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Abstract

Prediction systems are successfully deployed in applications ranging from disease diagnosis,
to predicting credit worthiness, to image recognition. Even when the overall accuracy is high,
these systems may exhibit systematic biases that harm speci�c subpopulations; such biases
may arise inadvertently due to underrepresentation in the data used to train a machine-learning
model, or as the result of intentional malicious discrimination. We develop a rigorous framework
of multiaccuracy auditing and post-processing to ensure accurate predictions across identi�able
subgroups.

Our algorithm, Multiaccuracy Boost, works in any setting where we have black-box
access to a predictor and a relatively small set of labeled data for auditing; importantly, this
black-box framework allows for improved fairness and accountability of predictions, even when
the predictor is minimally transparent. We prove that Multiaccuracy Boost converges
e�ciently and show that if the initial model is accurate on an identi�able subgroup, then the
post-processed model will be also. We experimentally demonstrate the e�ectiveness of the
approach to improve the accuracy among minority subgroups in diverse applications (image
classi�cation, �nance, population health). Interestingly, Multiaccuracy Boost can improve
subpopulation accuracy (e.g. for �black women�) even when the sensitive features (e.g. �race�,
�gender�) are not given to the algorithm explicitly.

1 Introduction

Despite the successes of machine learning at complex tasks that involve making predictions about
people, there is growing evidence that �state-of-the-art� models can perform signi�cantly less accu-
rately on minority populations than on the majority population. Indeed, a notable study of three
commercial face recognition systems known as the �Gender Shades� project [BG18], demonstrated
signi�cant performance gaps across di�erent populations at classi�cation tasks. While all systems
achieved roughly 90% accuracy at gender detection on a popular benchmark, a closer investigation
revealed that the system was signi�cantly less accurate on female subjects compared to males and
on dark-skinned individuals compared to light-skinned. Worse yet, this discrepancy in accuracy
compounded when comparing dark-skinned females to light-skinned males; classi�cation accuracy
di�ered between these groups by as much as 34%! This study con�rmed empirically the intuition
that machine-learned classi�ers may optimize predictions to perform well on the majority popula-
tion, inadvertently hurting performance on the minority population in signi�cant ways.

∗These authors contributed equally.
†Supported by NSF Grant CCF-1763299.
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A �rst approach to address this serious problem would be to update the training distribution to
re�ect the distribution of people, making sure historically-underrepresented populations are well-
represented in the training data. While this approach may be viewed as an eventual goal, often
for historical and social reasons, data from certain minority populations is less available than from
the majority population. In particular, we may not immediately have enough data from these
underrepresented subpopulations to train a complex model. Additionally, even when adequate
representative data is available, this process necessitates retraining the underlying prediction model.
In the common setting where the learned model is provided as a service, like a commercial image
recognition system, there may not be su�cient incentive (�nancial, social, etc.) for the service
provider to retrain the model. Still, the clients of the model may want to improve the accuracy of
the resulting predictions across the population, even when they are not privy to the inner workings
of the prediction system.

At a high level, our work focuses on a setting, adapted from [HKRR18], that is common in
practice but distinct from much of the other literature on fairness in classi�cation. We are given
black-box access to a classi�er, f0, and a relatively small �validation set" of labeled samples drawn
from some representative distribution D; our goal is to audit f0 to determine whether the predictor
satis�es a strong notion of subgroup fairness, multiaccuracy. Multiaccuracy requires (in a sense
that we make formal in Section 2) that predictions be unbiased, not just overall, but on every
identi�able subpopulation. If auditing reveals that the predictor does not satisfy multiaccuracy,
we aim to post-process f0 to produce a new classi�er f that is multiaccurate, without adversely
a�ecting the subpopulations where f0 was already accurate.

Even if the initial classi�er f0 was trained in good faith, it may still exhibit biases on signi�cant
subpopulations when evaluated on samples from D. This setting can arise when minority popula-
tions are underrepresented in the distribution used to train f0 compared to the desired distribution
D, as in the Gender Shades study [BG18]. In general, we make no assumptions about how f0

was trained. In particular, f0 may be an adversarially-chosen classi�er, which explicitly aims to
give erroneous predictions within some protected subpopulation while satisfying marginal statisti-
cal notions of fairness. Indeed, the in�uential work on �Fairness Through Awareness� [DHP+12],
followed by [KNRW17,HKRR18], demonstrated the weakness of statistical notions of fairness (such
as statistical parity, equalized odds, and calibration), showing that prediction systems can exhibit
material forms of discrimination against protected populations, even though they satisfy statistical
fairness conditions. Left unaddressed, such forms of discrimination may discourage the participa-
tion of minority populations, leading to further underrepresentation of these groups. Thus, our goal
will be to mitigate systematic biases broadly enough to handle inadvertent and malicious forms of
discrimination.

Our contributions We investigate a notion of fairness � multiaccuracy � originally proposed in
[HKRR18], and develop a framework for auditing and post-processing for multiaccuracy. We develop
a new algorithm,Multiaccuracy Boost, where a simple learning algorithm � the auditor � is used
to identify subpopulations in D where f0 is systematically making more mistakes. This information
is then used to iteratively post-process f0 until the multiaccuracy condition � unbiased predictions
in each identi�able subgroup � is satis�ed. Our notion of multiaccuracy di�ers from parity-based
notions of fairness, and is reasonable in settings such as gender detection where we would like
to boost the classi�er's accuracy across many subgroups. We prove convergence guarantees for
Multiaccuracy Boost and show that post-processing for multiaccuracy may actually improve
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the overall classi�cation accuracy. We describe the post-processing algorithm in Section 3.
Empirically, we validate Multiaccuracy Boost in several di�erent case studies: gender

detection from images as in Gender Shades [BG18], a semi-synthetic medical diagnosis task, and
adult income prediction. In all three cases, we use standard, initial prediction models that achieve
good overall classi�cation error but exhibit biases against signi�cant subpopulations. After post-
processing, the accuracy improves across these minority groups, even though minority-status is not
explicitly given to the post-processing algorithm as a feature. As long as there are features in
the audit set correlated with the (unobserved) human categories, then Multiaccuracy Boost is
e�ective at improving the classi�cation accuracy across these categories. As suggested by the theory,
Multiaccuracy Boost actually improves the overall accuracy, by identifying subpopulations
where the initial models systematically erred; further, post-processing does not signi�cantly a�ect
performance on groups where accuracy was already high. We show that Multiaccuracy Boost,
which only accesses f0 as a black-box, performs comparably and sometimes even better than very
strong white-box alternatives which has full access to f0. These results are reported in Section 4.

In Section 4.1, we explore the gender detection example further, investigating some of the prac-
tical aspects of multiaccuracy auditing and post-processing. In particular, we observe that the
representation of images used for auditing (and post-processing) matters; we show that auditing is
more e�ective when using an embedding of the images that was trained using an unsupervised au-
toencoder compared to using the internal representation of the neural network used for prediction.
These �ndings seem consistent with the guiding philosophy, put forth by [DHP+12], that main-
taining �awareness� is paramount to detecting unfairness. We also show that the auditing process,
which we use algorithmically as a way to boost the accuracy of the classi�er, can also be used to
help people understand why their prediction models are making mistakes. Speci�cally, the output of
the multiaccuracy auditor can be used to produce examples of inputs where the predictor is erring
signi�cantly; this provides human interpretation for biases of the original classi�er.

2 Setting and multiaccuracy

High-level setting. Let X denote the input space; we denote by y : X → {0, 1} the function
that maps inputs to their label. Let D represent the validation data distribution supported on X ;
the distribution D can be viewed as the �true" distribution, on which we will evaluate the accuracy
of the �nal model. In particular, we assume that the important subpopulations are su�ciently
represented on D (cf. Remark on data distribution). Our post-processing learner receives as input
a small sample of labeled validation data {(x, y(x))}, where x ∼ D, as well as black-box access to
an initial regression / classi�cation model f0 : X → [0, 1]. The goal is to output a new model (using
calls to f0) that satis�es the multiaccuracy fairness conditions (described below).

Importantly, we make no further assumptions about f0. Typically, we will think of f0 as the
output of a learning algorithm, trained on some other distribution D0 (also supported on X ); in
this scenario, our goal is to mitigate any inadvertently-learned biases. That said, another important
setting assumes that f0 is chosen adversarially to discriminate against a protected population of
individuals, while aiming to appear accurate and fair on the whole; here, we aim to protect sub-
populations against malicious misclassi�cation. The formal guarantees of multiaccuracy provide
meaningful protections from both of these important forms of discrimination.
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Additional Notation. For a subset S ⊆ X , we use x ∼ S to denote a sample from D conditioned
on membership in S. We take the characteristic function of S to be χS(x) = 1 if x ∈ S and 0
otherwise. For a hypothesis f : X → [0, 1], we denote the classi�cation error of f with respect to a
subset S ⊆ X as erS(f ; y) = Prx∼S [f̄(x) 6= y(x)], where f̄(x) rounds f(x) to {0, 1}. For a function
z : X → [−1, 1] and a subset S ⊆ X , let zS be the restriction to S where zS(x) = z(x) if x ∈ S and
zS(x) = 0 otherwise. We use `D(f ; y) = Ex∼D[`x(f ; y)] to denote the expected cross-entropy loss of
f on x ∈ X where `x(f ; y) = −y(x) · log(f(x))− (1− y(x)) · log(1− f(x)).

2.1 Multiaccuracy

The goal of multiaccuracy is to achieve low classi�cation error, not just on X overall, but also on
subpopulations of X . This goal is formalized in the following de�nition adapted from [HKRR18].

De�nition (Multiaccuracy). Let α ≥ 0 and let C ⊆ [−1, 1]X be a class of functions on X . A

hypothesis f : X → [0, 1] is (C, α)-multiaccurate if for all c ∈ C:

E
x∼D

[c(x) · (f(x)− y(x))] ≤ α. (1)

(C, α)-multiaccuracy guarantees that a hypothesis appears unbiased according to a class of sta-
tistical tests de�ned by C. As an example, we could de�ne the class in terms of a collection of
subsets S ⊆ X , taking C to be χS (and its negation) for each subset in the collection; in this case,
(C, α)-multiaccuracy guarantees that for each S, the predictions of f are at most α-biased.

Ideally, we would hope to take C to be the class of all statistical tests. Requiring multiac-
curacy with respect to such a C, however, requires learning the function y(x) exactly, which is
information-theoretically impossible from a small sample. In practice, if we take C to be a learn-

able class of functions, then (C, α)-multiaccuracy guarantees accuracy on all e�ciently-identi�able

subpopulations.
For instance, if we took C to be the class of width-4 conjunctions, then multiaccuracy guarantees

unbiasedness, not just on the marginal populations de�ned by race and separately gender, but by the
subpopulations de�ned by the intersection of race, gender, and two other (possibly �unprotected")
features. In particular, the subpopulations that multiaccuracy protects can be overlapping and
include groups beyond traditionally-protected populations. This form of computationally-bounded
intersectionality provides strong protections against forms of discrimination, like subset targeting,
discussed in [DHP+12,HKRR18].

2.2 Classi�cation accuracy from multiaccuracy

Multiaccuracy guarantees that the predictions of a classi�er appear unbiased on a rich class of
subpopulations; ideally though, we would state a guarantee in terms of the classi�cation accuracy,
not just the bias. Intuitively, as we take C to de�ne a richer class of tests, the guarantees of
multiaccuracy become stronger. This intuition is formalized in the following proposition.

Proposition 1. Let ŷ : X → {−1, 1} as ŷ(x) = 1−2y(x). Suppose that for S ⊆ X with Prx∼D[x ∈
S] ≥ γ, there is some c ∈ C such that Ex∼D[|c(x)− ŷS(x)|] ≤ τ . Then if f is (C, α)-multiaccurate,

erS(f ; y) ≤ 2 · (α+ τ)/γ.

That is, if there is a function in C that correlates well with the label function on a signi�cant
subpopulation S, then multi-accuracy translates into a guarantee on the classi�cation accuracy on
this subpopulation.
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Remark on data distribution. Note that in our de�nition of multiaccuracy, we take an ex-
pectation over the distribution D of validation data. Ideally, D should re�ect the true population
distribution or could be aspirational, increasing the representation of populations who have expe-
rienced historical discrimination; for instance, the classi�cation error guarantee of Proposition 1
improves as γ, the density of the protected subpopulation S, grows. Still, if we take the multiaccu-
racy error term α small enough, then we may still hope to improve the accuracy on less-represented
subpopulations. Our experiments suggest that applying the multiaccuracy framework with an un-
balanced valdiation distribution may still help improve the accuracy on underrepresented groups.

2.3 Auditing for multiaccuracy

With the de�nition of (C, α)-multiaccuracy in place, a natural question to ask is how to test if a
hypothesis f satis�es the de�nition; further, if f does not satisfy (C, α)-multiaccuracy, can we update
f e�ciently to satisfy the de�nition, while maintaining the overall accuracy? We will use a learning
algorithm A to audit a classi�er f for multiaccuracy. The algorithm A receives a small sample from
D and aims to learn a function h that correlates with the residual function f − y. In Section 3, we
describe how to use such an auditor to solve the post-processing problem. This connection between
subpopulation fairness and learning is also made in [KNRW17,HKRR18,KRR18], albeit for di�erent
tasks.

De�nition (Multiaccuracy auditing). Let α > 0,m ∈ N, and let A : (X × [−1, 1])m → [−1, 1]X be

a learning algorithm. Suppose D ∼ Dm is a set of independent samples. A hypothesis f : X → [0, 1]
passes (A, α)-multiaccuracy auditing if for h = A(D; f − y):

E
x∼D

[h(x) · (f(x)− y(x))] ≤ α. (2)

A special case of (A, α)-multiaccuracy auditing uses a naive learning algorithm that iterates over
statistical tests c ∈ C. Concretely, in our experiments, we audit with ridge regression and decision
tree regression; both auditors are e�ective at identifying subpopulations on which the model is
underperforming. Further, in the image recognition setting, we show that auditing can be used to
produce interpretable synopses of the types of mistakes a predictor makes.

3 Post-processing for multiaccuracy

Here, we describe an algorithm, Multiaccuracy Boost, for post-processing a pre-trained model
to achieve multiaccuracy. The algorithm is given black-box access to an initial hypothesis f0 : X →
[0, 1] and a learning algorithm A : (X×[−1, 1])m → [−1, 1]X , and for any accuracy parameter α > 0,
outputs a hypothesis f : X → [0, 1] that passes (A, α)-multiaccuracy auditing. The post-processing
algorithm is an iterative procedure similar to boosting [FS95, SF12], that uses the multiplicative
weights framework to improve suboptimal predictions identi�ed by the auditor. This approach is
similar to the algorithm given in [HKRR18] in the context of fairness and [TTV09] in the context of
pseudorandomness. Importantly, we adapt these algorithms so that Multiaccuracy Boost ex-
hibits what we call the �do-no-harm� guarantee; informally, if f0 has low classi�cation error on some
subpopulation S ⊆ X identi�ed by A, then the resulting classi�cation error on S cannot increase
signi�cantly. In this sense, achieving our notion of fairness need not adversely a�ect the utility of
the classi�er.
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Algorithm 1: Multiaccuracy Boost

Given:

• initial hypothesis f0 : X → [0, 1]

• auditing algorithm A : (X × [−1, 1])m → [−1, 1]X

• accuracy parameter α > 0

• validation data D = D0, . . . , DT ∼ Dm

Let:

• X0 ← {x ∈ X : f0(x) ≤ 1/2}

• X1 ← {x ∈ X : f0(x) > 1/2} // partition X according to f0

• S ← {X ,X0,X1}

Repeat: from t = 0, 1, . . . , T

• For S ∈ S: // audit ft on X,X0,X1 with fresh data

ht,S ← A(Dt; (ft − y)S)

• S∗ ← argmaxS∈S Ex∼Dt [ht,S(x) · (ft(x)− y(x))] // take largest residual

• if Ex∼Dt [ht,S∗(x) · (ft(x)− y(x))] ≤ α:
return ft // terminate when at most alpha

• ft+1(x) ∝ e−ηht,S∗ (x) · ft(x) ∀x ∈ S∗ // multiplicative weights update

A key algorithmic challenge is to learn a multiaccurate predictor without over�tting to the
small sample of validation data. In theory, we prove bounds on the sample complexity necessary
to guarantee good generalization as a function of the class C, the error parameter α, and the size
of subpopulations we wish to protect γ. In practice, we need to balance the choice of C (or A) and
the number of iterations of our algorithm to make sure that the auditor is discovering true signal,
rather than noise in the validation data. Indeed, if the auditor A learns an expressive enough
class of functions, then our algorithm will start to over�t at some point; we show empirically that
multiaccuracy post-processing improves the generalization error before over�tting. Next, we give
an overview of the algorithm, and state its formal guarantees in Section 3.1.

At a high level, Multiaccuracy Boost starts by partitioning the input space X based on
the initial classi�er f0 into X0 = {x ∈ X : f0(x) ≤ 1/2} and X1 = {x ∈ X : f0(x) > 1/2}; note that
we can partition X simply by calling f0. Partitioning the search space X based on the predictions
of f0 helps to ensure that the f we output maintains the initial accuracy of f0; in particular, it
allows us to search over just the positive-labeled examples (negative, resp.) for a way to improve the
classi�er. The initial hypothesis may make false positive predictions and false negative predictions
for very di�erent reasons, even if in both cases the reason is simple enough to be identi�ed by the
auditor.

After partitioning the input space, the procedure iteratively uses the learning algorithm A to
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search over X (and within the partitions X0,X1) to �nd any function which correlates signi�cantly
with the current residual in prediction f − y. If A successfully returns some function h : X →
[−1, 1] that identi�es a signi�cant subpopulation where the current hypothesis is inaccurate, the
algorithm updates the predictions multiplicatively according to h. In order to update the predictions
simultaneously for all x ∈ X , at the tth iteration, we build ft+1 by incorporating ht into the previous
model ft. This approach of augmenting the model at each iteration is similar to boosting. To
guarantee good generalization of h, we assume that A uses a fresh sample Dt ∼ Dm per iteration.
In practice, when we have few samples, we can put all of our samples in one batch and use noise-
addition techniques to reduce over�tting [DFH+15,RZ16]; this connection to adaptive data analysis
was studied formally in [HKRR18].

From the stopping condition, it is clear that when the algorithm terminates, fT passes (A, α)-
multiaccuracy auditing. Thus, it remains to bound the number of iterations T before Multiac-

curacy Boost terminates. Additionally, as described, the algorithm evaluates statistics like
Ex∼D[h(x) · (f(x)− y(x))], which depends on y(x) for all x ∈ X ; we need to bound the number of
validation samples we need to guarantee good generalization to the unseen population. Theorem 2
provides formal guarantees on the convergence rate and the sample complexity from D needed to
estimate the expectations su�ciently-accurately.

Do no harm. The distinction between our approach and most prior works on fairness (especially
[KNRW17]) is made clear from the �do-no-harm� property that Multiaccuracy Boost exhibits,
stated formally as Theorem 3. In a nutshell, the property guarantees that on any subpopulation
S ⊆ X that A audits, the classi�cation error cannot increase signi�cantly from f0 to the post-
processed classi�er. Further, the bound we prove is very pessimistic. Both in theory and in practice,
we do not expect any increase to occur. In particular, the convergence analysis of Multiaccuracy

Boost follows by showing that at every update, the average cross-entropy loss on the population
we update must drop signi�cantly. Termination is guaranteed because after too many iterations
of auditing, the post-processing will have learned y perfectly. Thus, if we use Algorithm 1 to
post-process a model that is already achieves high accuracy on the validation distribution the
resulting model's accuracy should not deteriorate in signi�cant ways; empirically, we observe that
classi�cation accuracy (on held-out test set) tends to improve over D after multiaccuracy post-
processing.

3.1 Formal guarantees of Multiaccuracy Boost

For clarity of presentation, we describe the formal guarantees of our algorithm assuming that A
provably agnostic learns a class of tests C, in order to describe the sample complexity appropriately.
The guarantees on the rate of convergence do not rely on such an assumption. We show that, indeed,
Algorithm 1 must converge in a bounded number of iterations. The proof follows by showing that,
for an appropriately chosen η (on the order of α), each update improves the cross-entropy loss over
the updated set S, so the bound depends on the initial cross-entropy loss.

To estimate the statistics used in Multiaccuracy Boost, we need to bound the sample
complexity required for the auditor to generalize. Informally, we say the dimension d(C) of an

agnostically learnable class C is a value such that m ≥ Ω
(
d(C)+log(1/δ)

α2

)
random samples from D

guarantee uniform convergence over C with accuracy α with failure probability at most δ. Examples
of upper bounds on this notion of dimension include log(|C|) for a �nite class of tests, the VC-
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dimension [KV94] for boolean tests, and the metric entropy [BLM13] of real-valued tests. We state
the formal guarantees as Theorem 2.

Theorem 2. Let α, δ > 0; suppose A agnostic learns a class C ⊆ [−1, 1]X of dimension d(C). Then,
using η = O(α), Algorithm 1 converges to a (C, α)-multiaccurate hypothesis fT in T = O

(
`D(f0;y)
α2

)
iterations from m = Õ

(
T · d(C)+log(1/δ)

α2

)
random samples with probability ≥ 1− δ.

Roughly speaking, for constant α, δ, the sample complexity scales with the dimension of the
class C. For many relevant classes C for which we would want to enforce (C, α)-multiaccuracy,
this dimension will be signi�cantly smaller than the amount of data required to train an accurate
initial f0. Note also that our sample complexity is completely generic and we make no e�ort
to optimize the exact bound. In particular, for structured C and A, better uniform convergence
bounds can be proved. Further, appealing to a recent line of work on adaptive data analysis initiated
by [DFH+15,RZ16], we can avoid resampling at each iteration as in [HKRR18].

Do no harm. The do-no-harm property guarantees that the classi�cation error on any subpopu-
lation that A audits cannot increase signi�cantly. As we assume A can identify a very rich class of
overlapping sets, in aggregate, this property gives a strong guarantee on the utility of the resulting
predictor. Further, the proof of Theorem 3 reveals that this worst-case bound is very pessimistic
and can be improved with stronger assumptions.

Theorem 3 (Do-no-harm). Let α, β, γ > 0 and S ⊆ X be a subpopulation where Prx∼D[x ∈ S] ≥ γ.
Suppose A audits the characteristic function χS(x) and its negation. Let f : X → [0, 1] be the output
of Algorithm 1 when given f0 : X → [0, 1], A, and α ≤ βγ as input. Then the classi�cation error of

f on the subset S is bounded as

erS(f ; y) ≤ 3 · erS(f0; y) + 4β. (3)

Derivative learning for faster convergence Here, we propose auditing with an algorithm
A`, described formally in Algorithm 2 in the Appendix, that aims to learn a smoothed ver-
sion of the partial derivative function of the cross-entropy loss with respect to the predictions
∂`(f ;y)
∂f(x) = 1

1−f(x)−y(x) , which grows in magnitude as |f(x)− y(x)| grows. We show that running
Multiaccuracy Boost with A` converges in a number of iterations that grows with log(1/α),
instead of polynomially, as we would expect for a smooth, strongly convex objective [SS+12,B+15].
This sort of gradient method does not typically make sense when we don't have information about
y(x) for all x ∈ X ; nevertheless, if there is a simple way to improve f , we might hope to learn the
partial derivative as a function of x ∈ X in order to update f . This application of Multiaccu-

racy Boost is similar in spirit to gradient boosting techniques [MBBF00,Fri01], which interpret
boosting algorithms as running gradient descent on an appropriate cost-functional.

In principle, if the magnitude of the residual |f(x)− y(x)| is not too close to 1 for most x ∈ X ,
then the learned partial derivative function should correlate well with the true gradient. Empirically,
we observe that A` is e�ective at �nding ways to improve the model quite rapidly. Formally, we
show the following linear convergence guarantee.

Proposition 4. Let α,B,L > 0 and C ⊆ [−B,B]X . Suppose we run Algorithm 1 with η = O(1/L)
on initial model f0 with auditor A` de�ned in Algorithm 2. Then, Algorithm 1 converges in T =
O (L · log(`D(f0; y)/α)) iterations.
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4 Experimental Evaluation

We evaluate the empirical performance of Multiaccuracy Boost in three case studies. The �rst
and most in-depth case study aims to emulate the conditions of the Gender Shades study [BG18],
to test the e�ectiveness of multiaccuracy auditing and post-processing on this important real-world
example. In Section 4.1, we show experimental results for auditing using two di�erent validation
data sets. In particular, one data set is fairly unbalanced and similar to the data used to train,
while the other data set was developed in the Gender Shades study and is very balanced. For each
experiment, we report for various subpopulations, the population percentage in D, accuracies of the
initial model, our black-box post-processed model, and white-box benchmarks. In Section 4.1.1, we
discuss further subtleties of applying the multiaccuracy framework involving the representation of
inputs passed to A for auditing; in Section 4.1.2, we show how auditing can be used beyond post-
processing. In particular, the hypotheses that A learns can be used to highlight subpopulations �
in an interpretable way � on which the model is making mistakes.

We evaluate the e�ectiveness of multiaccuracy post-processing on two other prediction tasks.
In both these case studies, we take the training and auditing data distribution D to be the same,
though the number of examples used for auditing will be quite small. Multiaccuracy still improves
the performance on signi�cant subpopulations. These results suggest some interesting hypotheses
about why machine-learned models may incorporate biases in the �rst place, which warrant further
investigation.

4.1 Multiaccuracy improves gender detection

In this case study, we replicate the conditions of the Gender Shades study [BG18] to evaluate the
e�ectiveness of the multiaccuracy framework in a realistic setting. For our initial model, we train
an inception-resnet-v1 [SIVA17] gender classi�cation model using the CelebA data set with more
than 200,000 face images [LLWT15]. The resulting test accuracy on CelebA for binary gender
classi�cation is 98.4%.

We applied Multiaccuracy Boost to this f0 using two di�erent auditing distributions. In
the �rst case, we audit using data from the LFW+a1 set [WHT11,HRBLM07], which has similar
demographic breakdowns as CelebA (i.e. D ≈ D0). In the second case, we audit using the PPB
data set (developed in [BG18]) which has balanced representation across gender and race (i.e. D 6=
D0). These experiments allows us to track the e�ectiveness of Multiaccuracy Boost as the
representation of minority subpopulations changes. In both cases, the auditor is �blind� � it is
not explicitly given the race or gender of any individual � and knows nothing about the inner
workings of the classi�er. Speci�cally, we take the auditor to be a variant of A` (Algorithm 2)
that performs ridge regression to �t ∂`x(f ;y)

∂f(x) = 1
1−f(x)−y(x) .

2 Instead of training the auditor on raw
input pixels, we use the low dimensional representation of the input images derived by a variational
autoencoder (VAE) trained on CelebA dataset using Facenet [SKP15] library. (For more discussion
of the representation used during auditing, cf. Section 4.1.1.)

To test the initial performance of f0, we evaluated on a random subset of the LFW+a data
containing 6,880 face images, each of which is labeled with both gender and race � black (B) and
non-black (N). For gender classi�cation on LFW+a, f0 achieves 94.4% accuracy. Even though the

1We �xed the original data set's label noise for sex and race.
2To help avoid outliers, we smooth the loss and use a quadratic approximation for

∣∣∣ ∂`x(f ;y)
∂f(x)

∣∣∣ > 10.

9



overall accuracy is high, the error rate is much worse for females (23.1%) compared to males (0.7%)
and worse for blacks (10.2%) compared to non-blacks (5.1 %); these results are qualitatively very
similar to those observed by the commercial gender detection systems studied in [BG18]. We applied
Multiaccuracy Boost, which converged in 7 iterations. The resulting classi�er's classi�cation
error in minority subpopulations was substantially reduced, even though the auditing distribution
was similar as the training distribution.

We compare Multiaccuracy Boost against a strong white-box baseline. Here, we retrain
the network of f0 using the audit set. Speci�cally, we retrain the last two layers of the network,
which gives the best results amongst retraining methods. We emphasize that this baseline requires
white-box access to f0, which is often infeasible in practice. Multiaccuracy Boost accesses f0

only as a black-box without any additional demographic information, and still achieves comparable,
if not improved, error rates compared to retraining. We report the overall classi�cation accuracy as
well as accuracy on di�erent subpopulations � e.g. BF indicates black female � in Table 1.

All F M B N BF BM NF NM

D 100 21.0 79.0 4.9 95.1 2.1 18.8 2.7 76.3
f0 5.4 23.1 0.7 10.2 5.1 20.4 2.1 23.4 0.6
MA 4.1 11.3 3.2 6.0 4.9 8.2 4.3 11.7 3.2
RT 3.8 11.2 1.9 7.5 3.7 11.6 4.3 11.1 1.8

Table 1: Results for LFW+a gender classi�cation. D denotes the percentages of each pop-
ulation in the data distribution; f0 denotes the classi�cation error (%) of the initial predictor;
MA denotes the classi�cation error (%) of the model after post-processing with Multiaccuracy

Boost; RT denotes the classi�cation error (%) of the model after retraining on D.

The second face dataset, PPB, in addition to being more balanced, is much smaller; thus, this
experiment can be viewed as a stress test, evaluating the data e�ciency of our post-processing
technique. The test set has 415 individuals and the audit set has size 855. PPB annotates each
face as dark (D) or light-skinned (L). As with LFW+a, we evaluated the test accuracy of the
original f0, the multiaccurate post-processed classi�er, and retrained classi�er on each subgroup.
Multiaccuracy Boost converged in 5 iterations and again, substantially reduced error despite
a small audit set and the lack of annotation about race or skin color (Table 2).

All F M D L DF DM LF LM

D 100 44.6 55.4 46.4 53.6 21.4 25.0 23.2 30.4
f0 9.9 21.6 0.4 18.8 2.2 39.8 1.0 5.2 0.0
MA 3.9 6.5 1.8 7.3 0.9 12.5 2.9 1.0 0.8
RT 2.2 3.8 0.9 4.2 0.4 6.8 1.9 1.0 0.0

Table 2: Results for the PPB gender classi�cation data set. D denotes the percentages of each
population in the data distribution; f0 denotes the classi�cation error (%) of the initial predictor;
MA denotes the classi�cation error (%) of the model after post-processing with Multiaccuracy

Boost; RT denotes the classi�cation error (%) of the model after retraining on D.

To further test the data e�ciency of Multiaccuracy Boost, we evaluate the e�ect of audit
set size on the resulting accuracy of each method. In Fig. 1, we report the performance of Multi-

accuracy Boost versus the white-box retraining method for di�erent sizes of audit set. The plot
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Figure 1: Multiaccuracy vs. Retraining: Di�erence in classi�cation accuracy (i.e. % accuracy
after Multiaccuracy Boost − % accuracy after retraining) is plotted on the vertical axis; this
di�erence represents the accuracy advantage of Multiaccuracy Boost compared to retraining.
As the size of the audit set shrinks, Multiaccuracy Boost has better performance both in
overall accuracy and accuracy of the subgroups with the most initial bias because it is more data
e�cient.

displays the di�erence in accuracy for the overall population along with the subgroups that su�ered
the most initial bias. It shows that the performance of Multiaccuracy Boost may actually be
better than the white-box retraining baseline when validation data is especially scarce.

4.1.1 Representation matters

As discussed earlier, in the reported gender detection experiments, we audit for multiaccuracy us-
ing ridge regression over an encoding of images produced by a variational autoencoder. Using the
representation of images produced by this encoding intuitively makes sense, as the autoencoder's
reconstruction objective aims to preserve as much information about the image as possible while
reducing the dimension. Still, we may wonder whether multiaccuracy auditing over a di�erent rep-
resentation of the images would perform better. In particular, since we are interested in improving
the accuracy on the gender detection task, it seems plausible that a representation of the images
based on the internal layers of the initial prediction network might preserve the information salient
to gender detection more e�ectively.

We investigate the importance of the representation used to audit empirically. In particular, we
also evaluate the performance of Multiaccuracy Boost using the same auditor A` run over two
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other sets of features, given by the last-layer and the second-to-last layer of the initial prediction
residual network f0. In Table 3, we show that using the unsupervised VAE representation yields
the best results. Still, the representations from the last and second-to-last layers are competitive
with that of the VAE, and in some subpopulations are better.

Collectively, these �ndings bolster the argument for �fairness through awareness�, which advo-
cates that in order to make fair predictions, sensitive information (like race or gender) should be
given to the (trustworthy) classi�er. While none of these representations explicitly encode sensitive
group information, the VAE representation does preserve information about the original input, for
instance skin color, that seems useful in understanding the group status. The prediction network
is trained to have the best prediction accuracy (on an unbalanced training data set), and thus,
the representations from the network reasonably may contain less information about these sensitive
features. These results suggest that the e�ectiveness of multiaccuracy does depend on the repre-
sentation of inputs used for auditing, but so long as the representation is su�ciently expressive,
Multiaccuracy Boost may be robust to the exact encoding of the features.

All F M D L DF DM LF LM

LFW+a:

VAE 4.1 11.3 3.2 6.0 4.9 8.2 4.3 11.7 3.2
R1,f0 4.9 13.6 2.6 6.3 4.9 8.8 4.3 14.1 2.6
R2,f0 4.5 12.6 2.4 6.3 4.4 8.8 4.3 13.1 2.3
PPB:

VAE 3.9 6.5 1.8 7.3 0.9 12.5 2.9 1.0 0.8
R1,f0 4.3 7.6 1.7 7.8 1.3 13.6 2.9 2.1 0.8
R2,f0 5.1 9.7 1.3 9.4 1.3 17.0 2.9 3.1 0.0

Table 3: E�ect of representation on the Multiaccuracy Boost performance VAE
denotes the denotes the classi�cation error (%) using the VAE representation; R1,f0 denotes the
classi�cation error (%) using the classi�er's last layer representation, R2,f0 denotes the classi�cation
error (%) using the classi�er's second to last layer representation

4.1.2 Multiaccuracy auditing as diagnostic

As was shown in [BG18], we've demonstrated that models trained in good faith on unbalanced data
may exhibit signi�cant biases on the minority populations. For instance, the initial classi�cation
error on black females is signi�cant, whereas on white males, it is near 0. Importantly, the only
way we were able to report these accuracy disparities was by having access to a rich data set where
gender and race were labeled. Often, this demographic information will not be available; indeed, the
CelebA images are not labeled with race information, and as such, we were unable to evaluate the
subpopulation classi�cation accuracy on this set. Thus, practitioners may be faced with a problem:
even if they know their model is making undesirable mistakes, it may not be clear if these mistakes
are concentrated on speci�c subpopulations. Absent any identi�cation of the subpopulations on
which the model is underperforming, collecting additional training data may not actually improve
performance across the board.

We demonstrate that multiaccuracy auditing may serve as an e�ective diagnostic and inter-
pretation tool to help developers identify systematic biases in their models. The idea is simple:

12



the auditor returns a hypothesis h that essentially �scores� individual inputs x by how wrong the
prediction f0(x) is. If we consider the magnitude of their scores |h(x)|, then we may understand
better the biases that the encoder is discovering.

As an example, we test this idea on the PPB data set, evaluating the test images' representations
with the hypotheses the auditor returns. In Figure 2, we display the images in the test set that
get the highest and lowest e�ect (|h(x)| large and |h(x)| ≈ 0, respectively) according to the �rst
and second hypothesis returned by A`. In the �rst round of auditing, the three highest-scoring
images (top-left row) are all women, both black and white. Interestingly, all of the least active
images (bottom-left row) are men in suits, suggesting that suits may be a highly predictive feature
of being a man according to the original classi�er, f0. Overall the �rst round of audit seems to
primarily identify gender as the axis of bias in f0. In the second round, after the classi�er has
been improved by one step of Multiaccuracy Boost, the auditor seems to hone in on the �dark-
skinned women� subpopulation as the region of bias, as the highest activating images (top-right
row) are all dark-skinned women.

Figure 2: Interpreting Auditors Here, we depict the PPB test images with the highest and
lowest activation of the �rst and second trained auditor. The images with the highest auditor
e�ects corresponds to images where the auditor detects the largest bias in the classi�er. In the �rst
round of auditing, the most biased images are women, both black and white. In the second round
of auditing, after the base classi�er has been augmented by one step of Multiaccuracy Boost,
the most biased images are more speci�cally dark-skinned women.

4.2 Additional case studies

Multiaccuracy auditing and post-processing is applicable broadly in supervised learning tasks, not
just in image classi�cation applications. We demonstrate the e�ectiveness of Multiaccuracy

Boost in two other settings: the adult income prediction task and a semi-synthetic disease pre-
diction task.

Adult Income Prediction For the �rst case study, we utilize the adult income prediction data set
[Koh96] with 45,222 samples and 14 attributes (after removing subjects with unknown attributes)
for the task of binary prediction of income more than $50k for the two major groups of Black and
White. We remove the sensitive features of gender � female (F) and male (M) and race (for the
two major groups) � black (B) and white (W) � from the data, to simulate settings where sensitive
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features are not available to the algorithm training. We trained a base algorithm, f0, which is a
neural network with two hidden layers on 27,145 randomly selected individuals. The test set consists
of an independent set of 15,060 persons.

We audit using a decision tree regression model (max depth 5) Adt to �t the residual f(x)−y(x).
Adt receives samples of validation data drawn from the same distribution as training; that is D = D0.
In particular, we post-process with 3,017 individuals sampled from the same adult income dataset
(disjoint from the training set of f0). The auditor is given the same features as the original prediction
model, and thus, is not given the gender or race of any individual. We evaluate the post-processed
classi�er on the same independent test set. Multiaccuracy Boost converges in 50 iterations
with η = 1.

As a baseline, we trained four separate neural networks with the same architecture as before
(two hidden layers) for each of the four subgroups using the audit data. As shown in Table 4, multi-
accuracy post-processing achieves better accuracy both in aggregate and for each of the subgroups.
Importantly, the subgroup-speci�c models requires explicit access to the sensitive features of gender
and race. Training a classi�er for each subgroup, or explicitly adding subgroup accuracy into the
training objective, assumes that the subgroup is already identi�ed in the data. This is not feasible
in the many applications where, say, race or more granular categories are not given. Even when
the subgroups are identi�ed, we often do not have enough samples to train accurate classi�ers on
each subgroup separately. This example illustrates that multiaccuracy can help to boost the overall
accuracy of a black-box predictor in a data e�cient manner.

All F M B W BF BM WF WM

D 100.0 32.3 67.7 90.3 9.7 4.8 4.9 27.4 62.9
f0 19.3 9.3 24.2 10.5 20.3 4.8 15.8 9.8 24.9
MA 14.7 7.2 18.3 9.4 15.0 4.5 13.9 7.3 18.3
SS 19.7 9.5 24.6 10.5 19.9 5.5 15.3 10.2 25.3

Table 4: Results for Adult Income Data Set D denotes the percentages of each population in
the data distribution; f0 denotes the classi�cation error (%) of the initial predictor; MA denotes the
classi�cation error (%) of the model after post-processing withMultiaccuracy Boost; SS denotes
the classi�cation error (%) of the subgroup-speci�c models trained separately for each population.

4.2.1 Semi-Synthetic Disease Prediction

We design a disease prediction task based on real individuals, where the phenotype to disease relation
is designed to be di�erent for di�erent subgroups, in order to simulate a challenging setting. We
used 40,000 individuals sampled from the UK Biobank [SGA+15]. Each individual contains 60
phenotype features. To generate a synthetic disease outcome for each subgroup, we divided the
data set into four groups based on gender � male (M) and female (F) � and age � young (Y) and
old (O). For each subgroup, we create synthetic binary labels using a di�erent polynomial function
of the input features with di�erent levels of di�culty. The polynomial function orders are 1, 4, 2,
and 6 for OF, OM, YF, and YM subgroups respectively.

For f0, we trained a neural network with two hidden layers on 32,000 individuals, without using
the gender and age features. Hyperparameter search was done for the best weight-decay and drop-
out parameters. The f0 we discover performs moderately well on every subpopulation, with the
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exception of old females (OF) where the classi�cation error is signi�cantly higher. Note that this
subpopulation had the least representation in D0. Again, we audit using Adt to run decision tree
regression with validation data samples drawn from D = D0. Speci�cally, the auditor receives a
sample of 4,000 individuals without the gender or age features. As a baseline, we trained a separate
classi�er for each of the subgroups using the same audit data. As Table 5 shows, Multiaccuracy

Boost signi�cantly lowers the classi�cation error in the old female population.

All F M O Y OF OM YF YM

D 100 39.6 60.4 34.6 65.4 15.0 19.7 24.6 40.7
f0 18.9 29.4 12.2 21.9 17.3 36.8 10.9 24.9 12.8
MA 16.0 24.1 10.7 16.4 15.7 26.5 9.0 22.7 11.6
SS 19.5 32.4 11.0 22.1 18.1 37.6 10.3 29.3 11.3

Table 5: Results for UK Biobank semi-synthetic data set. D denotes the percentages of each
population in the data distribution; f0 denotes the classi�cation error (%) of the initial predictor;
MA denotes the classi�cation error (%) of the model after post-processing with Multiaccuracy

Boost; SS denotes the classi�cation error (%) of the subgroup-speci�c models trained separately
for each population.

5 Discussion

In this work, we propose multiaccuracy auditing and post-processing as a method for improving the
fairness and accountability of black-box prediction systems. Here, we discuss how our work compares
to prior works, speci�cally, how it �ts into the growing literature on fairness for learning systems.
We conclude with further discussion of our results and speculation about future investigations.

5.1 Related works

Many di�erent notions of fairness have been proposed in literature on learning and classi�cation
[DHP+12, HPS16, ZWS+13, DIKL17, HKRR18,KNRW17,HSNL18,KRR18, RY18]. Many of these
works encode some notion of parity, e.g. di�erent subgroups should have similar false positive rates,
as an explicit objective/constraint in the training of the original classi�er. The fairness properties
are viewed as constraints on the classi�er that ultimately limit the model's utility. A common belief
is that in order to achieve equitable treatment for protected subpopulations, the performance on
other subpopulations necessarily must degrade.

A notable exception to this pattern is the work of Hébert-Johnson et al. [HKRR18], which in-
troduced a framework for achieving fairness notions that aim to provide accurate predictions for
many important subpopulations. [HKRR18] introduced the notion of multiaccuracy3 and a stronger
notion, dubbed multicalibration, in the context of regression tasks. Multicalibration guarantees (ap-
proximately) calibrated predictions, not just overall, but on a rich class of structured �identi�able"
subpopulations. [HKRR18] provides theoretical algorithms for achieving multiaccuracy and multical-
ibration, and shows how to post-process a model to achieve multicalibration in a way that improves

the regression objective across all subpopulations (in terms of squared-error). Our work directly
extends the approach of [HKRR18], adapting their work to the binary classi�cation setting. Our

3 [HKRR18] refers to this notion as �multi-accuracy-in-expectation�.
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post-processing algorithm, Multiaccuracy Boost, builds on the algorithm given in [HKRR18],
providing the additional �do-no-harm� property. This property guarantees that if the initial pre-
dictor f0 has small classi�cation error on some identi�able group, then the resulting post-processed
model will also have small classi�cation error on this group.

Independent work of Kearns et al. [KNRW17] also investigated how to achieve statistical fair-
ness guarantees, not just for traditionally-protected groups, but on rich families of subpopula-
tions. [KNRW17] proposed a framework for auditing and learning models to achieve fairness no-
tions like statistical parity and equal false positive rates. Both works [HKRR18,KNRW17] connect
the task of learning a model that satis�es the notion of fairness to the task of (weak) agnostic
learning [Kea98,KSS94,KMV08,Fel10]. [KNRW17] also reduces the problem of learning a classi�er
satisfying parity-based notions of fairness across subgroups to the problem of auditing; it would
be interesting if their notion of auditing can be used by humans as a way to diagnose systematic
discrimination.

Our approach to post-processing, which uses a learning algorithm as a fairness auditor, is similar
in spirit to the approach to learning of [KNRW17], but di�ers technically in important ways. In
particular, in the framework of [KNRW17], the auditor is used during (white-box) training to
constrain the model selected from a pre-speci�ed hypothesis class; ultimately, this constrains the
accuracy of the predictions. In our setting (as in [HKRR18]), we do not restrict ourselves to an
explicitly-de�ned hypothesis class, so we can augment the current model using the auditor; these
augmentations improve the accuracy of the model.

Indeed, at a technical level, our post-processing algorithm is most similar to work on boosting
[FS95,SF12], speci�cally, gradient boosting [MBBF00,Fri01]. Still, our perspective is quite di�erent
from the standard boosting setting. Rather than using an expressive class of predictors as the base
classi�ers to be able to learn the function directly, our setting focuses on the regime where data
is limited and we must restrict our attention to simple classes. Thus, it becomes important that
we leverage the expressiveness (and initial accuracy) of f0 if we are to obtain strong performance
using the multiaccuracy approach. Further, the termination of Multiaccuracy Boost certi�es
that the �nal model satis�es (A, α)-multiaccuracy; in general, standard boosting algorithms will
not provide such a certi�cate.

Motivated by unfairness that arises as the result of feedback loops in classi�cation settings,
another recent work of Hashimoto et al. [HSNL18] aims to improve fairness at a subpopulation level.
Speci�cally, their notion of fairness similarly aims to give accurate (i.e. bounded loss) predictions not
just overall, but on all signi�cant subpopulations. In the multiaccuracy setting, we argued that this
goal was information-theoretically infeasible; [HSNL18] sidesteps this impossibility by optimizing
over a �xed hypothesis class, and formulating the problem as a min-max optimization. They give
show how to relax the problem of minimizing the worst-case subpopulation loss and reduce the
relaxation to a certain robust optimization problem. While their approach does not guarantee
optimality, it gives a strong certi�cate upper-bounding the maximum loss over all subpopulations.

A di�erent approach to subgroup fairness is studied by Dwork et al. [DIKL17]. This work
investigates the question of how to learn a �decoupled� classi�er, where separate classi�ers are learned
for each subgroup and then combined to achieve a desired notion of fairness. While applicable in
some settings, at times, this approach may be untenable. First, decoupling the classi�cation problem
requires that we have race, age, and other attributes of interest in the dataset and that the groups
we wish to protect are partitioned by these attributes; this information is often not available.
Even if this information is available, a priori, it may not always be obvious which subpopulations
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require special attention. In contrast, the multiaccuracy approach allows us to protect a rich class of
overlapping subpopulations without explicit knowledge of the vulnerable populations. An interesting
direction for future investigation could try to pair multiaccuracy auditing (to identify subpopulations
in need of protection) with the decoupled classi�cation techniques of [DIKL17].

The present work, along with [HKRR18,KNRW17,KRR18], can be viewed as studying information-
fairness tradeo�s in prediction tasks (i.e. strengthening the notion of fairness that can be guaranteed
using a small sample). These works �t into the larger literature on fairness in learning and prediction
tasks [DHP+12, ZWS+13,BG18,HPS16,DIKL17,KRR18,RY18], discussions of the utility-fairness
tradeo�s in fair classi�cation [ALMK16,KMR17,Cho17,CG16,CDPF+17,PRW+17]. While fairness
and accountability serve as the main motivations for developing the multiaccuracy framework, our
results may have broader interest. In particular, multiaccuracy post-processing may be applica-
ble in domain adaptation settings, particularly under label distribution shift as studied recently
in [LWS18], but when the learner gets a small number of labeled samples from the new distribution.

5.2 Conclusion

The multiaccuracy framework can be applied very broadly; importantly, we can post-process any
initial model f0 given only black-box access to f0 and a small set of labeled validation data. We
show that in a wide range of realistic settings, post-processing for multiaccuracy helps to mitigate
systematic biases in predictors across sensitive subpopulations, even when the identi�ers for these
subpopulations are not given to the auditor explicitly. In our experiments, we observe that standard
supervised learning optimizes for overall performance, leading to settings where certain subpopu-
lations incur substantially worse error rates. Multiaccuracy provides a framework for fairness in
classi�cation by improving the accuracy in identi�able subgroups, in a way that su�ers no tradeo�
between accuracy and utility. We demonstrate � both theoretically and empirically � that post-
processing with Multiaccuracy Boost serves as an e�ective tool for improving the accuracy
across important subpopulations, and does not harm the populations that are already classi�ed
well.

Multiaccuracy works to the extent that the auditor can e�ectively identify speci�c subgroups
where the original classi�er f0 tends to make mistakes. The power of multiaccuracy lies in the
fact that in many settings, we can identify issues with f0 using a relatively small amount of audit
data. Thus, multiaccuracy auditing is limited: if the mistakes appear overly-complicated to the
bounded auditor (for information- or complexity-theoretic reasons), then the auditor will not be
able to identify these mistakes. Our empirical results suggest, however, that in many realistic
settings, the subpopulations on which a classi�er errs are e�ciently-identi�able. This observation
may be of interest beyond the context of fairness. In particular, our experiments improving the
accuracy of a model trained on CelebA on the LFW+a and PPB test sets suggests a lightweight
black-box alternative to more sophisticated transfer learning techniques, which may warrant further
investigation.

Our empirical investigations reveal some additional interesting aspects of the multiaccuracy
framework. In particular, we've shown that multiaccuracy auditing can identify underrepresented
groups receiving suboptimal predictions even when the sensitive attributes de�ning these groups
are not explicitly given to the auditor, which proves useful for diagnosing where models make mis-
takes. We feel that it may be of further interest within the study of model interpretability. Finally,
it is striking that Multiaccuracy Boost tends to improve, not just subgroup accuracy, but
also the overall accuracy, even when the minority groups remain underrepresented in the valida-
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tion data. While some of these �ndings may be due to suboptimal training of our initial models,
we believe this is not the only factor at play. In particular, we hypothesize that understanding
why models incorporate biases during training � and further, why simple interventions like multi-
accuracy post-processing can signi�cantly improve generalization error � requires investigating the
dynamics of over�tting during training, not just on the population as a whole, but across signi�cant
subpopulations.

Acknowledgements. The authors thank Omer Reingold and Guy N. Rothblum for their advice
and helpful discussions throughout the development of this work; we thank Weihao Kong, Aditi
Raghunathan, and Vatsal Sharan for feedback on early drafts of this work.

References

[ALMK16] Julia Angwin, Je� Larson, Surya Mattu, and Lauren Kirchner. Machine bias: There's
software used across the country to predict future criminals. and it's biased against
blacks. ProPublica, 2016.

[B+15] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends R© in Machine Learning, 8(3-4):231�357, 2015.

[BG18] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities
in commercial gender classi�cation. In Conference on Fairness, Accountability and

Transparency, pages 77�91, 2018.

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities:

A nonasymptotic theory of independence. Oxford university press, 2013.

[CDPF+17] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algo-
rithmic decision making and the cost of fairness. KDD, 2017.

[CG16] Alexandra Chouldechova and Max G'Sell. Fairer and more accurate, but for whom?
FATML, 2016.

[Cho17] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in
recidivism prediction instruments. Big Data, 2017.

[DFH+15] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Aaron Roth. The reusable holdout: Preserving validity in adaptive data analysis.
Science, 349(6248):636�638, 2015.

[DHP+12] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel.
Fairness through awareness. In Innovations in Theoretical Computer Science (ITCS),
pages 214�226, 2012.

[DIKL17] Cynthia Dwork, Nicole Immorlica, Adam Tauman Kalai, and Max Leiserson. Decou-
pled classi�ers for fair and e�cient machine learning. arXiv preprint arXiv:1707.06613,
2017.

18



[Fel10] Vitaly Feldman. Distribution-speci�c agnostic boosting. In Proceedings of the First

Symposium on Innovations in Computer Science'10, 2010.

[Fri01] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189�1232, 2001.

[FS95] Yoav Freund and Robert E. Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In European conference on computational

learning theory, pages 23�37. Springer, 1995.

[HKRR18] Úrsula Hébert-Johnson, Michael P. Kim, Omer Reingold, and Guy N. Rothblum. Cal-
ibration for the (computationally-identi�able) masses. ICML, 2018.

[HPS16] Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised
learning. In Advances in Neural Information Processing Systems, pages 3315�3323,
2016.

[HRBLM07] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces
in the wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

[HSNL18] Tatsunori B Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang.
Fairness without demographics in repeated loss minimization. ICML, 2018.

[Kea98] Michael Kearns. E�cient noise-tolerant learning from statistical queries. Journal of

the ACM (JACM), 45(6):983�1006, 1998.

[KMR17] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-o�s in
the fair determination of risk scores. ITCS, 2017.

[KMV08] Adam Tauman Kalai, Yishay Mansour, and Elad Verbin. On agnostic boosting and
parity learning. In Proceedings of the fortieth annual ACM symposium on Theory of

computing, pages 629�638. ACM, 2008.

[KNRW17] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fair-
ness gerrymandering: Auditing and learning for subgroup fairness. arXiv preprint

arXiv:1711.05144v3, 2017.

[Koh96] Ron Kohavi. Scaling up the accuracy of naive-bayes classi�ers: a decision-tree hybrid.
In KDD, volume 96, pages 202�207. Citeseer, 1996.

[KRR18] Michael P. Kim, Omer Reingold, and Guy N. Rothblum. Fairness through
computationally-bounded awareness. arXiv Preprint, 1803.03239, 2018.

[KSS94] Michael J. Kearns, Robert E. Schapire, and Linda M. Sellie. Toward e�cient agnostic
learning. Machine Learning, 17(2-3):115�141, 1994.

[KV94] Michael J. Kearns and Umesh Virkumar Vazirani. An introduction to computational

learning theory. MIT press, 1994.

19



[LLWT15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes
in the wild. In Proceedings of International Conference on Computer Vision (ICCV),
December 2015.

[LWS18] Zachary C. Lipton, Yu-Xiang Wang, and Alexander J. Smola. Detecting and correcting
for label shift with black box predictors. In ICML, 2018.

[MBBF00] Llew Mason, Jonathan Baxter, Peter L Bartlett, and Marcus R Frean. Boosting
algorithms as gradient descent. In Advances in neural information processing systems,
pages 512�518, 2000.

[PRW+17] Geo� Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q. Weinberger.
On fairness and calibration. NIPS, 2017.

[RY18] Guy N. Rothblum and Gal Yona. Probably approximately metric-fair learning. ICML,
2018.

[RZ16] Daniel Russo and James Zou. How much does your data exploration over�t? control-
ling bias via information usage. AISTATS, 2016.

[SF12] Robert E Schapire and Yoav Freund. Boosting: Foundations and algorithms. MIT
press, 2012.

[SGA+15] Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John
Danesh, Paul Downey, Paul Elliott, Jane Green, Martin Landray, et al. Uk biobank:
an open access resource for identifying the causes of a wide range of complex diseases
of middle and old age. PLoS medicine, 12(3):e1001779, 2015.

[SIVA17] Christian Szegedy, Sergey Io�e, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning. In
AAAI, volume 4, page 12, 2017.

[SKP15] Florian Schro�, Dmitry Kalenichenko, and James Philbin. Facenet: A uni�ed embed-
ding for face recognition and clustering. CoRR, abs/1503.03832, 2015.

[SS+12] Shai Shalev-Shwartz et al. Online learning and online convex optimization. Founda-

tions and Trends R© in Machine Learning, 4(2):107�194, 2012.

[TTV09] Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Regularity, boosting, and ef-
�ciently simulating every high-entropy distribution. In Computational Complexity,

2009. CCC'09. 24th Annual IEEE Conference on, pages 126�136. IEEE, 2009.

[WHT11] Lior Wolf, Tal Hassner, and Yaniv Taigman. E�ective unconstrained face recognition
by combining multiple descriptors and learned background statistics. IEEE transac-

tions on pattern analysis and machine intelligence, 33(10):1978�1990, 2011.

[ZWS+13] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning
fair representations. In Proceedings of the 30th International Conference on Machine

Learning (ICML-13), pages 325�333, 2013.

20



Appendix notation. We use the inner product 〈h, g〉 = Ex∼D[h(x) · g(x)] and the p-norms
‖h‖p = (Ex∼D[|h(x)|p])1/p.

A Multiaccuracy and classi�cation error

Here, we prove Proposition 1.

Proposition (Restatement of Propostion 1). Let ŷ : X → {−1, 1} as ŷ(x) = 1 − 2y(x). Suppose

that for S ⊆ X with Prx∼D[x ∈ S] ≥ γ, there is some c ∈ C such that ‖c− ŷS‖1 ≤ τ . Then if f is

(C, α)-multiaccurate, erS(f ; y) ≤ 2 · (α+ τ)/γ.

Proof. For i, j ∈ {0, 1}, let Sij =
{
x ∈ S : y(x) = i ∧ f̄(x) = j

}
. Further denote βij = Prx∼D[x ∈

Sij ]. Note that the classi�cation error on a set S is erS(f ; y) ≤ (β01 + β10)/γ.
Let ŷ(x) = 1 − 2y(x) and suppose c(x) = ŷ(x)S + z(x) where ‖δ‖1 ≤ τ . Then, we derive the

following inequality.

E
x∼D

[c(x) · (f(x)− y(x))] (4)

= E
x∼D

[ŷ(x)S · (f(x)− y(x))] + E
x∼D

[z(x) · (f(x)− y(x))] (5)

≥ β01 · E
x∼S01

[f(x)− y(x)] + β10 · E
x∼S10

[y(x)− f(x)]− τ (6)

where (6) follows by Hölder's inequality, from the fact that the contribution to the expectation of
(1− 2y(x)) · (f(x)− y(x)) from S00 and S11 is lower bounded by 0, and by the de�nition ŷS(x) = 0
for x 6∈ S. Further, because we know any x ∈ S01 ∪ S10 is misclassi�ed, we can lower bound the
contribution by 1/2. Thus, if Ex∼D[c(x) · (f(x)− y(x))] ≤ α, then by rearranging we conclude

erS(f ; y) = (β01 + β10)/γ ≤ 2 · (α+ τ)/γ. (7)

Theorem 3 follows by a similar argument.

Theorem (Restatement of Theorem 3). Let α, β, γ > 0 and S ⊆ X be a subpopulation where

Prx∼D[x ∈ S] ≥ γ. Suppose for A audits the characteristic function χS(x) and its negation. Let

f : X → [0, 1] be the output of Algorithm 1 when given f0 : X → [0, 1], A, and 0 < α ≤ βγ as input.

Then the classi�cation error of f on the subset S is bounded as

erS(f ; y) ≤ 3 · erS(f0; y) + 4β. (8)

Proof. Suppose that erS(f0; y) ≤ τ . Consider S1 = {x ∈ S : f0(x) > 1/2}; suppose erS1(f0; y) = τ1.
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By assumption, −χS(x) is audited on X1. Consider Ex∼S1 [−χS(x) · (f(x)− y(x))].

E
x∼S1

[−χS(x) · (f(x)− y(x))] (9)

= E
x∼S1

[y(x)− f(x)] (10)

= Pr
x∼S1

[y(x) = 1] · E
x∼S1
y(x)=1

[1− f(x)]− Pr
x∼S1

[y(x) = 0] · E
x∼S1
y(x)=0

[f(x)] (11)

≥ Pr
x∼S1

[y(x) = 1 ∧ f̄(x) = 0] · E
x∼S1
y(x)=1
f̄(x)=0

[1− f(x)]− τ1 (12)

≥ 1

2
Pr
x∼S1

[y(x) = 1 ∧ f̄(x) = 0]− τ1 (13)

where (12) follows from applying Hölder's inequality and the assumption that erS1(f0; y) = τ1; and
(13) follows from lower bounding the contribution to the expectation based on the true label and
the predicted label. Note that Prx∼S [x ∈ S1] · Ex∼S1 [y(x) − f(x)] ≤ α/γ = β by the fact that f
passes multiaccuracy auditing by A and the assumption that Prx∼D[x ∈ S] ≥ γ. Rearranging gives
the following inequality

erS1(f ; y) ≤ 2β

Prx∼S [x ∈ S1]
+ 3τ1 (14)

where the additional τ1 comes from accounting for the false positives.
A similar argument holds for S0 with erS0(f0; y) = τ0, using χS(x). We can expand erS(f ; y) as

a convex combination of the classi�cation error over S0 and S1.

erS(f ; y) (15)

= Pr
x∼S

[x ∈ S0] · erS0(f ; y) + Pr
x∼S

[x ∈ S1] · erS1(f ; y) (16)

≤ Pr
x∼S

[x ∈ S0] · Pr
x∼S0

[y(x) 6= f̄(x)] + Pr
x∼S

[x ∈ S1] · Pr
x∼S1

[y(x) 6= f̄(x)] (17)

≤ Pr
x∼S

[x ∈ S0] ·
(

3τ0 +
2β

Prx∼S [x ∈ S0]

)
+ Pr
x∼S

[x ∈ S1] ·
(

3τ1 +
2β

Prx∼S [x ∈ S1]

)
(18)

= 3 ·
(
Pr
x∼S

[x ∈ S0] · τ0 + Pr
x∼S

[x ∈ S1] · τ1

)
+ 4β (19)

≤ 3τ + 4β (20)

by the fact that S is partitioned into S0 and S1 and τ is a corresponding convex combination of τ0

and τ1.

B Analysis of Algorithm 1

Here, we analyze the sample complexity and running time of Algorithm 1.
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Theorem (Restatement of Theorem 2). Let α, δ > 0 and suppose A agnostic learns a class C ⊆
[−1, 1]X of dimension d(C). Then, using η = O(α), Algorithm 1 converges to a (C, α)-multiaccurate

hypothesis fT in T = O
(
`D(f0;y)
α2

)
iterations from m = Õ

(
T · d(C)+log(1/δ)

α2

)
samples with probability

at least 1− δ over the random samples.

B.1 Sample complexity

We essentially assume the sample complexity issues away by working with the notion of dimension.
We give an example proof outline of a standard uniform convergence argument using metric entropy
as in [BLM13].

Lemma 5. Suppose C ⊆ [−1, 1]X has ε-covering number Nε = N (ε, C, ‖·‖1). Then, with probability

at least 1− δ, ∣∣∣∣∣ 1

m

m∑
i=1

(c(xi)y(xi))− E
x∼D

[c(x)y(x)]

∣∣∣∣∣ ≤ O (α) (21)

provided m ≥ Ω̃
(

log(NΘ(α)/δ)

α2

)
.

Proof. The lemma follows from a standard uniform convergence argument. First, observe that
because every c : X → [−1, 1] and y ∈ {0, 1} that the empirical estimate using m samples has
sensitivity 1/m. Thus, we can apply McDiarmid's inequality to show concentration of the following
statistic.

sup
c∈C

∣∣∣∣∣ 1

m

m∑
i=1

(c(xi)y(xi))− E
x∼X

[c(x)y(x)]

∣∣∣∣∣ (22)

Then, using a standard covering argument, for N = N (ε, C, ‖·‖1) the ε-covering number, we can

bound the deviation with high probability. Speci�cally, taking O
(

log(N/δ)
α2

)
samples guarantees that

the empirical estimate for each c ∈ C will be within O(α) with probability at least 1 − δ. Taking
δ small enough to union bound against every iteration and adjusting constants shows gives the
lemma.

Note that this analysis is completely generic, and more sophisticated arguments may improve
the resulting bounds that leverage structure in the speci�c C of interest.

B.2 Convergence analysis

We will track progress of Algorithm 1 by tracking the expected cross-entropy loss. We show that
every update makes the expected cross-entropy loss decrease signi�cantly. As the loss is bounded
below by 0, then positive progress at each iteration combined with an upper bound on the initial
loss gives the convergence result.

Note that when we estimate the statistical queries from data, we only have access to approximate
answers. Thus, per the sample complexity argument above, we assume that each statistical query
is α/4-accurate. Further, we will update ft if we �nd an update ct where 〈ct, f − y〉 ≥ 3α/4. Thus,
at convergence, it should be clear that the resulting hypothesis will be (C, α)-multiaccurate. The
goal is to show that this way, Multiaccuracy Boost converges quickly.

23



Lemma 6. Let α > 0 and suppose C ⊆ [−1, 1]X . Given access to statistical queries that are α/4-

accurate, Algorithm 1 converges to a (C, α)-multiaccurate hypothesis in T = O
(
`D(f0;y)
α2

)
iterations.

We state this lemma in terms of a class C but the proof reveals that any nontrivial update that
A returns su�ces to make progress.

Proof. We begin by considering the e�ect of the multiplicative weights update as a univariate update
rule. Suppose we use the multiplicative weights update rule to compute ft+1(x) to be proportional
to ft(x) · e−ηct(x) for some ct(x). We can track how `x(f ; y) changes based on the choice of ct(x).

`x(ft; y)− `x(ft+1; y)

= y(x) · log

(
ft+1(x)

ft(x)

)
+ (1− y(x)) · log

(
1− ft+1(x)

1− ft(x)

)
(23)

Recall ft(x) = qt(x)
1+qt(x) , so 1− ft(x) = 1

1+qt(x) . Thus, we can rewrite (23) as follows.

y(x) · log

(
qt+1(x)

qt(x)

)
+ (1− y(x)) · log

(
1

1

)
− log

(
1 + qt+1(x)

1 + qt(x)

)
(24)

= −ηct(x)y(x) + 0− log

(
1 + qt+1(x)

1 + qt(x)

)
(25)

where (25) follows by the multiplicative weights update rule implies qt+1(x) = e−ηct(x)qt(x) for
x ∈ St. Next, we expand the �nal logarithmic term.

− log

(
1 + qt+1(x)

1 + qt(x)

)
= − log

(
1 + qt(x)e−ηct(x)

1 + qt(x)

)
(26)

≥ − log

(
1 + qt(x)(1− ηct(x) + η2ct(x)2)

1 + qt(x)

)
(27)

≥ − log

(
1− qt(x)

1 + qt(x)
(ηct(x)− η2ct(x)2)

)
(28)

≥ ηct(x)ft(x)− η2ct(x)2 (29)

where (27) follows by upper bounding the Taylor series approximation for ez for z ≥ −1; and (29)
follows by the fact that ft(x) ∈ [0, 1]. Combining the expressions, we can simplify as follows.

(25) ≥ −ηct(x)y(x) + ηct(x)ft(x)− η2ct(x)2 (30)

= ηct(x) · (ft(x)− y(x))− η2ct(x)2 (31)

Thus, we can express the change in `x(ft; y) − `x(ft+1; y) after an update based on ct(x) in terms
of the inner product between ct and f − y. In this sense, we can express the local progress during
the update at time t in terms of some global progress in the objective.

When we update x ∈ X simultaneously according to c, we can express the change in expected
cross-entropy as follows.

`D(ft; y)− `D(ft+1; y) (32)

≥ η · E
x∼X

[ct(x) · (ft(x)− y(x))]− η2 · E
x∼X

[ct(x)2] (33)

≥ η〈ct, ft − y〉 − η2 (34)

≥ η(α/2− η) (35)
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where (35) follows from the fact that we assumed that our estimates of the statistical queries were
α/4-accurate and that we update based on ct if 〈ct, f−y〉 is at least 3α/4 according to our estimates.
Thus, taking η = α/4, then we see the change in expected cross-entropy over X is at least α2/16,
which shows the lemma.

C Linear convergence from gradient learning

Here we show that given an auditing algorithm A that learns the cross-entropy gradients accurately,
Algorithm 1 converges linearly. Consider the following auditor A`. We assume the norms and inner
products are estimated accurately using D ∼ Dm.

Algorithm 2: A` � smooth cross-entropy auditor
Given:

• hypothesis f : X → [0, 1];

• class of functions C ⊆ [−B,B]X ; accuracy parameter α > 0;

• smoothing parameter L;

• validation data D ∼ Dm;

Let:

• ε← 〈∇f `,f−y〉2

‖∇`‖2‖f−y‖2 // approx factor based on angle between grad and f-y

• H ←
{
h ∈ C : ‖h‖2 ≤ L · `(f ; y)

}
// audit over l2-bounded version of C

• hf ← argminh∈H ‖h−∇f `(f ; y)‖2

if `(f ; y) ≤ α or ‖hf −∇f `(f ; y)‖2 > ε
2 · ‖∇f `(f ; y)‖2:

return h(x) = 0 // cross-entropy small or hf bad approx to deriv

else:
return hf

We claim that this auditor learns the partial derivative function in a way that guarantees linear
convergence.

Proposition (Restatement of Proposition4). Let α,B,L > 0 and C ⊆ [−B,B]X . Suppose we run

Algorithm 1 on initial model f0 with auditor A` de�ned in Algorithm 2. Then, Algorithm 1 converges

in T = O (L · log(`D(f0; y)/α)) iterations.

Proof. Note that when A` returns h(x) = 0, then Algorithm 1 terminates. Thus, we will bound
the number of iterations until `D(f ; y) at most than α. For notational convenience, we denote
∇f `D(f ; y) as ∇f `.

By the de�nition of ε and the termination condition, we know that if A` returns hf (x) 6= 0 then
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hf satis�es the following inequality.

‖hf −∇f `‖2 ≤
1

2
·
〈∇f `, f − y〉2

‖f − y‖2
(36)

≤ 1

2
·
〈∇f `, f − y〉2

‖f − y‖2
+

1

16
‖∇f `‖2 (37)

=

∥∥∥∥〈∇f `, f − y〉‖f − y‖2
(f − y)−

∇f `
4

∥∥∥∥2

(38)

Using this inequality, we can bound the inner product between hf and f − y.

〈hf , f − y〉 (39)

= 〈∇f `, f − y〉+ 〈hf −∇f `, f − y〉 (40)

≥ 〈∇f `, f − y〉 −
∥∥∥∥〈∇f `, f − y〉‖f − y‖2

(f − y)−
∇f `

4

∥∥∥∥ · ‖f − y‖ (41)

≥ 〈∇f `, f − y〉 − 〈∇f `, f − y〉 ·
‖f − y‖2

‖f − y‖2
+

1

4
· 〈∇f `, f − y〉 (42)

≥ 1

4
· `D(f ; y) (43)

where (42) follows from the fact that ∇f ` and f − y are positively correlated; and (43) follows by
convexity of `D.

Thus, using the analysis of the multiplicative weights update from Section B, we can see that
the progress in cross-entropy can be bounded as

`D(ft; y)− `D(ft+1; y) ≥ η

4
· `D(ft; y)− η2 · ‖hft(x)‖2 (44)

≥ (
η

4
− η2L) · `D(ft; y) (45)

where (45) follows from the fact that hf is drawn from a class with Euclidean norm bounded as
‖hf‖2 ≤ L · `D(f ; y).

Rearranging and taking η = 1
8L , we arrive at the following inequality that implies linear conver-

gence.

`D(ft+1; y) ≤ (1− η

4
+ η2L)`D(ft; y) (46)

≤ e−1/64L`D(ft; y) (47)

Thus, after O (L · log(`D(f0; y)/α)), then the cross-entropy will drop below α.
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