gives preference to a subset

S over another subset T , we would expect that S should be more qualified than T in terms

of p⇤, at least on average. We begin by formalizing the idea that a ranking r gives preference

to S over T , which we call domination.
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Definition 7.13 (Domination). Let S, T ✓ X be two subsets and � � 0. For a ranking

r 2 R, we say that S �-dominates T in r if for all thresholds ⌧ 2 [0, 1],

Pr
x⇠DS

[ r(x) < ⌧ ] + � � Pr
x⇠DT

[ r(x) < ⌧ ] .

That is, S dominates T if for every threshold ⌧ 2 [0, 1], the fraction (with respect to D)

of individuals from S that are ranked “better than” ⌧ is at least as large as the corresponding

fraction of individuals in T , up to an additive slack of �. The notion of domination can be

viewed as an approximate form of CDF-domination (again, up to the strict inequality).

Intuitively, there is a natural combinatorial interpretation of the domination condition in

terms of matchings. In the special case where S and T are disjoint sets of equal cardinality

and the distribution of interest D is the uniform distribution, then S �-dominates T if, after

discarding a �-fraction of the individuals from each group, there exists a perfect matching

m : S ! T in which where every x 2 S is matched to some m(x) 2 T , whose rank in

r is no better than that of x; that is, r(x)  r(m(x)). Definition 7.13 generalizes this

notion allowing comparison between S and T that are arbitrarily-intersecting subsets over

arbitrary discrete probability densities. We argue that domination formally captures the

intuition that a ranking strongly prefers one subset over another. The following lemma

shows that if S dominates T in a ranking r, then every consistent predictor p 2 P(r), favors

S over T on average.

Lemma 7.14. For any subsets S, T ✓ X , if S �-dominates T in r, then for every p 2 P(r),

E
x⇠DS

[ p(x) ] + � � E
x⇠DT

[ p(x) ] .

Proof. For a ranking r 2 R, let p 2 P(r) be an r-consistent predictor. For a subset S ✓ X ,

by r-consistency for each v 2 supp(p), there exists some ⌧v 2 supp(r) (the minimum ⌧

where r(x) = ⌧ and p(x) = v)

Pr
x⇠DS

[p(x) > v] = Pr
x⇠DS

[r(x) < ⌧v] .

Suppose S �-dominates T . Consider the di↵erence in expectations of p(x) under DS

and DT , which we expand using the identity for nonnegative random variables E[X] =
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R
v�0Pr [ X > v ] dv.

E
x⇠DT

[ p(x) ]� E
x⇠DS

[ p(x) ] =

Z 1

0

✓
Pr

x⇠DT

[ p(x) > v ]� Pr
x⇠DS

[ p(x) > v ]

◆
dv

=

Z 1

0

✓
Pr

x⇠DT

[ r(x) < ⌧v ]� Pr
x⇠DS

[ r(x) < ⌧v ]

◆
dv

 �

where the final inequality bounds the di↵erence in probabilities by �-domination.

Lemma 7.14 suggests a natural group fairness notion for rankings. SupposeEx⇠DT [p
⇤(x)]

is significantly larger than Ex⇠DS [p
⇤(x)] but S �-dominates T in r for some small �. Then,

Lemma 7.14 show that no r-consistent predictor p 2 P(r) can respect the true potential of

S and T , even on average. Such a reversal under r—where the expected potential of T is

higher than that of S, but S dominates T in r—represents a form of blatant discrimination

against T : either the individuals of T are being significantly undervalued or the individuals

in S are being overvalued by the ranking r.

A baseline notion of fairness for a ranking r would be that r does not exhibit any

such blatant reversals for pairs of meaningful sets. Applying the multi-group perspective,

we require this domination-compatibility to hold for every pair from a rich collection C of

subpopulations.

Definition 7.15 (Domination-compatibility). Let C ✓ {0, 1}X be a collection of subpopula-

tions and ↵ � 0. A ranking r 2 R is (C,↵)-domination-compatible if for all pairs of subsets

S, T 2 C ⇥ C and for every � � 0, if S �-dominates T in r, then

E
x⇠DS

[ p⇤(x) ] + (� + ↵) � E
x⇠DT

[ p⇤(x) ]

For S, T 2 C, a (C,↵)-domination-compatible ranking r guarantees that if S dominates

T in r, then the true expectation of p⇤ over S is not significantly lower than that over T .

Intuitively, the fact that S receives preferential treatment compared to T in r is “justified”

by di↵erences in p⇤.

Evidence-Consistency. A key reason that rankings r which violate the domination-

compatibility constraints seem so objectionable is that there does not exist any r-consistent
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predictor p 2 P(r) that exhibits the true expectations on the sets S 2 C. This observation

motivates a notion of fair rankings from the perspective of consistent predictors. Specifically,

the notion—evidence-consistency—goes a step further than domination-compatibility and

requires that there exists an r-consistent predictor that exhibits the correct expectations

for every subset in the collection.

Definition 7.16 (Evidence-Consistency). Let C ✓ {0, 1}X be a collection of subpopulations

and ↵ � 0. A ranking r 2 R is (C,↵)-evidence-consistent if there exists an r-consistent

predictor p̃ 2 P(r) where for every S 2 C,

���� E
x⇠DS

[ p⇤(x) ]� E
x⇠DS

[ p̃(x) ]

����  ↵.

In other words, a ranking r is evidence-consistent with respect to a class C if there is an

r-consistent predictor p̃ 2 P(r) that cannot be refuted using the statistical tests defined by

the class C. If C represents the collection of tests that can be feasibly carried out (from a

computational or statistical perspective), then from this perspective, an evidence-consistent

ranking is a plausible candidate for the ranking induced by p⇤ (i.e., it respects the evidence

about p⇤ in hand).

Essentially, by contrapositive of Lemma 7.14, we can see that evidence-consistency im-

plies domination-compatibility. That is, by requiring a globally-consistent predictor that

respects the expectations defined by subsets S 2 C, evidence-consistency guarantees that the

ranking does not misrepresent the (average) potential of members of any S 2 C compared

to another T 2 C. In particular, if a ranking satisfies evidence-consistency with respect to

a class C then it also satisfies domination-compatibility with respect to the class.

Proposition 7.17. Let C ✓ {0, 1}X be a collection of subsets over X and let ↵ � 0. If a

ranking r 2 R is (C,↵)-evidence-consistent, then r is (C, 2↵)-domination-compatible.

Proof. Suppose for ↵ � 0 a ranking r 2 R is (C,↵)-evidence-consistent. Let S, T 2 C be

two sets where S �-dominates T , for some � � 0. By the definition of evidence-consistency,

we know that there exists a predictor p̃ 2 P (r) such that

E
x⇠DS

[ p⇤(x) ] � E
x⇠DS

[ p̃(x) ]� ↵

E
x⇠DT

[ p⇤(x) ]  E
x⇠DT

[ p̃(x) ] + ↵
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Further, by Lemma 7.14, because S �-dominates T , we know that

E
x⇠DS

[ p̃(x) ] � E
x⇠DT

[ p̃(x) ] + �.

Combining the three inequalities, we can derive the following inequality.

E
x⇠DS

[ p⇤(x) ] � E
x⇠DT

[ p⇤(x) ] + � � 2↵

Thus, for every pair S, T ✓ C ⇥ C where S �-dominates T , the expectations of p⇤ over S

and T satisfy the domination-compatibility requirement with additive 2↵.

In fact, a simple construction shows that the implication is strict, showing that when the

sets we wish to protect are predefined by C, then evidence-consistency is a strictly stronger

notion than domination-compatibility.

Observation 7.18. There exist collections of subpopulations C, distribution DX⇥Y , and

approximation parameter ↵ > 0, such that the set of (C,↵)-evidence-consistent rankings is

a strict subset of (C, 0)-domination-compatible rankings.

Proof Sketch. Suppose we take C = {S, T} such that S = A [ B and T = B [ C where

A,B,C satisfy the following properties.

Pr
x⇠D

[ x 2 A ] = 1� 2" Pr
x⇠D

[ x 2 B ] = " Pr
x⇠D

[ x 2 C ] = "

E
x⇠DA

[ p⇤(x) ] = 1.0 E
x⇠DB

[ p⇤(x) ] = 1.0 E
x⇠DC

[ p⇤(x) ] = 0.0

Thus, we can conclude that

E
x⇠DS

[ p⇤(x) ] = 1.0 E
x⇠DT

[ p⇤(x) ] = 0.5

Consider the ranking that ranks all of A first, then T = B [ C at the same ranking.

r(x) =

8
<

:
0.0 x 2 A

1� 2" x 2 T

We claim that r is (C, 0)-domination-compatible but not (C,↵)-evidence-consistent for any

3↵ < " < 1/9. Verifying (C, 0)-domination-compatibility is straightforward, and mainly
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requires verifying that the fact T �-dominates S for � > 1�2" implies a trivial compatibility

constraint.

To see that the ranking does not satisfy (C,↵)-evidence consistency, we show that

any consistent predictor p̃ must give values to x 2 B such that either EDS [ p̃(x) ] ⌧

EDS [ p⇤(x) ] or EDT [ p̃(x) ]� EDT [ p⇤(x) ]. The claim follows by contradiction, assuming

a p̃ satisfying consistency on S and deriving that p̃ cannot be consistent on T . ⇤
This construction actually highlights the key conceptual di↵erence between the guaran-

tees of domination-compatibility and evidence-consistency. The proposed ranking actually

identifies accurately a sizeable portion of the top-ranked individuals, but makes a mistake

on a small portion. This small, local mistake (that might be tolerated by most notions

of approximate recovery in prediction) actually makes it impossible for the ranking to be

globally consistent. In this way, the evidence-consistency constraints—that require a sin-

gular global explanation p̃ of the ranking based on the available evidence about p⇤—reject

rankings that only satisfy the domination-compatibility constraints locally.

7.2.1 Learning Evidence-Based Rankings

With these fairness notions for rankings in place, we turn our attention to learning such

rankings. By Proposition 7.17, an algorithm to learn evidence-consistent rankings su�ces

to obtain domination-compatible rankings. Thus, we focus on evidence-consistency. To-

wards this goal, we reexamine the definition of evidence-consistency. The notion requires

consistency with a predictor p̃ that satisfies the correct expectations over all subpopulations

for some S 2 C. In other words, the predictor p̃ must be multi-accurate. Specifically, we

can characterize evidence-consistency as follows.

Proposition 7.19. Let C ✓ {0, 1}X be a collection of subpopulations and ↵ � 0.

• If p̃ : X ! [0, 1] is a (C,↵)-multi-accurate predictor, its induced ranking rp̃ is (C,↵)-

evidence-consistent.

• If r 2 R is a (C,↵)-evidence-consistent ranking, then it is the induced ranking of a

(C,↵+ ")-multi-accurate predictor, for any constant " > 0.

Proof. First, we observe that the induced ranking of a (C,↵)-multi-accurate predictor is

(C,↵)-evidence-consisent. This implication follows immediately by the definition of multi-

accuracy and the fact that for any predictor p, the predictor is consistent with its induced

ranking; i.e., p 2 P(rp).
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Next, suppose r 2 R is (C,↵)-evidence-consistent and consider the (C,↵)-multi-accurate

p̃ 2 P(r) guaranteed by evidence-consistency. We will show that r arises as the induced

ranking of some predictor p that is statistically close to p̃. We define p as follows: for each

⌧ 2 supp(r), designate a tie-breaking value ⇠⌧ 2 [�", "] satisfying the following properties:

• for each x 2 X such that r(x) = ⌧ , let p(x) = p̃(x) + ⇠⌧

• for each ⌧ 2 supp(r), there exists some unique v⌧ 2 supp(p) such that

{x 2 X : r(x) = ⌧} = {x 2 X : p(x) = v⌧}

• for every x, x0 2 X ⇥ X , r(x) < r(x0) if and only if p(x) > p(x0).

The values of p move by at most " from those of p̃, so p is (C,↵+")-multi-accurate. Further,

the p maintains the distinctions in the original ranking r; by construction, the level sets of

p are equal to the quantiles according to r. Thus, the induced ranking rp = r.

As an immediate corollary of Proposition 7.19, we obtain an algorithm for learning

evidence-consistent rankings: first, we apply Algorithm 7 to learn a (C,↵)-multi-accurate

predictor p̃; then, we apply the transformation from Proposition 7.4 on p̃ to obtain the

induced ranking rp̃. By the first direction of Proposition 7.19, we know that rp̃ will be

(C,↵)-evidence-consistent.

7.3 Evidence-Based Rankings and Multi-Calibration

The results of Section 7.2 establish that the strength of evidence-consistency hinges on the

expressiveness of C; the richer C is, the stronger the protections provided by consistency

with the actual expectations in sets in C. In this section, we argue that approaches that

only protect a predefined collection of subpopulations can leave the door open to abuses—

including ones that we show can, in fact, be audited from a small set of labeled data. In

this section, we build up stronger notions of both domination-compatibility and evidence-

consistency. We show tight connections between rankings which satisfy these stronger “re-

flexive” notions—that incorporate sets to protect based on the quantiles of the ranking

itself—and multi-calibrated predictors.
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Notation for quantiles. Throughout this section, we will continue to use the notational

convention that for a ranking r 2 R and a subset S ✓ X ,

Sr
⌧ = {x 2 S : r(x) = ⌧} .

The ranking r 2 R is typically clear from context. In such cases, we drop the explicit

reference to r, and simply denote these quantiles as S⌧ . Thus, we can express the quantiles

according to a ranking r 2 R as

Q(r) = {X⌧ : ⌧ 2 supp(r)} .

Attacking evidence-consistent rankings. While a seemingly-strong notion, evidence-

consistency is vulnerable to subtle forms of manipulation. One such form of manipulation

can be developed by revisiting the proof of Proposition 7.19. While it was immediate to see

that the induced ranking of a multi-accurate predictor was evidence-consistent, arguing the

reverse implication required more care. By definition, we know that if r is (C,↵)-evidence-

consistent, then there is some multi-accuate p̃ 2 P(r) that is consistent with r; however,

this does not mean that p̃ induces the ranking specified by r. Recall that by the definition

of r-consistency, the mapping from the quantiles according to r to the level sets of p̃ may

not be injective. For instance, in general, for any x 2 X ,

�
x0 2 X : r(x0) = r(x)

 
6=
�
x0 2 X : p̃(x0) = p̃(x)

 
.

In other words, evidence-consistency may allow for a ranking r to make distinctions between

sets of individuals, even if the “witness” predictor p̃ does not make distinctions.

To highlight the potential weakness of evidence-consistency, consider the following ex-

ample. Suppose C has two disjoint, equally-sized subpopulations S and T , and the learner

is given access to a multi-accurate predictor p̃ where

p̃(x) =

8
<

:
0.8 x 2 S

0.5 x 2 T

We know that the induced ranking rp̃ will be (C,↵)-evidence-consistent. But suppose a

manipulative learner wants to promote the ranking of the individuals in T . Consider the
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following adversarial ranking: the learner splits T in half into T0, TT ✓ T and defines r as

r(x) =

8
>>><

>>>:

0.0 x 2 T0

0.25 x 2 S

0.75 x 2 T1

This ranking puts half of the individuals in T at the top of the ranking—above all of S—

despite the fact that the evidence in p̃ suggests that individuals in T are on-average less

qualified than those in S.

Still, we claim that r satisfies (C, 0)-evidence-consistency. In particular, consider the

predictor p that gives

p(x) =

8
>>><

>>>:

1.0 x 2 T0

0.8 x 2 S

0.0 x 2 T1

This predictor p is is r-consistent and agrees in expectation over all of the subpopulations

defined by C. Such adversarial manipulation of evidence-consistency is possible regardless

of the structure of p⇤ within S and T . Indeed, this example exploits the fact that the

relevant subpopulations T0 and T1 are not included in C. Because the protections evidence-

consistency requires are predefined by C, it cannot provide guarantees about sets that are

defined by the ranking itself. Still, with the ranking in hand, T0 and T1 are identifiable;

they are quantiles defined by r. This example shows that without explicitly considering

the quantiles of the ranking themselves, violations of domination-compatibility between the

sets defined by the ranking may arise in insidious ways.

7.3.1 Ordering the quantiles via domination-compatibility

These examples demonstrate that while evidence-consistency provides strong overall pro-

tections for the sets in C, it provides limited guarantees to sets defined by r itself, which

may intersect nontrivially with the sets in C. This observation motivates enforcing some

notion of consistency to ensure the quantiles of r are ordered in accordance with the evi-

dence about their quality. We argue that a ranking that satisfies domination-compatibility

over its quantiles satisfies a certain approximate ordering property.
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Lemma 7.20. Let r 2 R be ranking. Suppose ⌧, ⌧ 0 2 supp(r) and ⌧  ⌧ 0. Then, for any

S⌧ ✓ X⌧ and T⌧ 0 ✓ X⌧ 0, S⌧ 0-dominates T⌧ 0.

Proof. The proof of the lemma follows immediately from the definition of quantiles and

�-domination. We argue that for all thresholds � 2 [0, 1]

Pr
x⇠DS⌧

[ r(x)  � ] � Pr
x⇠DT⌧ 0

[ r(x)  � ] .

By the fact that the ranking r is constant on each quantile, the statement is equivalent to

1 [ ⌧  � ] � 1
⇥
⌧ 0  �

⇤
,

which holds for all � by the assumption that ⌧  ⌧ 0.

As such, requiring a ranking to satisfy domination-compatibility over its quantiles im-

plies the quantiles are (approximately) correctly ordered according to their expectations.

Corollary 7.21. Suppose a ranking r 2 R is (Q(r),↵)-domination-compatible. Then, for

all ⌧ < ⌧ 0 2 supp(r),

E
x⇠DX⌧

[ p⇤(x) ] � E
x⇠DX⌧ 0

[ p⇤(x) ]� ↵.

Note that requiring domination-compatibility with respect to Q(r) is fundamentally dif-

ferent than requiring it with respect to a fixed, predefined class C. In particular, when we

impose constraints defined by Q(r), these self-referential constraints change as a function

of the ranking in question. Note that our motivating examples—highlighting the weak-

ness of evidence-consistency—failed to satisfy domination-compatibility with respect to the

quantiles.

With this mind, one way to augment the notions of domination-compatibility and

evidence-consistency from Section 7.2 would be to add the quantiles to the set C to protect.

Specifically, we could require a new evidence-based notion (C[Q(r),↵)-evidence-consistency

that would imply (C [Q(r), 2↵)-domination-compatibility by Propostion 7.17. Such a no-

tion is strong enough to mitigate the concerns raised in the examples so far, but still may

not be enough. Specifically, the attacks we’ve shown can all be “scaled down” to work, not

at the level of X , but within the subpopulations S 2 C. With some care, it is possible to

construct examples demonstrating that simply adding the quantiles to the set C may still
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su↵er from undesirable transpositions of subgroups within the sets defined in C. Thus, we

turn our attention to even stronger protections.

7.3.2 Incorporating the quantiles into evidence-based notions

In this section, we show a way to incorporate the quantiles to provide a much stronger

guarantee. Rather than protecting the union of the set system C with the quantiles Q(r),

we could protect the intersections of sets S 2 C and each X⌧ 2 Q(r). Concretely, we define

“reflexive” variants of domination-compatibility and evidence-consistency that strengthen

the guarantees to include these subpopulations defined by the ranking itself. The protections

that arise from such evidence-based fairness in rankings are syntactically similar to the

protections of multi-calibration in predictors. In fact, we show that the connection between

these notions is quite deep: when we allow the collection of subpopulations to depend on the

sets defined by the ranking, the notions of domination-compatibility, evidence-consistency,

and multi-calibration are mutually equivalent.

Incorporating the quantiles. Given a collection of subsets C ✓ {0, 1}X , a ranking

r 2 R, and an approximation parameter ↵, consider the following set system derived by

intersecting subsets S 2 C with those defined by the quantiles of r.

Definition 7.22. Let ↵ � 0 and C ✓ {0, 1}X be a collection of subpopulations of X . For a

ranking r 2 R with s = |supp(r)|, consider the collection of subpopulations C↵(r) ✓ {0, 1}X

defined as follows.

C↵(r) =

8
>>><

>>>:
S⌧ :

S 2 C,

⌧ 2 supp(r),

Pr
x⇠DS

[ x 2 S⌧ ] � ↵/s

9
>>>=

>>>;
where S⌧ = {x 2 S : r(x) = ⌧} .

Let Q =
S

S⌧2C↵(r) S; let the e↵ective quantiles QC,↵(r) be defined as follows.

QC,↵(r) = {Q⌧ : ⌧ 2 supp(r)} where Q⌧ = {x 2 Q : r(x) = ⌧} .

We make a few remarks about the collection C↵(r) and the e↵ective quantiles QC,↵(r).

First, as in the definition of multi-calibration, we exclude from C↵(r) subpopulations that

are su�ciently small, anticipating the fact that we wish to learn such rankings from random
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samples. By scaling the minimum probability considered by the support size, the total frac-

tion of any subpopulation that is excluded from consideration will be at most ↵. Throughout

our subsequent analysis, we will reason about the e↵ective quantiles Q↵(r) rather than our

earlier definition of quantiles. This is a technicality to handle the unnatural case where there

is some ⌧ 2 supp(r) with exceptionally small probability PrD [ r(x) = ⌧ ] < ↵/s. Note that

if all supported elements have considerable probability at least ↵/s, then Q↵(r) = Q(r).

As before, we consider domination-compatibility and evidence-consistency with respect

to this augemented collection of sets.

Definition 7.23 (Reflexive domination-compatibility). Let ↵ � 0 and C ✓ {0, 1}X be a

collection of subsets. A ranking r 2 R is (C,↵)-reflexive-domination-compatible if it is

(C↵(r),↵)-domination-compatible.

Definition 7.24 (Reflexive evidence-consistency). Let ↵ � 0 and C ✓ {0, 1}X be a collec-

tion of subsets. A ranking r 2 R is (C,↵)-reflexive-evidence-consistent if it is (C↵(r),↵)-

evidence-consistent.

Writing the definition of reflexive-evidence-consistency more explicitly reveals the tech-

nical connection to multi-calibrated predictions. Specifically, a ranking r 2 R with support

s = |supp(r)| is (C,↵)-reflexive-evidence-consistent if there exists some consistent predictor

p̃ 2 P(r) such that for all S 2 C and all ⌧ 2 supp(r) where PrDS [ r(x) = ⌧ ] > ↵/s,

���� E
x⇠DS

[ p⇤(x) | r(x) = ⌧ ]� E
x⇠DS

[ p̃(x) | r(x) = ⌧ ]

����  ↵.

Recall that without augmenting the class C, domination-compatibility is a strictly

weaker notion than evidence-consistency. The main result of this chapter demonstrates that

reflexive-domination-compatibility, reflexive-evidence-consistency, and multi-calibration all

encode equivalent notions of fairness. In other words, any ranking that satisfies domination-

compatibility for a rich enough class of sets (informed by the ranking itself) implies the

existence of a globally consistent multi-calibrated predictor.

Theorem 7.25 (Equivalence of Evidence-Based Fairness Notions, informal). Suppose C ✓

{0, 1}X is a collection of subpopulations. For ↵ > 0 and a ranking r 2 R:

• r is (C,↵)-reflexive-domination-compatible, if and only if

• r is (C,⇥(↵))-reflexive-evidence-consistent, if and only if
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• r is the induced ranking of a (C,⇥(↵))-multi-calibrated predictor.

The theorem is stated somewhat informally to emphasize the equivalence of the no-

tions. Technically, what we show is that for any of the notions—reflexive-domination-

compatibility, reflexive-evidence-consistency, and induced by multi-calibration—a ranking

satisfying (C,↵)-[notion] also satisfies (C, 2↵)-[other notion].

We will prove the theorem as follows. One direction of implications will follow as corol-

laries of the results from Section 7.2. Specifically, the induced ranking of a multi-calibrated

predictor is reflexive-evidence-consistent; further, a reflexive-evidence-consistent ranking is

reflexive-domination-compatible. To complete the equivalence, we show that if a ranking

r 2 R is reflexive-domination-compatible, then r must arise as the induced ranking of some

multi-calibrated predictor. We present the theorem and proof with a bias towards intuition

rather than optimizing numerical constants. Quantitatively tighter connections (in terms

of the approximation factor) can be made by translating directly between each notion, but

the proofs add little insight beyond that of Theorem 7.28.

From multi-calibration to evidence-based rankings. We begin by demonstrating

that, as with the non-reflexive notions, we can go from a multi-group guarantee on a pre-

dictor to guarantee evidence-based fairness in rankings. First, we show that the induced

ranking of a multi-calibrated predictor is reflexive-evidence-consistent.

Proposition 7.26. Let C ✓ {0, 1}X be a collection of subpopulations and let ↵ � 0. If

a predictor p̃ : X ! [0, 1] is (C,↵)-multi-calibrated, then its induced ranking rp̃ is (C,↵)-

reflexive-evidence-consistent.

Proof. Recall, for any predictor p : X ! [0, 1], p 2 P(rp) is consistent with its induced

ranking rp; also, for each v 2 supp(p) there exists some ⌧v 2 supp(rp) such that for any

subset S ✓ X ,

{x 2 S : p(x) = v} = {x 2 S : rp(x) = ⌧v} .

Using these facts, we show that any multi-calibrated p̃ 2 P(rp̃) exhibits the correct ex-

pectations on the quantiles over subpopulations defined in C↵(rp̃). Specifically, for each
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S⌧ 2 C↵(rp̃),

���� E
x⇠DS

⇥
p⇤(x)

�� rp̃(x) = ⌧v
⇤
� E

x⇠DS

⇥
p̃(x)

�� rp̃(x) = ⌧v
⇤ ����

=

���� E
x⇠DS

[ p⇤(x) | p̃(x) = v ]� E
x⇠DS

[ p̃(x) | p̃(x) = v ]

����

=

���� E
x⇠DS

[ p⇤(x) | p̃(x) = v ]� v

����

 ↵

by the multi-calibration guarantee. Thus, rp̃ is (C,↵)-reflexive-evidence-consistent.

By the characterization of the stronger reflexive notions as domination-compatibility

and evidence-consistency over a richer collection of sets, the fact that reflexive-evidence-

consistency implies reflexive-domination-compatibility follows as a direct corollary of Propo-

sition 7.17.

Corollary 7.27. Let C ✓ {0, 1}X be a collection of subpopulations and let ↵ � 0. If a

ranking r 2 R is (C,↵)-reflexive-evidence-consistent, then r is (C, 2↵)-reflexive-domination-

compatible.

From domination-compatibility to multi-calibration. As we’ve seen, domination-

compatibility over a predefined set of subpopulations is not su�cient to imply the existence

of a globally consistent predictor. Somewhat surprisingly, we show that when we allow

the protected subpopulations to depend nontrivially on the quantiles of the ranking, the

protections of reflexive domination-compatibility are considerably stronger. Specifically,

a reflexivie-domination-compatible ranking must arise as the induced ranking of a multi-

calibrated predictor, and thus, must also be reflexive-evidence-consistent.

Theorem 7.28. Suppose C ✓ {0, 1}X is a collection of subpopulations and let ↵ � 0. If

r 2 R is a (C,↵)-reflexive-domination-compatible ranking, then r is the induced ranking of

a (C,↵+ ")-multi-calibrated predictor, for any constant " > 0.

At an intuitive level, we will show that if we turn the reflexive domination-compatible

ranking into a calibrated predictor by taking expectations over the quantiles, the resulting

predictor is multi-calibrated. The proof will be a bit more technical, taking care to work

with the e↵ective level sets Q↵(r) and to break ties between quantiles that may result in the
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same expected value of p⇤. This tie-breaking is used to ensure that subpopulations defined

by the quantiles according to r that are deemed too small to be included in C↵(r)—for

which we have no guarantees—do not merge to become large enough to be considered in

the definition of (C,↵)-multi-calibration.

Proof. Suppose r 2 R is (C,↵)-reflexive-domination-compatible. Consider the e↵ective

quantiles Q↵(r), and for each Q⌧ 2 Q↵(r), define the following value.

p⌧ = E
x⇠D

[ p⇤(x) | x 2 Q⌧ ] .

We construct a predictor p̃ : X ! [0, 1] based on {p⌧} as follows. Due to the approximate

nature of the domination-compatibility constraints, the values of p⌧ may not be monoton-

ically decreasing in ⌧ . Thus, we perturb the values of p⌧ slightly in our construction of p̃.

For each ⌧ 2 supp(r), for all x 2 X⌧ we define p̃(x) as

p̃(x) = min
⌧ 0⌧

{ p⌧ 0 }+ "⌧

where "⌧ 2 [�", "] is an arbitrarily small constant to ensure that the e↵ective quantiles are

preserved as level sets of p̃. Specifically, for each ⌧ 2 supp(r), there exists some v⌧ 2 supp(p)

such that

{x 2 X : r(x) = ⌧} = {x 2 X : p̃(x) = v⌧} . (7.5)

The construction of p̃ ensures that r arises as the induced ranking of p̃; that is, r = rp̃.

Thus, it remains to verify that p̃ is indeed (C,↵+ ")-multi-calibrated.

To see that p̃ is multi-calibrated, we remark that we only have to reason about sets

S⌧ 2 C↵(r). Importantly, the bijection from (7.5) preserves the measure of the sub-quantile

as a sub-level-set in p̃; that is, |supp(r)| = |supp(p)| = s and for all S⌧ 2 C↵(r),

Pr
x⇠DS

[ r(x) = ⌧ ] > ↵/s () Pr
x⇠DS

[ p̃(x) = v⌧ ] > ↵/s.

As such, we consider the di↵erence in expectations of various sets within C↵(r). By

Lemma 7.20, we know that for any ⌧ 0  ⌧ , and any subsets S, T ✓ X , T⌧ 0 0-dominates

S⌧ . By domination-compatibility, for any such T⌧ 0 , S⌧ 2 C↵(r), the expectation over S⌧



CHAPTER 7. EVIDENCE-BASED RANKINGS 150

cannot exceed that of T⌧ 0 significantly.

E
x⇠DS

[ p⇤(x) | r(x) = ⌧ ]� E
x⇠DT

⇥
p⇤(x)

�� r(x) = ⌧ 0
⇤
 ↵ (7.6)

Because this inequality holds for all sub-quantiles of T⌧ 0 ✓ Q⌧ 0 , by an averaging argument

we know that the same inequality holds for the e↵ective quantiles. Rearranging, we obtain

the following two inequalities for ⌧ 0  ⌧ and any S⌧ 2 C↵(r):

E
x⇠DS

[ p⇤(x) | r(x) = ⌧ ]  E
x⇠D

[ p⇤(x) | x 2 Q⌧ 0 ] + ↵ (7.7)

E
x⇠D

[ p⇤(x) | x 2 Q⌧ ]  E
x⇠DS

[ p⇤(x) | r(x) = ⌧ ] + ↵ (7.8)

where (7.8) follows by letting ⌧ 0 = ⌧ , and applying (7.6) in the reverse direction. With these

inequalities, we can upper and lower bound the value of p̃(x) compared to the expectation

over sets S 2 C where p̃(x) = v⌧ . Specifically, for some x 2 S⌧ for S⌧ 2 C↵(r):

p̃(x) = min
⌧ 0⌧

{ p⌧ 0 }+ "⌧ (7.9)

 p⌧ + " (7.10)

= E
x⇠D

[ p⇤(x) | x 2 Q⌧ ] + " (7.11)

 E
x⇠DS

[ p⇤(x) | r(x) = ⌧ ] + ↵+ " (7.12)

= E
x⇠DS

[ p⇤(x) | p̃(x) = v⌧ ] + ↵+ " (7.13)

where (7.9) follows by definition of p̃; (7.10) follows by the fact that p⌧ is feasible for the

minimum over ⌧ 0  ⌧ ; (7.11) follows by definition of p⌧ ; (7.12) follows by (7.8); and (7.13)

follows by (7.5). To establish the other direction:

E
x⇠DS

[ p⇤(x) | p̃(x) = v⌧ ] = E
x⇠DS

[ p⇤(x) | r(x) = ⌧ ] (7.14)

 min
⌧ 0⌧

⇢
E

x⇠D

[ p⇤(x) | x 2 Q⌧ 0 ]

�
+ ↵ (7.15)

 min
⌧ 0⌧

{ p⌧ 0 }+ ↵ (7.16)

 p̃(x) + ↵+ " (7.17)

where (7.14) follows again by (7.5); (7.15) follows by the fact that (7.7) holds for all ⌧ 0  ⌧
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and thus holds for the minimum such ⌧ 0; (7.16) follows by definition of p⌧ ; and (7.17)

follows by definition of p̃. In all, we have shown that if a ranking r 2 R is (C,↵)-reflexive-

domination-compatible, then it must arise as the induced ranking of some (C,↵+ ")-multi-

calibrated predictor p̃.

While the proof of Theorem 7.28 is technical at points, the overall structure is clear: to

maintain multi-calibration, it is vital that we (approximately) maintain the ordering of the

quantiles according to their p⇤ values, because by reflexive-domination-compatibility they

are already ordered correctly—even on sub-quantiles.

We note that a corollary of this proof and Proposition 7.10 is a way to transform a reflex-

ive domination-compatible ranking into a multi-calibrated predictor. Specifically, given a

ranking r 2 R, we show that the consistent calibration of a reflexive domination-compatible

ranking, as defined in the proof of Theorem 7.28, is a multi-calibrated predictor. Given such

a ranking and a small set of labeled samples, we can estimate the consistent calibration ef-

ficiently. Thus, provided access to su�ciently many labeled samples from DX⇥Y , the task

of learning reflexive evidence-based rankings is also computationally equivalent to learning

multi-calibrated predictors.

In all, the results establish the fact that that reflexive domination-compatibility, reflexive

evidence-consistency, and multi-calibration are all tightly connected concepts of evidence-

based fairness. We can interpret the result from the perspective of ranking or from the

perspective of prediction. First, the theorem shows that in order to learn a ranking that

satisfies our strongest notion of fairness, it is (essentially) necessary and su�cient to learn

a multi-calibrated predictor. On the other hand, when the goal is to learn a fair and

accurate predictor, this result shows that multi-calibrated predictors inherit desirable non-

transposition properties in terms of the underlying ranking of subpopulations. Ranking is an

inherently global task; thus, the characterization supports the intuitive idea that satisfying

multi-calibration requires learning accurately across the entire population.

Chapter Notes

Chapter 7 is based on [DKR+19], a joint work with Cynthia Dwork, Omer Reingold, Guy

N. Rothblum, and Gal Yona. Our focus on ranking fairly grew out of discussions of fair

a�rmative action, or equality of opportunity, as proposed by [Roe98]. Roemer’s proposal

involves stratifying the population according to some criterion, e.g., high school graduating
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classes (as done in California and Texas) or education level of mother. Subsequently, stu-

dents within each stratum are ranked by grades (in California and Texas), or hours spent

on homework [Roe98], and the top-ranked students from each stratum are admitted. While

the individual fairness notion of [DHP+12] makes no explicit use of rankings, the idea of

individuals being “similarly situated” can be interpreted through the lens of Roemer, to say

that individuals are similarly situated if they are ranked in the same quantile within their

respective statra. The work of [KRW17] follows the approach of Roemer more explicitly and

aims to select individuals from di↵erent (known and non-overlapping) populations in accor-

dance with their population-specific ranking. Unlike our work on evidence-based rankings,

they assume direct access to the underlying individuals’ real-valued outcomes p⇤(x).

There is a broad literature on learning to rank; see for instance, [Bur] and [L+09]

and the references therein. Much of this work focuses on the “pairwise approach” where

the learner receives ordered pairs (x, x0) 2 X ⇥ X , indicating that x � x0. Often, this

approach can be applied to aggregate rankings from multiple sources [VLZ12]. Closer

to our setting is the “pointwise approach” where individual x 2 X are annotated with

either a numerical or ordinal scores. The special case of binary labels is referred to as

the bipartite ranking problem and has been in studied in [AGH+05, FISS03]. [NA13] also

study the connections between prediction and ranking, proving weak regret transfer bounds

(where the mapping for transforming a model from one problem to another depends on the

underlying distribution) between the problems of binary classification, bipartite ranking,

and class-probability estimation.

Typically, the objective in learning to rank is to minimize the probability that a ran-

domly chosen pair (x, x0) is misordered. Various popular ranking algorithms operate by

minimizing a convex upper bound on the empirical ranking error over a class of ranking

functions (see e.g. RankSVM [Joa02] and RankBoost [FISS03]). Recently, [KZ19] proposed

cross-AUC, a variant of the standard AUC metric that corresponds to the probability that a

random positive example from one group is ranked below a random negative example from

the other group. This is similar yet significantly weaker variant of our notion of domina-

tion. Finally, several recent works have considered fairness in rankings from the perspective

of information retrieval, where the objective is to guarantee fair representation in search

results [YS17,CSV17,SJ18].
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Appendix A

Concentration Inequalities

Theorem A.1 (Cherno↵’s Inequalities). Suppose for m 2 N, Z1, . . . , Zm are independent

Bernoulli random variables such that E[Zi] = µi 2 [0, 1] for i 2 [m]. Let µ̂ = 1
m

Pm
i=1 Zi

and let µ = 1
m

Pm
i=1 µi. Then, for all � > 0,

Pr [ µ̂ � (1 +�) · µ ]  exp

✓
�

�2

2 +�
· µ ·m

◆
,

and for all 0 < � < 1,

Pr [ µ̂  (1��) · µ ]  exp

✓
�
�2

2
· µ ·m

◆
.

Corollary A.2. Under the conditions of Theorem A.1, for 0 < � < 1,

Pr [ |µ̂� µ| � � · µ ]  2 · exp

✓
�
�2

3
· µ ·m

◆
.

Theorem A.3 (Hoe↵ding’s Inequality). Suppose for m 2 N, Z1, . . . , Zm are independent

Bernoulli random variables such that E[Zi] = µi 2 [0, 1] for i 2 [m]. Let µ̂ = 1
m

Pm
i=1 Zi

and let µ = 1
m

Pm
i=1 µi. Then, for all � > 0,

Pr [ |µ̂� µ| � � ]  2 · exp
�
�2�2m

�
.
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