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WHO CAN WIN A SINGLE-ELIMINATION TOURNAMENT?∗
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Abstract. A single-elimination (SE) tournament is a popular way to select a winner both in
sports competitions and in elections. A natural and well-studied question is the tournament fixing
problem (TFP): given the set of all pairwise match outcomes, can a tournament organizer rig an
SE tournament by adjusting the initial seeding so that the organizer’s favorite player wins? We
prove new sufficient conditions on the pairwise match outcome information and the favorite player,
under which there is guaranteed to be a seeding where the player wins the tournament. Our results
greatly generalize previous results. We also investigate the relationship between the set of players
that can win an SE tournament under some seeding (so-called SE winners) and other traditional
tournament solutions. In addition, we generalize and strengthen prior work on probabilistic models
for generating tournaments. For instance, we show that every player in an n player tournament
generated by the Condorcet random model will be an SE winner even when the noise is as small as
possible, p = Θ(ln n/n); prior work only had such results for p ≥ Ω(

√
ln n/n). We also establish new

results for significantly more general generative models.
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1. Introduction. A single-elimination (SE) tournament, also known as a sud-
den death tournament, an Olympic system tournament, or a binary-cup election, is
a popular way to select a winner among multiple candidates/players. In an SE tour-
nament, pairs of players are matched according to an initial seeding, the winners of
these pairs advance to the next round, and the losers are eliminated after a single loss.
Play continues according to the seeding until a single player, the winner, remains. SE
tournaments are popular among sports fans due to their exciting “do-or-die” nature
and among tournament organizers due to their efficiency. In contrast to a round-robin
tournament, which requires Θ(n2) matches to be played between n players, the winner
of an SE tournament is decided after a total of n−1 matches. In tournaments such as
the NCAA March Madness and the U.S. Open Tennis Championships, each of which
involves more than 64 teams, the difference between a linear and quadratic number
of matches is quite pronounced.

While the efficiency of SE tournaments is desirable, the winner of a given SE
tournament can depend significantly on the initial seeding. A series of works [1, 5, 6,
7, 9, 11, 13, 14, 15, 16] has investigated how easily the winner of an SE tournament
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can be manipulated simply by adjusting the seeding of the tournament. Formally,
the problem is called the tournament fixing problem (TFP) or the agenda control
problem for balanced knockout tournaments. In TFP, we are given a set of players
V , information for each pair of players (u, w) about whether u or w would win in a
head-to-head matchup, and a player of interest v; then we are asked the following
question: is there a seeding for a balanced SE tournament where v wins? TFP is
known to be NP-hard [1] with the best-known algorithm running in 2npoly(n) time
[7]. Thus, unless P = NP, it is in general intractable to determine which players
can win an SE tournament. Nevertheless, a number of works on TFP have produced
“structural results” which argue that for certain classes of instances, one can find a
winning seeding for v in polynomial (and often linear) time [7, 14, 15]. These structural
results suggest that in many practical settings, the winner of an SE tournament is
susceptible to manipulation, because many players have winning seedings that can be
found efficiently. Furthermore, under reasonable probabilistic models for generating
tournaments, these structural results have been shown to occur with high probability
[13, 15], further suggesting that the worst-case hardness results may not apply to real-
world instances. In other words, in many actual tournaments, it is completely feasible
for SE tournament organizers to rig the outcome of the competition. Experimental
results [12] investigate this finding in practical settings.

While TFP can be seen as a way to understand manipulation in competition and
elections, studying conditions under which players can and cannot win SE tourna-
ments can also be seen as part of a larger study of tournament solutions: different
ways to define the winners of a round-robin tournament. The input to TFP can be
viewed as a tournament T = (V, E), or a complete, oriented graph where for all pairs
of nodes u, w ∈ V , exactly one of (u, w) and (w, u) is an element of E; u points to w
if u would win in the match between u and w. The study of tournaments is central to
social choice theory; they provide a general framework for representing the outcomes
between players in a round-robin tournament or, more generally, pairwise preferences
between alternatives, often generated from voter information. As such, an essential
question of social choice theory asks: given a tournament, how should we select a set
of winners? SE tournaments provide one way of answering this question: we say that a
player v ∈ V is an SE winner if there is some seeding under which v wins the resulting
SE tournament. The study of tournament solutions includes many other well-studied
concepts (see, e.g., [2, 10]). One classical example is the Copeland set, consisting of
the players with the maximum number of wins in the tournament. A natural question
to investigate is how these traditional notions of strength in round-robin tournaments
relate to the notion of strength in an SE tournament.

1.1. Results. In this work, we improve our understanding of conditions on the
input tournament and player of interest that are sufficient for the player to be an SE
winner. Many previous structural results involve the notion of a king, or a player v,
such that for every other player u ∈ V \{v}, either v beats u directly, or v beats some w
who beats u. We present a vast generalization of many of the known structural results
involving kings, showing that essentially any “combination” of the known sufficient
conditions for a king to be an SE winner is also sufficient for the king to be a winner.

In particular, recall the following structural results from [15], where given a tour-
nament T and a player v, we can find a winning seeding for v in polynomial time. One
class of tractable instances is that in which every player w who beats v wins against
at most as many players as v beats. It is also known that if v is a king and wins
against at least half of the players, or is a “superking” (meaning that every w whom
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v beats indirectly loses to at least log n players whom v beats directly), then v will
be able to win an SE tournament. While these results have been useful on their own
for showing that tournaments generated by certain random models are likely to have
many players who can win [13, 15], it is natural to wonder how robust these results
are to changes in the exact sufficient conditions. Recent results of [7] seem to suggest
that the parameters for these structural results are brittle; namely, when the exact
parameters of the conditions are relaxed, finding a winning seeding for v (if it exists)
becomes NP-hard. In Theorem 2.1, we provide a broad generalization of the three
structural results stated above. We show that these conditions are actually flexible in
the sense that if the players who beat some king v can be partitioned into groups that
satisfy these sufficient conditions, then v can win an SE tournament. Additionally,
we extend the work on 3-kings (or players who have win-distance ≤ 3 to every other
player) introduced in [7] and give a new set of sufficient conditions for a 3-king to win
an SE tournament.

In section 3, we apply these and other known structural results to understand
the relationship between SE winners and the winners according to other tournament
solutions. In particular, Theorem 3.1 shows that the players selected by a number
of well-studied tournament solutions are also SE winners, including the Copeland set
described above. Another class of tournament solutions of interest was introduced in
[10] as a natural extension of the Copeland set. In these “iterative matrix solutions,”
we consider the tournament matrix A (corresponding to the adjacency matrix of the
underlying tournament graph); a player is included in the kth iterative matrix solution
if they have the maximum number of “wins” in Ak. We give a new interpretation of
this solution and use it to show that for sufficiently large tournaments, the players in
the iterative matrix solutions will also be SE winners.

Finally, in section 4 we investigate probabilistic models for generating random
tournaments and the resulting structure of such tournaments. In particular, we start
by giving an improved result for tournaments generated by the Condorcet random
(CR) model. The CR model assumes an underlying order to players, where stronger
players generally win against weaker players and are only upset with some small
probability p. We demonstrate that in tournaments generated by the CR model, even
when the probability of upset p is Θ(lnn/n), with high probability every player in the
tournament will have a winning seeding that can be discovered efficiently. This upset
rate p is optimal (up to constant factors) because a player needs to win log n matches
in order to win an SE tournament. Our result greatly improves on the previous best
result from [15], which proves an analogous claim for p ≥ Ω(

√
ln n/n). In light of this

optimal result for the CR model, we propose a new generative model for tournaments
that aims to remove the structure that arises from assuming an underlying order of
players and a consistent noise parameter. Despite the fact that the model may produce
tournaments with largely arbitrary structure, we are able to prove a nontrivial result
similar to the previous results on the CR model. The details of the model and our
theorem statement are given in section 4.

All of our results are constructive. In particular, we demonstrate that certain
conditions are sufficient for a player v to be an SE winner by giving algorithms,
running in polynomial time, that output a seeding where v will win.

1.2. Preliminaries and notation. We will assume throughout that all SE
tournaments are balanced and played among a power of two, n = 2k for some k ≥ 0,
players. Table 1 provides a summary of the notation that is used to refer to players
and their neighborhood in the underlying tournament. For subsets A, B ⊆ V , we say
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Table 1

Summary of the notation used in this paper.

Notation
Nout(v) = {u : (v, u) ∈ E},
Nin(v) = {u : (u, v) ∈ E}

out(v) = |Nout(v)| , outS(v) = |Nout(v) ∩ S|
in(v) = |Nin(v)| , inS(v) = |Nin(v) ∩ S|

that A dominates B, denoted A � B, if for all a ∈ A and all b ∈ B, (a, b) ∈ E. We
will abuse this notation slightly, allowing individual players, rather than subsets, to
be related to other players or subsets.

Recall that we can define the notions of king and 3-king of a tournament in terms
of the underlying tournament graph. A king is a player v who has distance at most
2 to every other player u ∈ V \ {v}. A 3-king is the generalization of kings to players
who have distance at most 3 to every other player.

In section 3, we consider some tournament solutions. We provide brief descriptions
of these solutions; for more detail, we refer the interested reader to [2]. The uncovered
set refers to the set of kings in the tournament.1 The Copeland set is the set of players
of maximum out-degree in the tournament.

A tournament is transitive if we can label the players with labels from {1, . . . , n}
such that ∀i, j, i < j implies i � j. Given a tournament T , consider flipping edges
in T to produce a transitive tournament T ′, while minimizing the number of edges
flipped. The Slater set of T is the set of players who can be labeled 1 in such a T ′.

The Markov set can be thought of as the set of players who win the most matches,
in expectation, in a “winner-stays” tournament, where play proceeds by repeatedly
selecting a random player to play the previous winner.

The bipartisan set is the support of the maximal lottery (i.e., the Nash equi-
librium of the symmetric zero-sum game formed by the tournament matrix) for the
tournament.

2. Structural results. A number of results are known about conditions under
which a player is guaranteed to be an SE winner [7, 14, 15]. Many of these results
concern players who are kings. In particular, [15] showed that a “superking”—a king v
where every player in Nin(v) loses to at least log n players from Nout(v)—is always an
SE winner. On the other hand, [13] showed that a “king of high out-degree”—that is,
a king with out-degree k who loses to fewer than k players that have out-degree greater
than k—is always an SE winner. This result was the first to generalize the conditions
on players who can win SE tournaments. In this section, we further generalize these
results by combining their respective conditions. Moreover, we further explore the
notion of 3-kings that was considered by [7] and present an alternative condition
under which a 3-king can win an SE tournament.

Before we proceed to the results, we make some remarks on the strength of the
king condition. While the ability to reach any other player in the tournament in at
most two steps might seem like a strong condition (which would limit the usefulness of
our results), it is in fact not as strong as it may first appear. Indeed, every tournament
contains a king, and in particular any player with the maximum number of wins in
the tournament is always a king. Moreover, if we generate a tournament by choosing

1The name uncovered set stems from the covering relation. A player v is said to cover another
player u if (i) v beats u, and (ii) any player who beats v also beats u. The uncovered set corresponds
to the set of players that are not covered by any other player.
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the direction of each edge independently at random, it is known that the set of kings
is equal to the entire set of players with high probability [4].

Theorem 2.1. Consider a tournament T = (V, E) where K ∈ V is a king. Let
A = Nout(K) and B = V \(A ∪ {K}) = Nin(K). Suppose that B is a disjoint union of
three (possibly empty) sets H, I, J such that

1. |H | < |A|,
2. inA(i) ≥ log |V | for all i ∈ I (i.e., outA(i) ≤ |A| − log |V | for all i ∈ I),
3. out(j) ≤ |A| for all j ∈ J .

Then K is an SE winner, and we can compute a winning seeding for K in polynomial
time.

Note that the superking result [15] corresponds to the special case where H =
J = ∅, while the “king of high out-degree” result [13] corresponds to the special case
where I = ∅. Hence Theorem 2.1 is much stronger than previous results in the sense
that each player in B only has to satisfy one of the three “reasons” why it is not
strong, instead of having to adhere to any particular reason.

Proof. We proceed by induction, arguing that we can construct a seeding where,
in each round, the three properties listed above and the fact that K is a king are
maintained as invariants. We will first take care of the cases where the tournament
is small. If |V | = 1 or 2, B is empty and the result is clear.

Suppose that |V | = 4. If |A| ≥ 2, the result follows from [13]. Otherwise |A| = 1,
and it follows that H = I = ∅ and |J | ≤ 1, which contradicts |V | = 4.

Suppose now that |V | ≥ 8. If |A| ≤ 2, then |H | ≤ 1, I = ∅, and |J | ≤ 3, which
contradicts |V | ≥ 8. If I = ∅, or H ∪ J = ∅, or |A| ≥ |V |/2, the result follows from
[13] and [15]. Hence we may assume from now on that |V | ≥ 8, 3 ≤ |A| < |V |/2,
I 	= ∅, and H ∪ J 	= ∅.

We will present an algorithm to compute a winning seeding for K. The algorithm
will match the players for the first round of the tournament in such a way that the
leftover tournament after the first round also satisfies the conditions of the theorem.
The description of the algorithm is as follows.

1. Perform a maximal matching M1 from A to H .
2. Since |H | < |A|, we have A\M1 	= ∅. Perform a maximal matching M2

(which might be an empty matching) from A\M1 onto I ∪ J .
3. If A was not fully used in the two matchings, match an arbitrary unused

player in A with K. Else, choose an arbitrary player a ∈ A∩M2 and rematch
it to K.

4. Perform arbitrary matchings within A, H , and I ∪ J .
5. If there are leftover players, there must be exactly two of them; match them

to each other.
We prove the correctness of the algorithm by showing that the four invariants

are maintained by the algorithm. Let V ′, A′, B′, H ′, I ′, J ′ denote the subsets of
V, A, B, H, I, J that remain after the iteration.

1. |H ′| < |A′|. We will show that |H ′| ≤ |H |/2 and |A′| ≥ |A|/2. The claim
follows since |H | < |A|. If H = ∅, then |H ′| < |A′| holds trivially, so we may
assume that H is nonempty. At least one player in H is used in the matching
M1, so we have |H ′| ≤ |H |/2. We will show that the matching M1 ∪ M2
consists of at least two pairs. Since there can be at most two pairs in the
matching provided by the algorithm in which a player in A is beaten by a
player outside of A (i.e., the pair in which a player in A is matched to K and
the pair in which a player in A is matched in the final step of the algorithm
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for leftover nodes), it will follow that |A′| ≥ |A|/2.
If M1 consists of at least two pairs, we are done. Suppose that M1 consists
of exactly one pair. Since |V | ≥ 8, each player in I is beaten by at least three
players in A. (Recall that I is nonempty.) One of these players is possibly
used in M1, and one is possibly used to match with K, but that still leaves
at least one player in A who beats a player in I. Hence M1 ∪ M2 consists of
at least two pairs, as desired.

2. inA′(i) ≥ log |V ′| for all i ∈ I. Let i ∈ I ′. Since M2 is a maximal matching,
every player that contributes to the in-degree of i in A survives the iteration,
except possibly the player who is rematched to K. Hence the in-degree of i
in A′ is at least log |V | − 1 = log(|V | /2).

3. out(j) ≤ |A′| for all j ∈ J ′. The condition is equivalent to outB′(j) < inA′(j).
Let j ∈ J ′. We have either inA′(j) = inA(j) or inA′(j) = inA(j) − 1, where
the latter case occurs exactly when a player in A who beats j is rematched
to K. In the former case we immediately obtain outB′(j) < inA′(j). In the
latter case, A has been fully used in the two matchings before one player is
rematched to K. This means that j eliminates another player in B, and it
follows that outB′(j) ≤ outB(j) − 1 < inA(j) − 1 = inA′(j).

4. K is a king. Let b ∈ B′. If b ∈ H ′, then since M1 is a maximal matching,
b is beaten by some player in A′. If b ∈ I ′, then since the second invariant
is maintained, b is beaten by some player in A′. Otherwise b ∈ J ′. Since
the third invariant is maintained, b beats at most |A′| − 1 players in A′, and
hence b is also beaten by some player in A′ in this case.

Hence the four invariants are maintained, and the algorithm correctly computes
a winning seeding for K.

Thus, we have shown a very general result about kings that holds in tournaments
on n players for any power of two n, answering an open research problem posed in
[14] to provide more general structural results that hold independently of the size of
the tournament. (Some earlier results only hold for large n.)

Next, we consider the weaker notion of a 3-king. Prior work presented a set of
conditions under which a 3-king is an SE winner [7]. One of their conditions is that
there exists a perfect matching from the set of nodes that are reachable in exactly
two steps from the 3-king K onto the set of nodes that are reachable in exactly three
steps from K. Here, we present a different set of conditions that does not include the
requirement of a perfect matching.

Theorem 2.2. Consider a tournament T = (V, E) where K ∈ V is a 3-king. Let
A = Nout(K), B = Nout(A)∩Nin(K), and C = Nin(K)\B. Suppose that the following
three conditions hold:

1. |A| ≥ |V |
2 ,

2. A � B,
3. |B| ≥ |C|.

Then K is an SE winner, and we can compute a winning seeding for K in polynomial
time.

Proof. If |V | = 1, 2, or 4, the result is clear. For |V | ≥ 8, first perform a maximal
matching from B to C and match K to an arbitrary player in A, and then pair
off players within A. If |A| is odd, then A ∪ {K} matches evenly. Else, match the
remaining a ∈ A to some b ∈ B. We pair off players within each of B, C arbitrarily and
match the remaining pair between B and C if needed. After the round, |A| ≥ |V |

4 .
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Since the matching from B to C is nonempty, we still have that |B| ≥ |C| after
the iteration. Moreover, since we applied a maximal matching, each player in C is
still beaten by some player in B. Thus, the required conditions are maintained as
invariant, and we can efficiently compute a winning seeding for K.

It would be interesting to investigate the extent to which we can weaken the
strong second condition that all players in A beat all players in B. It should be
noted that if any of the three conditions is removed, the theorem no longer holds.
In particular, if the second condition is dropped, a counterexample from [7] shows
that for any constant ε > 0, there is a tournament on n players, where K is a 3-king
who wins against (1 − ε)n players but cannot win an SE tournament. Given that the
notion of a 3-king is significantly weaker than that of a king (recall that kings who
beat at least |V | /2 players are SE winners), it seems reasonable to conjecture that a
strong assumption such as the second condition (or the conditions seen in [7]) may be
required to prove structural results for 3-kings.

3. SE winners and tournament solutions. Tournament solutions are func-
tions that map each tournament graph to a subset of players, usually called the choice
set. The choice set is often thought of as containing the stronger players, or “winners,”
within the tournament. Many tournament solutions have been considered, including
the Copeland set, the Slater set, the Markov set, and the bipartisan set [2, 10]. The
ability to win an SE tournament provides us with another criterion with which we
can distinguish between stronger and weaker players in a tournament. In this section,
we investigate the relationship between the set of SE winners and some traditional
tournament solutions.

Theorem 3.1. A player chosen by the Copeland set, the Slater set, or the Markov
set is an SE winner. A player in the bipartisan set with the highest Copeland score is
also an SE winner.

Proof. All four tournament solutions are contained in the uncovered set, meaning
that a player from any of these sets is a king. Therefore, using a special case of
Theorem 2.1 (or an earlier result of [15]), it suffices to show that such a player wins
against at least half of the remaining players. For the Copeland set, this is trivial,
while [10] and [8] show that any player in the Slater set, as well as any player in the
bipartisan set with the highest Copeland score, beats at least half of the players. Next,
we show that players from the Markov set win against at least half of the players.

Recall that the Markov set is defined to be the set of players of maximum prob-
ability in the stationary distribution of the Markov chain defined by the normal-
ized Laplacian matrix Q = (qij)n×n of the Markov chain of the tournament, where
qij = 1/n if vi beats vj (0 otherwise) and qii = out(vi)/n. Assume that the first
player is in the Markov set. It follows that the probability associated with the first
player in the eigenvector p = (pi)n×1 corresponding to the eigenvalue 1 is maximal.
Assume for contradiction that q11 < 1

2 . We then have

p1 = q11p1 + q12p2 + · · · + q1npn

≤ q11p1 + q12p1 + · · · + q1np1

= 2q11p1

< p1,

a contradiction.
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It is not true that any player in the bipartisan set is always an SE winner. Indeed,
consider a transitive tournament with the slight modification that the weakest player
beats the strongest player. Then the former player is included in the bipartisan set
even though this player only beats one player and cannot be an SE winner.

Another family of tournament solutions is introduced in [10] as “iterative matrix
solutions.” Consider the tournament adjacency matrix A = (aij), in which aij = 1 if i
beats j, and 0 otherwise. The Copeland score is given by A1. For any positive integer
k, we consider Ak1 and include the player(s) with the maximum resulting score in
our kth iterative tournament solution.

There is a natural interpretation of iterative matrix solutions as the number of
paths of length k starting from each player. Any player in an iterative matrix solution
belongs to the uncovered set. In other words, if the player v is covered by some w
(i.e., w � {v} ∪Nout(v)), then v cannot be in the iterative matrix solution. Indeed, if
v is covered by w, then the first steps of the paths starting from w form a superset of
the first steps of the paths starting from v. On the other hand, it is not the case that
any player in an iterative matrix solution always beats at least half of the remaining
players, as shown by the following example.

Consider k = 2 and the tournament with player set V = A ∪ B ∪ {x}, where
A ≈ rn and B ≈ (1 − r)n with 1

2 < r < 1√
3
. Suppose that A � x � B � A

and that A and B are close to regular. The Copeland scores of a ∈ A, b ∈ B, x are
rn
2 , (1+r)n

2 , (1 − r)n, respectively. It follows that the iterative matrix scores of a, b, x

are r2n2

4 , (1+r2)n2

4 , (1−r2)n2

2 . This implies that x has the maximum iterative matrix
score but beats fewer than half of the remaining players.

Nevertheless, we will show that for large enough tournaments, players in an iter-
ative matrix solution are always SE winners. First, we need the following lemma and
the subsequent corollary.

Lemma 3.2. In a tournament with n players, the minimum possible number of
k-paths is

(
n

k+1

)
.

Proof. In a transitive tournament, each subset of size k + 1 gives rise to exactly
one k-path. On the other hand, by a simple inductive argument, each subset of size
k + 1 gives rise to at least one k-path that goes through all k + 1 players. The result
follows immediately.

Corollary 3.3. In a tournament with n players, a player with the maximum
number of k-paths originating from it is the origin of at least 1

n

(
n

k+1

)
k-paths.

We are now ready to prove the theorem.

Theorem 3.4. For any fixed k, there exists a constant Nk such that for any tour-
nament of size at least Nk, a player with the maximum number of k-paths originating
from it is an SE winner.

Proof. Let v be a player with the maximum number of k-paths originating from it,
and let A and B be the sets of players who lose to v and who beat v, respectively. From
Corollary 3.3, v is the origin of at least 1

n

(
n

k+1

) ≥ nk

2(k+1)! k-paths for large enough n.
Hence it must have out-degree at least n

2(k+1)! . In other words, |A| ≥ n
2(k+1)! .

If the number of players in B with in-degree from A less than log n is less than
|A|, we can apply Theorem 2.1. Otherwise, there are at least |A| ≥ n

2(k+1)! players in
B with in-degree from A less than log n. Call this set H , and consider a player h ∈ H .
Since h beats all but at most log n players in A, we can compare the number of k-
paths originating from v with the number of k-paths originating from h by removing
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the common k-paths. The remaining number of k-paths originating from v is at most
log n ·nk−1, while by Corollary 3.3 again, a player in H with the maximum number of
k-paths within H is the origin of at least O(nk) k-paths, since |H | is linear in n. This
contradicts the assumption that v has the maximum number of k-paths originating
from it.

3.1. The strength of kings. Since results concerning SE winners often involve
the assumption that a player is a king in the given tournament, one might hope that
there is a strong relation between SE winners and the uncovered set. For example,
it could always be that a constant fraction of players in the uncovered set are SE
winners or vice versa. This is not the case, however, as the following theorem shows.

Theorem 3.5. Let r ∈ (0, 1). There exists a tournament such that the proportion
of players in the uncovered set that are SE winners is less than r and the proportion
of SE winners that are contained in the uncovered set is also less than r.

Proof. Consider a tournament with player set V = A ∪ B ∪ {x, y} such that
• x � y, B,
• y � B, A,
• B � A,
• A � x.

The uncovered set is A ∪ {x, y}.
Let |A| = k and |B| = n. If k < log n, then players in A do not win enough

matches to become SE winners. Hence the proportion of players in the uncovered set
that are SE winners is at most 2

k+2 .
On the other hand, suppose that B is a regular tournament with all players

isomorphic. By symmetry, if one player in B is an SE winner, then all of them are SE
winners. In order for a player in B to be an SE winner, players x and y need to be
eliminated. But this can easily be done in two rounds, with x beating y in the first
round and a player in A beating x in the second round. Hence the proportion of SE
winners that are contained in the uncovered set is at most 2

n+2 .
Taking k and n large enough with k < log n, we obtain the desired result.

4. Generative models for tournaments. Recall the Condorcet random (CR)
model studied in [3, 13, 15]. In the CR model, we assume that there is an underlying
ordering to the players and that, in general, stronger players win against weaker
players; however, with some small probability p < 1/2, the weaker player will upset
the stronger player. In the corresponding tournament graph, we say that for two
players i, j such that i occurs before j in the ordering, (i, j) ∈ E with probability
1 − p and (j, i) ∈ E otherwise. A number of results are known about which players
are SE winners in tournaments drawn from a CR model. When p ≥ Ω(

√
ln n/n),

then with high probability, every player in the tournament will be a superking and
therefore an SE winner [15]. In fact, even when p ≥ C ln n/n, roughly the first half
of players will be SE winners, and more generally, if p = C · 2i ln n/n, then roughly
the first 1 − 1/2i+1 fraction of players are SE winners [13]. Previous work has also
studied various generalizations of the CR model [7, 13].

In this section, we present improved results about tournaments generated by the
standard CR model, showing that with high probability, every player in a CR tourna-
ment will be an SE winner, even with the noise p = Θ(lnn/n) (with no dependence
on the player’s rank).

Theorem 4.1. Let C ≥ 64 be a constant, and let p ≥ C ln n/n. Let T be a
tournament generated by the CR model with noise parameter p on n > nC players
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(for some constant nC). With probability ≥ 1−1/Ω(n2), every player has an efficiently
computable winning seeding over T .

Note that this result is asymptotically optimal, as a player must have at least
log n wins to be able to win an SE tournament. If p = o(ln n/n), then with high
probability, the weakest player will not be able to win an SE tournament, regardless
of the seeding. The case where p ≥ C

√
ln n/n is covered in [15], which shows that

every player in such a tournament is an SE winner.
The proof will use the following concentration bound, which can easily be derived

from standard Chernoff–Hoeffding bounds.

Lemma 4.2. Let X1, . . . , Xn be independent random variables with X =
∑

i Xi

and E[X ] = μ. Suppose d ≤ μ and δ ∈ [0, 1]. Then Pr [X < (1 − δ)d] ≤ exp(−δ2d/2).

We give a sketch of the proof before proceeding to the full proof. First, we argue
that the weakest player w will win against more than k log n players in the first half
for some constant k. We will think of “swapping” k log n of these losers, which we
call S, from the first half with some arbitrary set of players from the second half (so
that these losers become some of the strongest players over the second half). Then
we argue that at least one player v that w beats will be among the first n/6 players.
This player, with high probability, will be a king over the first half of players who
wins against more than half of the players; thus, by [15], this player will be an SE
winner over the first half of players. Next, we argue that for some arbitrary player u
in the weaker half of players, at least log n players from the k log n that were swapped
with the second half will beat u. We then take a union bound over the players in the
second half and argue that w will be a superking over the second half and, again by
[15], an SE winner over the second half. Thus, w will be an SE winner over the entire
tournament by winning over the weaker half, while v wins against the stronger half,
and w wins against v in the final round. We take a union bound over all players to
arrive at the desired result.

The detailed proof follows.

Proof of Theorem 4.1. Let C ≥ 64 be a constant, and let C ln n/n≤p≤C
√

ln n/n.
First, note that we expect w will win against C

2 ln n = C ln 2
2 log n players in the first

half. Next, we can show that with high probability w wins against greater than
C ln 2

4 log n players. Let k = C ln 2
4 . We have

Pr [w wins against > k log n players in the first half]

≥ 1 − exp
(

− (k log n)2

4k log n

)

= 1 − exp
(

−k log n

4

)

= 1 − exp
(

−C ln 2 log n

16

)
= 1 − 1/nC/16.

We can also argue that with probability at least 1− 1/nC/6, w wins against some
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player v in the first n/6 players:

Pr [w wins against some v ∈ [1, n/6]]

= 1 − (1 − p)n/6

≥ 1 − (1 − (C ln n/6)/(n/6))n/6

≥ 1 − exp(−C ln n/6)

= 1 − 1/nC/6,

where the inequality follows from the approximation (1 − a/x)x ≤ e−a for a > 0.
In what follows, we will imagine swapping a set of k log n players, called S, whom

w wins against from the first half (excluding v), with k log n arbitrary players from
the second half. This allows us to argue about the “first half” and the “second half”
of players independently. We will argue that v is an SE winner over the new “first
half” of players and that the inclusion of k log n strong players whom w beats makes
w a superking over the new “second half.”

First, we argue that it is likely that v, whose rank is at most n/6, will be an SE
winner over the first half. In particular, with high probability, v will be a king over
the first half of players who win against at least n/4 players. Note that we expect v
to win against at least n/3 · (1 − p) + pn/6 − 1 ≥ n/3 − C

√
n ln n/6 − 1 players from

the first half. The out-degree of v is given by a random variable, which is the sum
of independent random variables, so we can bound the probability that out(v) < n/4
using Lemma 4.2 as follows:

Pr [out(v) ≥ n/4] ≥ 1 − exp

(
− (n/12 − C

6

√
n lnn − 1)2

2(n/3 − C
6

√
n ln n − 1)

)

> 1 − 1/n4,

where the last inequality is a very loose bound on this probability that takes effect
for sufficiently large n.

Next, we consider the probability that v is a king over the first half, conditioned
on its high out-degree. We take a union bound over all possible players who did not
lose against v, and we show that it is unlikely that any of these players beats every
single player whom v beat:

Pr
[
v is a king over the first half

∣∣ out(v) ≥ n/4
]

≥ 1 −
n/4−1∑

i=1

(1 − p)out(v)

≥ 1 − n/4 · (1 − p)n/4

≥ 1 − n/4 · exp(−C ln n/4)

≥ 1 − 1/4nC/4−1.

Finally, we argue that with high probability, w will be a superking over the second
half of players. Consider some other u from the second half of players. The expected
number of players from S who beat u is ≥ k log n · (1 − p) = k log n − kC log3/2 n√

n
≥

(k−1) log n for sufficiently large n. Applying Lemma 4.2 again, we obtain the following
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bound:

Pr [u loses to fewer than log n players from S]

≤ exp
(

− ((k − 2) log n)2

2(k − 1) log n

)

= exp
(

− (k2 − 4k + 4)
2(k − 1)

log n

)

= n
−

(
k2−4k+4

2 ln 2·(k−1)

)
.

Then, to guarantee that every u in the second half loses to at least log n players whom
w beats, we take a union bound over the n/2 players. For any k > 11, this probability
will be ≤ 1/n3.

The overall probability that w beats a sufficiently strong king over the first half
of players is at least the following:

1 − 1/nC/6 − 1/n4 − 1/4nC/4−1 ≥ 1 − 2/n4.

Thus, the probability that w wins against k log n players from the (true) first half,
wins against some strong king v over the first half, and is a superking over the second
half, is at least the following:

1 − 1/nC/16 − 2/n4 − 1/n3 ≥ 1 − 2/n3.

Since w is the weakest player in the tournament, the probability that any other
player is an SE winner can only be greater. Taking a union bound over all players, we
conclude that with probability at least 1 − 1/Ω(n2), every player in the tournament
will be an SE winner.

4.1. Generalizing the CR model for tournaments. As the prior claims
demonstrate, in the standard CR model, every player is an SE winner with high
probability, even when upsets occur at an asymptotically minimal rate. While this
result indicates the depth of our understanding of conditions under which a player
is an SE winner, it also suggests that the assumption that tournaments are drawn
from a CR model—where the noise parameter p is fixed for all matchups—may be too
rigid, incidentally providing structure that may not exist in practical settings. Prior
work [13] proposes a generalized CR model, where for two players i < j, j upsets i
with probability p ≤ p(i, j) ≤ 1/2 for some globally specified p. But even this model
asserts that the probability of upsets for every edge must occur within the range of
[p, 1/2]. We aim to relax our restrictions even further in order to disrupt this structure
inherent in the CR model.

Consider the following generative model, which is parameterized by a noise factor
p < 1/2 and a participation factor Δ ≤ 1/2. The tournament on n players is generated
as follows: pick any set of pairs of players E′ satisfying the condition that each player
appears in at least (1/2 + Δ)n such pairs; then, for every pair {u, v} ∈ E′, pick (u, v)
with probability pu,v ∈ [p, 1 − p], and (v, u) otherwise. The probabilities pu,v can be
arbitrary as long as they are in [p, 1 − p]. The remaining edges between players may
be set arbitrarily. In this new model, many typical arguments used in analyzing CR
tournaments, including those used in the proof of Theorem 4.1 which hinge on the
precise definition of the CR model, break down.

Note that unlike the CR model, the new model does not start with an underlying
ordering of players; however, such an ordering can easily be emulated. For instance, to
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emulate the CR model, simply choose an ordering σ, set Δ = 1/2, and for all u, v such
that σ(u) < σ(v), sample (u, v) with probability 1 − p. That said, because the model
does not start with an explicit ordering, it is much more versatile. Moreover, because
only a (1/2 + Δ) fraction of the edges is determined randomly, known structures can
be (adversarially) hard-coded into the resulting graphs. In this sense, any results that
we can state about tournaments generated from this model are extremely general and
will apply broadly. Despite this generality, we are able to give a statement for our
model mirroring that of [15] for the CR model.

Theorem 4.3. Let p > c
√

log n
2Δn for some c > 5. Then with probability > 1 −

1/Ω(n(c−5)/2 ln 2), every player in a tournament T sampled from the aforementioned
model has an efficiently computable winning seeding over T .

The proof of Theorem 4.3 is similar to the proof of the analogous statement about
the CR model found in [15]. It argues that with high probability every player in the
tournament will be a superking.

Proof of Theorem 4.3. Let p = c
√

log n
2Δn . We will argue that with high probability

all nodes in a randomly sampled tournament are superkings, so by [15] they will be
SE winners. Let T = (V, E) be a randomly sampled tournament. We will bound the
probability that v ∈ V is not a superking, namely, the probability that there exists
some u ∈ V \ {v} such that u loses to fewer than log n players whom v beats.

Let u ∈ V \ {v}. Let Av be the set of players w for which the edge between
v and w was sampled randomly with probability in the range [p, 1 − p]. Let Au be
defined analogously. We let W = Av ∩ Au be the players whose relation is sampled
randomly for both v and u. Note that we can lower bound the size of this intersection
as |W | ≥ (1/2 + Δ)n − 1 + (1/2 + Δ)n − 1 − (n − 2) = 2Δn. Now, note that the
expected number of edges from v into W is the sum of the probabilities that (v, w)
is an edge for each w ∈ W , and thus is at least 2Δnp. Applying Lemma 4.2, we can
bound the probability that this set of edges into W is smaller than c logn/p = 2Δnp/c
as follows:

Pr
[
number of edges from v into W ≤ 2Δnp

c

]
≤ exp

(−(1 − 1/c)2Δnp
)

= exp
(
−(1 − 1/c)2c

√
Δn log n/2

)
= 2−Ω(

√
n log n).

Now, we will condition on the assumption that v beats at least c logn/p players
from W . Note that each of these players beats u with probability ≥ p, so we expect
≥ c logn of these players to beat u. Thus, using Lemma 4.2 again, we can bound the
probability that u does not lose to at least log n of these players as follows:

Pr [number of edges from W into u ≤ log n]

≤ exp
(−(1 − 1/c)2c log n/2

)
= n−(1−1/c)2c/2 ln 2.

Letting C = (1 − 1/c)2c/2 ln 2 − 2, by a union bound over v’s opponents, the
probability that v is not a superking is at most 2−Ω(

√
n log n) + n−C−1. Applying
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another union bound over all players, the probability that there is any player who
is not a superking is at most 2Ω(

√
n log n) + n−C ≤ O(n−C). Hence with probability

1 − 1/Ω(nC), all nodes are superkings. The result follows from the fact that C ≥
(c − 5)/2 ln2.
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