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Abstract

Introduced as a notion of algorithmic fairness, multicalibration has proved to be a powerful
and versatile concept with implications far beyond its original intent. This stringent notion—
that predictions be well-calibrated across a rich class of intersecting subpopulations—provides
its strong guarantees at a cost: the computational and sample complexity of learning multicali-
brated predictors are high, and grow exponentially with the number of class labels. In contrast,
the relaxed notion of multiaccuracy can be achieved more efficiently, yet many of the most de-
sirable properties of multicalibration cannot be guaranteed assuming multiaccuracy alone. This
tension raises a key question: Can we learn predictors with multicalibration-style guarantees at
a cost commensurate with multiaccuracy?

In this work, we define and initiate the study of Low-Degree Multicalibration. Low-Degree
Multicalibration defines a hierarchy of increasingly-powerful multi-group fairness notions that
spans multiaccuracy and the original formulation of multicalibration at the extremes. Our main
technical contribution demonstrates that key properties of multicalibration, related to fairness
and accuracy, actually manifest as low-degree properties. Importantly, we show that low-degree
multicalibration can be significantly more efficient than full multicalibration. In the multi-class
setting, the sample complexity to achieve low-degree multicalibration improves exponentially (in
the number of classes) over full multicalibration. Our work presents compelling evidence that
low-degree multicalibration represents a sweet spot, pairing computational and sample efficiency
with strong fairness and accuracy guarantees.
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1 Introduction

Machine learning models are increasingly used to aid decision-making in professional, personal,
medical, and legal spheres. This ubiquity has brought increased concern about whether these mod-
els make fair predictions, especially on underrepresented subpopulations. Typically in supervised
learning, models are trained to minimize the expected loss over the entire population, and can be less
accurate on such subpopulations. A particular fairness concern is that predictive models may com-
mit algorithmic stereotyping, where every member of a subpopulation receives similar predictions,
despite internal diversity within the subpopulation. Such shortcomings of the standard supervised
learning framework have been documented extensively within the research community and in the
popular press. In response, a growing area of research investigates multi-group fairness notions,
that require predictions to perform well not simply overall, but even when restricting attention to
structured subgroups [HKRR18,KNRW18,KRR18,KGZ19,SCM20,BL20,DKR+21,JLP+21,RY21,
TH21,GJN+21,DKR+22].

Central within the study of multi-group fairness is the notion of multicalibration. Calibration
is a classic notion from the forecasting literature [Daw82] that was introduced to the literature
on fairness in prediction tasks by [KMR17]. For a binary prediction task, calibration requires
that amongst the individuals which receive prediction f(x) = v, the true expectation is v. Defined
by [HKRR18], multicalibration strengthens the classic notion, requiring a predictor to be calibrated
simultaneously across a large, possibly-overlapping collection of subpopulations. We model the
collection by a hypothesis class C ⊆ {c : X → {0, 1}} and say that a predictor f is mutlicalibrated
over C if, for all predicted values v ∈ [0, 1], and for all c ∈ C

E [ c(x) · (y − v) | f(x) = v ] ≈ 0.

Intuitively, an expressive class C will contain subpopulations that go beyond “protected groups”
(typically defined marginally in terms of a single attribute). In this way, while calibration provides
only marginal guarantees, multicalibration requires predictors to capture the variation within sub-
populations, to give confident (but not overconfident) predictions, thus providing strong protections
against algorithmic stereotyping.

Beyond its origins as a notion of fairness, multicalibration has proved surprisingly versatile and
powerful in diverse contexts. The notion of multicalibration makes no mention of loss minimization,
yet the work of [GKR+22] shows that multicalibrated predictors implicitly obtain optimal loss,
simultaneously for all Lipschitz, convex losses. Specifically, given any (fixed) C-multicalibrated
predictor f , for every such loss `, the predictor f guarantees loss competitive with the hypothesis
c` ∈ C chosen to the minimize the loss over C (in fact, over linear combinations of hypotheses in
C). This property leads to an omniprediction guarantee, where one can learn a single predictor f ,
without knowledge of the choice of loss at the time of learning.

In another direction, [DKR+21] demonstrate that the multicalibration framework is equivalent to
a certain pseudorandomness condition, which they call outcome indistinguishability. Intuitively,
a predictor f is outcome indistinguishable to a family of distinguisher algorithms A if given a
sample (x,y) no distinguisher A ∈ A can tell whether y was sampled from Nature’s true condi-
tional distribution of y|x, or according to the predicted probability f(x). This indistinguishability
perspective has seen application in characterizing the feasibility of multi-group strengthenings of
agnostic PAC learnability [RY21]. Multicalibration has also been extended to diverse settings of un-
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certainty quantification for real-valued outcomes [JLP+21], importance weights [GRSW21], online
prediction [GJN+21], and adaptation under covariate shift [KKG+22].

It is perhaps not a surprise that the power of multicalibration comes at a cost—both in terms of
samples and computation. Computationally, [HKRR18] show that a weak agnostic learner for the
class C is necessary and sufficient to learn C-multicalibrated predictors. Using the weak learner,
they design a boosting-style algorithm that produces a multicalibrated predictor by combining
hypotheses c ∈ C using nontrivial Boolean logic.1 The number of calls to the weak learner and
the sample complexity are governed by an approximation parameter α which quantifies the devi-
ation from perfect multicalibration. The sample complexity depends inverse polynomially in the
parameter α, with fairly large exponent. This dependence becomes even worse when we generalize
multicalibration to the multi-class setting with l > 2 class labels, where a single prediction is a vec-
tor of probabilities in l dimensions. Reasoning about expectations conditioned on the predictions
leads to complexity that scales as 1/αΩ(`), exponential in the number of class labels. Consequently,
achieving multicalibration is practically infeasible with more than a few classes.

In the work defining multicalibration, [HKRR18] also introduced a weaker fairness notion known as
multiaccuracy, which only requires that f(x) and y have similar expectations over subpopulations
in C, without conditioning on the predicted values.

E [ c(x) · (y − f(x)) ] ≈ 0

The simpler notion of multiaccuracy is comparatively easier to obtain, quantitatively and qualita-
tively. One can view C-multiaccuracy as a first-order optimality condition on λ ∈ R|C| for predictors
of the form f(x) =

∑
c∈C λc · c(x). Thus, while multiaccuracy also requires a weak learning oracle,

one can learn a multiaccurate predictor simply by minimizing the squared or logistic loss over linear
combinations of c ∈ C (without specialized boolean logic), using techniques like coordinate ascent
or gradient boosting. Further, standard concentration inequalities demonstrate that the sample
complexity to obtain multiaccuracy scales as α−2, even as the number of classes l grows.

In exchange for its efficiency, multiaccuracy is known to provide considerably weaker guarantees
than multicalibration. Many of the most desirable fairness and accuracy properties that can be
derived from multicalibration cannot be derived from multiaccuracy alone, including its guarantees
for loss minimization [HKRR18, RY21, GKR+22], the fairness properties of the ranking induced
by predictions [DKR+19], and multi-group confidence intervals [JLP+21]. This tension—between
guarantees and efficiency—brings us to the motivating question behind our work:

Are there notions that retain important properties of multicalibration,
but are computable much more efficiently (comparable to multiaccuracy)?

2 Overview of Contributions

We introduce a hierarchy of multicalibration notions that enable a tradeoff between the strength
of multi-group guarantees and the complexity required to learn the predictor. At the extremes,

1In fact, multicalibration has been shown to be tightly connected to the boosting-by-branching-programs frame-
work of [MM02,KMV08]. See [GKR+22] for a discussion.
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our hierarchy recovers the existing notions of multiaccuracy and multicalibration, but our interest
is in the intermediate notions. We establish guarantees about these notions, and show that many
desirable properties of multicalibration kick in at low levels of the hierarchy. In doing so, we
gain new insights into the power of (full) multicalibration. We complement these with algorithmic
results showing that computing predictors in the low levels of the hierarchy can be significantly
more efficient than the original formulation of multicalibration. Our three main contributions can
be summarized as follows:

(1) Our primary conceptual contribution is the definition of low-degree multicalibration and its
associated hierarchy. For k ∈ N, the kth level of the hierarchy defines a notion of multical-
ibration that constrains the first k moments of the predictor, conditioned on subpopulations
in C. The lowest level of the hierarchy corresponds to multiaccuracy. As we go higher, the
multicalibration constraints become more stringent. In the limit, we approach a notion we call
smooth multicalibration; a relaxation of the original formulation of [HKRR18], which we refer
to as full multicalibration.

(2) With the hierarchy in place, we study the fairness and accuracy properties obtainable via low-
degree multicalibration. Our main contribution is to provide a rich toolbox for reasoning about
multicalibrated predictions f(x), by comparing to the moments of the Bayes optimal predictions
f∗(x) = E [ y | x = x ]. Our key technical result establishes novel moment sandwiching bounds
for multicalibrated predictors. For instance, in lieu of kth moment matching (which would
give E[f(x)k] ≈ E[f∗(x)k], but is impossible to achieve for k > 1), we show that degree-k
multicalibration implies that E[f(x)k] ≤ E[f∗(x)k], even when conditioned on subpopulations
defined by c ∈ C. Using these tools, we can relate the confusion rates (generalized false error
rates) of any degree-2 multicalibrated f to those of the optimal predictor. Our results reveal
wide gaps even between multiaccuracy and degree-2 multicalibration; predictors satisfying the
latter cannot exhibit overconfidence over subpopulations in C, unlike multiaccurate predictors.

(3) Finally, we show that low-degree multicalibration can provide significant savings over full mul-
ticalibration. In particular, we show that for l-class prediction tasks, the sample complexity to
obtain low-degree multicalibration is polynomial in l, whereas obtaining the same guarantees
using full multicalibration requires sample complexity exponential in l. Even in the case of
binary prediction, low-degree multicalibration obtains improvements over full multicalibration,
by polynomial factors in the approximation parameter 1/α. These bounds suggest that the
low-degree notions may be practically-realizable, providing strong guarantees in settings where
the existing notions of multicalibration cannot be achieved.

In all, we develop a more refined picture of multiaccuracy, multicalibration, and the guarantees that
lie in between. Our results establish that—in addition to the calibration class C and approximation
parameter α—the degree of multicalibration is a meaningful “knob” that can be tuned to the needs
and constraints of a given setting. Low-degree multicalibration provides a new perspective and set
of techniques that we anticipate will be useful to practitioners and theoreticians alike.

Organization of manuscript. The remainder of the manuscript is structured as follows.

First, we continue this section with a high-level overview of our contributions, focusing on the
binary prediction setting. In Section 2.1, we begin with an intuitive explanation of how one might
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discover low-degree multicalibration. Then, in Section 2.2, we present the definitions of the new
variants of multicalibration and their relation to one another; in Section 2.3, we present the novel
moment sandwiching bounds for multicalibrated predictors; and in Section 2.4, we present the
bounds on the complexity of achieving each variant of multicalibration. We conclude the overview
with Section 2.5, where we provide further discussion of low-degree multicalibration and how it
relates to other works on multi-group fairness, agnostic learning, and calibration.

The technical portions of the manuscript follow the structure of the overview. In Section 3, we
give formal definitions of the notions within the low-degree multicalibration hierarchy, handling
the multi-class setting. Then, we establish Proposition 1 and other the relationships and robust-
ness properties of notions in the hierarchy. In Section 4, we establish our main technical result,
Theorem 2, along with other key fairness properties of low-degree multicalibration. In Section 5,
we describe Algorithm 1 and analyze the sample complexity as in Theorem 3. In Section 6, we
highlight a proof-of-concept experimental evaluation of low-degree multicalibration.

2.1 Towards Multi-Group Moment Matching

In this motivating vignette, we focus on the setting of binary prediction: we are given samples
from a distribution D on X × Y, for domain X and label space Y = {0, 1}. We use f : X → [0, 1]
to denote our hypothesis, and use f∗ : X → [0, 1] to denote the Bayes optimal predictior, defined
as f∗(x) = E [ y | x = x ], the true expected outcome over D of y given x = x.2 Ideally, our
learned hypothesis f should be a close approximation to f∗. Every variant of multicalibration
is parameterized by a hypothesis class C ⊆ {c : X → {0, 1}}. We think of C as an expressive but
bounded class, where the functions c ∈ C have a simple representation; for instance, we may assume
that the VC-dimension of C is finite.

To begin, we describe the intuition for multiaccuracy and how one might strengthen it, without
appealing to full multicalibration. Towards the goal of approximating f∗, multiaccuracy imposes a
first-order condition of matching expectations over c ∈ C.

E [ c(x) · (y − f(x)) ] ≈ 0 =⇒ E [ c(x) · f∗(x) ] ≈ E [ c(x) · f(x) ]

Naturally, the next step might be to try and match second moments, and require that E[c(x) ·
f(x)2] ≈ E[c(x) · f∗(x)2]. This ask, however, is information-theoretically infeasible. In our setting,
we only get to see samples (x,y) ∼ D for discrete y ∼ Ber(f∗(x)) and do not have access to the
values f∗(x) themselves. Initially, in such a setting, it seems impossible to say anything meaningful
about higher-order moments of f∗(x).

Short of second-moment matching, degree-2 multicalibration imposes the following constraint for
all c ∈ C.

E [ c(x) · f(x)(y − f(x)) ] ≈ 0 =⇒ E [ c(x) · f(x)f∗(x) ] ≈ E
[
c(x) · f(x)2

]
As a sanity check, observe that this is a valid constraint, since f = f∗ does satisfy it. As in multiac-
curacy, the condition can be audited using only access to samples (x,y) and the predictions f(x),
without knowledge of f∗(x). But what do we gain from adding this constraint? As we will see, this

2We use boldface for random variables. All expectations are taken over D.
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“degree-2” constraint turns out to be surprisingly powerful. Short of second moment matching, we
prove that the degree-2 condition (approximately) implies the following second moment inequality:

E
[
c(x) · f(x)2

]
≤ E

[
c(x) · f∗(x)2

]
It is unclear that this inequality by itself can be audited from samples alone, yet it is implied by
the conditions of degree-2 multicalibration, which are indeed auditable. Intuitively, the inequality
says that—unlike multiaccuracy—this degree-2 variant of multicalibration prevents overconfident
predictions conditioned on c ∈ C. It gives us an avenue to reason about f(x) by comparing it to
f∗(x), using its first two moments.

The multicalibration hierarchy arises by lifting this intuition to higher degree polynomials: at the
kth level, we obtain guarantees on the kth moments. Indeed, we show that a number of mean-
ingful guarantees that hold for low-degree multicalibration, but not for multiaccuracy. Our results
are in direct analogy with classic results in pseudorandomness, where k-wise—even pairwise—
independence is known to be surprisingly powerful, in contrast to 1-wise independence [LW06].
As with pseudorandomness, we are able to prove new guarantees for multicalbration in its full
generality, by showing that they hold even for low-degree multicalibration.

2.2 A Hierarchy of Multicalibration

With the motivation in place, we are ready to define the multicalibration hierarchy. In this overview,
we present the notions focusing on binary predictors. In Section 3, we extend these definitions to
the multi-class setting where outcomes are categorical random variables with l ≥ 2 labels. As
with previous notions, our variants of multicalibration are parametrized by a hypothesis class C
and an approximation parameter α > 0. A new ingredient of our definitions will be a family
W ⊆ {w : [0, 1]→ [0, 1]} of weight functions that we will compose with the predictions of our
model, which gives rise to a generic weighted version of multicalibration.

Definition. Given a hypothesis class C and a weight class W, we say that the predictor f : X →
[0, 1] is (C,W, α)-multicalibrated if for every c ∈ C and w ∈ W it holds that∣∣∣∣ED [ c(x) · w(f(x))(y − f(x)) ]

∣∣∣∣ ≤ α. (1)

The primary conceptual contribution of this work is to identify choices of weight classes W that
give rise to novel meaningful notions of multicalibration. We consider four notions, which fixing a
hypothesis class C, give increasingly stronger guarantees.

(1) Multiaccuracy. Taking W = {1} to consist of only the constant function w(z) = 1 for all z,
we recover multiaccuracy.3 Let MA(α) denote the set of (C, α)-multiaccurate predictors.

(2) Low-degree multicalibration. We define a hierarchy of variants of low-degree multicalibra-
tion, by takingW to be families of low-degree polynomials. Formally, degree-k multicalibration
uses weight functions defined by sparse degree-(k − 1) polynomials. We adopt this convention
because using degree-(k− 1) polynomials as weight functions allow us to reason about the kth

3We adopt the formulation of multiaccuracy, initially defined in [KGZ19].
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moments of our predictions. In the case of binary prediction, it suffices to takeWk = {tj}k−1
j=0 to

be the monomial basis. Let MCk(α) denote the set of (C, α)-degree-k multicalibrated predictors.

(3) Smooth multicalibration. Beyond the hierarchy, we consider multicalibration using the
family all 1-Lipshcitz functions as our weight class. We refer to the resulting notion as (C, α)-
smooth multicalibration. Smooth multicalibration directly extends the notion of smooth cal-
ibration [KF08, FH18], introduced to address issues of robustness in defining calibration. Let
MCs(α) denote the set of α-smooth multicalibrated predictors.

(4) Full multicalibration. Instead of explicitly conditioning on the predicted values, we define
full multicalibration using indicator functions on the prediction intervals as our weight class. In
binary prediction,4 we define the δ-interval basis to be Iδ = {1[(j−1)δ,jδ) : j ∈ d1/δe} where 1[a,b)

indicates membership in the interval [a, b). We refer to (C, Iδ, α)-multicalibration as (C, α, δ)-
full multicalibration to distinguish it from smooth multicalibration, and use MCf

δ(α) to denote
the set of predictors satisfying it.

With the variants in place, our first results establish the relationship between the multicalibration
notions for a fixed class C.

Proposition 1. Fix a hypothesis class C and α ≥ 0. By construction, multiaccuracy and degree-1
multicalibration are equivalent. For every k ≥ 1, increasing the degree leads to a more restrictive
notion. In other words, the hierarchy satisfies the following inclusions.

MA(α) = MC1(α) ⊇ MC2(α) · · · ⊇ MCk(α)

Further, low-degree multicalibration is a relaxation of smooth multicalibration, which is a relaxation
of full multicalibration. That is, for any k ≥ 1 and α ≥ δ ≥ 0,

MCk(kα) ⊇ MCs(α) ⊇ MCf
δ(αδ − δ2)

[KF08, FH18] were motivated to introduce smooth calibration in order to address the lack of
robustness in the classical notion of calibration. We show that smooth multicalibration has similar
robustness guarantees; for instance, predictors that are close to smoothly multicalibrated functions
are also smoothly multicalibrated (with modest degradation in the approximation parameter). We
also show robustness to small (in `∞) perturbations to the weight function. This property is
important algorithmically, since it allows us to infer smooth multicalibration (defined over all 1-
Lipshcitz weight functions) from a small basis of functions that can uniformly approximate every
1-Lipschitz function in `∞.

2.3 Fairness from Low-Degree Multicalibration

We now return to our motivating question and ask: does the hierarchy give strong fairness guar-
antees at low levels? Our main technical contribution is a toolbox for reasoning about properties
of predictors at low levels of the hierarchy, using their first few moments. Using this, we establish
that the gurarantees of multicalibration for important measures of fairness, like the false error rates
indeed manifest at low levels of the hierarchy. The hammer in this toolbox is the following moment
sandwiching bound stated below for binary predictors with α = 0.

4For multi-class prediction, we use an l-dimensional analog of the interval basis.
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Theorem 2 (Informal). Suppose that f : X → [0, 1] is a (C, 0)-degree-k multicalibrated predictor.
Then, for every degree d ≤ k and every c ∈ C,

E[c(x)f∗(x)d] ≥
(a)

E[c(x)f(x)d] =
(b)

E[c(x)f(x)d−1f∗(x)] ≥
(c)

E[c(x)f(x)d−1] ·E[c(x)f∗(x)]

Our bounds are loosely inspired by the sandwiching bounds for importance weights from multi-
calibrated partitions proved in [GRSW21]. While we prove these bounds assuming only degree-k
multicalibration, no analogous statements were known to hold, even for the original (stronger)
notion of multicalibration.

The utility of this sandwiching bound can be seen by thinking about each inequality separately.
First, note that (b) follows immediately by the definition of degree-k multicalibration. We dig into
(a) and (c) separately. The upper bound in (a) says that first k moments of the multicalibrated
predictor f are dominated by those of the ground truth predictor f∗, conditioned on any c ∈ C.
Given that the exact kth moment of f∗ is inaccessible through samples, this inequality is useful in
lieu of exact moment matching.

Specifically, while we can’t perfectly match moments for d ≥ 2, this inequality implies that the
predictions of f cannot be overconfident. For example, for a degree-2 multicalibrated f , the in-
equality implies that conditioned on any c ∈ C, the variance of f is no more than the variance
of f∗, and their expectations match. In other words, any variation in the predictions of f over
c ∈ C can be attributed to true variation in the distribution of f∗(x)|c(x) = 1 . Concretely, if all
points with c(x) = 1 were identical under f∗, then f cannot treat them differently! This stands
in stark constrast with multiaccuracy, where many of the “failure modes” of multiaccuracy exploit
this weakness [DKR+19,DKR+21].

The lower bound in (c) can be interpreted as saying that fk−1(x) is positively correlated with the
label y, by expressing the difference in expectations as the covariance between fk−1(x) and y.

Cov[f(x)k−1,y] = E[f(x)k−1f∗(x)]−E[f(x)k−1] E[f∗(x)] ≥ 0

In this light, the bounds from degree-2 multicalibration can be summarized succinctly: the covari-
ance between f(x) and the ground truth labels y within any c ∈ C is always positive, but never
more than the covariance between the optimal f∗(x) and y in c. Again, neither claim necessarily
holds under multiaccuracy.

As a concrete application, we show how sandwiching bounds allow us to reason about the true and
false error rates of f , which have been intensively studied in algorithmic fairness [HPS+16,KMR17].
In particular, the bounds extend even when we condition on the value of the true label. For instance,
conditioning on y = 1, we can bound the generalized true positive rate of f compared to that of
f∗, even conditioned on subpopulations.5

E [ c(x)f(x) ] ≤ E [ c(x)f(x) | y = 1 ] ≤ E [ c(x)f∗(x) | y = 1 ]

This bound crystallizes the inutition that multicalibrated predictors prevent overconfidence. Even
though f has positive correlation with y over c, the predictions don’t assign excessively high
probabilities to points which are more likely to be 1. Such overconfidence is a well-known issue in

5An analogous statement can be made about the true negative rates.
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large neural networks [GPSW17]. Whereas full multicalibration addresses overconfidence at a fine-
grained level, conditioning on every value of the prediction, even degree-2 multicalibration gives a
qualitatively similar guarantee.

2.4 The Pragmatic Appeal of Low-Degree Multicalibration

We establish the feasibility of low-degree and smooth multicalibration by giving an efficient learning
algorithm. More generally, following the boosting-style approach of [HKRR18], we show that a
weak agnostic learner for C [BLM01, KK09] suffices to obtain (C,W, α)-multicalibration for any
finite weight class W. This procedure, described as Algorithm 1, makes a number of calls to the
weak learner bounded polynomially in |W| and 1/α. The algorithm immediately demonstrates the
feasibility of degree-k multicalibration for any fixed k ∈ N. For smooth multicalibration, where
the definition involves an infinite family W, our algorithm uses constructions of finite bases that
uniformly approximate the family of 1-Lipschitz functions.

We now delve further into the sample efficiency of each notion. In principle, the relaxed notion
of low-degree multicalibration is implied by smooth or full multicalibration. However, there is a
significant degradation in the accuracy parameter α, which translates to a blowup in computational
and sample complexity. Concretely, suppose we train a predictor f to satisfy (C, α0, δ)-full multi-
calibration; in order to guarantee that f satisfies (C, α)-degree-k multicalibration, we need to take
α0 � α much smaller than if we train for degree-k multicalibration directly. For a fair comparison,
we compare the sample complexity needed by each variant to obtain the same guarantee: (C, α)
degree-k multicalibration. We make the assumption that C has a sample-optimal weak agnostic
learner in terms of the dependence on α0.6 We state the theorem informally, using shorthand
m ∼ B to denote m ≤ Õ(B) (see Section 5, Theorem 5.5 for a formal statement).

Theorem 3 (Informal). For a C be a hypothesis class, let VC(C) denote its VC-dimension. For any
α > 0 and k ∈ N, the sample complexity to obtain a predictor f ∈ MCk(α) (with constant failure
probability) is bounded as mk using degree-k multicalibration, ms using smooth multicalibration,
and mi using full multicalibration, for mk,ms,mi bounded as follows.

mk ∼
l · (VC(C) + k)

α4
ms ∼

k4l · VC(C)
α4

+
kl+3ll

αl+3
mi ∼

(2kl)4(l+1) · VC(C)
α4(l+1)

Note the dependence is poly(l, 1/α) for low-degree multicalibration, but Ω(1/α)bl for smooth and
full multicalibration, with a factor 4 difference in the constant b between them. This suggests that
in the multi-class setting, low-degree multicalibration can lead to exponential savings, as compared
to the stronger notions. Even under tighter analyses tailored to the binary prediction setting, we
obtain polynomial savings in 1/α from low-degree multicalibration.

Given that many desirable properties of multicalibration start to take effect at small degrees (even
degree-2), these results suggest a pragmatic win for low-degree multicalibration. In the realistic
setting where a learner is given a fixed data set of sample, the learner may achieve stronger fairness
and accuracy properties by training for low-degree multicalibration directly, as compared to either
multiaccuracy or full multicalibration.

6Suboptimal dependence of the learner on α0 will increase the gaps in sample complexity between low-degree and
the stronger variants of multicalibration.
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While these sample complexities give asymptotic upper bounds, in Section 6, we report on a
proof-of-concept experiment that explore the findings in a semi-synthetic setup. By using a semi-
synthetic setup, we can access the ground-truth f∗ values, thereby evaluating quantities like the
gap in moments between f∗ and the learned predictors. We show that, even in a standard binary
prediction setting, the sample efficiency gap is not a merely asymptotic phenomenon, but is realized
in a setting with a few thousand samples from the data distribution.

2.5 Discussion and Related Works

Low-degree multicalibration adds to a growing list of works that study multicalibration and related
notions. On a conceptual level, our work is closely related to the idea of outcome indistinguisha-
bility (OI), introduced by [DKR+21,DKR+22]. OI is not a single notion, but rather an extensible
framework for reasoning about the guarantees of predictions in the language of computational in-
distinguishability. In particular, [DKR+21] also define a hierarchy of notions, based on the way
distinguisher algorithms may access the predictions f(x). The first two levels of their hierarchy
correspond tightly to multiaccuracy and multicalibration; intuitively, multiaccuracy distinguishers
do not get to observe f(x), where as multicalibration distinguishers may depend on f(x) arbi-
trarily. Low-degree multicalibration refines the idea of access to f(x), where the corresponding
distinguishers can functionally depend on f(x) in restricted ways.

On a technical level, our sandwiching bounds, which shed light on how multicalibrated predictors
control for uncertainty relative to the uncertainty of the optimal predictions, are actually inspired
by work on unsupervised distribution learning of [GRSW21]. Their work establishes analogous
moment sandwiching bounds for density estimates given by so-called multicalibrated partitions.
Closely related—but not to be confused with low-degree multicalibration—is the idea of moment
multicalibration due to [JLP+21]. Moment multicalibration obtains guarantees of uncertainty quan-
tification in the setting of real-valued outcomes, by (full) multicalibrating on higher moments of the
outcomes. Importantly, in contrast to our setting, the relevant moments of real-valued outcomes can
be estimated to arbitrary precision with enough samples. Using these estimates, [JLP+21] derive
Chebyshev-style confidence intervals across subpopulations for their multicalibrated predictions.

Very recently, multicalibration and OI have played a key technical role in obtaining strong guar-
antees for omniprediction [GKR+22] and multi-group agnostic learning [RY21]. Both results are
known to follow from multicalibration, but not from multiaccuracy. In light of our work, it would
be interesting to revisit these results to see whether the proofs use the full power of full multical-
ibration or whether we can recover the guarantees using low-degree techniques. More broadly, we
speculate that the low-degree multicalibration hierarchy suggests a certain proof system—akin to
the convex programming sum-of-squares hierarchy [BS14]—in which properties derived from low-
degree moments of f∗ could be derived for low-degree multicalibrated predictors for free. Exploring
this intuition further and how it may connect with OI is a fascinating direction for future research.

Multicalibration was initially developed as a strengthening of calibration to provide meaning-
ful fairness guarantees, not just on the basis of marginally-defined groups, but intersectionally
[HKRR18,KGZ19]. The risk of inequity due to miscalibrated predictions has been well-documented
[KMR16,PRW+17,GKR19], especially in the setting of medical risk prediction [OPVM19,BYR+21].
Despite its origins as a complexity-theoretic fairness notion, mutlicalibration has already seen clin-
ical application to address such equity issues [BYR+21] and to develop a COVID-19 risk predictor
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in the early days of the pandemic [BRA+20]. While individual-level calibration is generally impos-
sible [BCRT19], recent works have investigated settings where guarantees at an individual-level are
possible, through hedging [ZE21] and randomization [ZME20].

Calibration has a rich history in the forecasting literature, as a criterion for uncertainty quantifi-
cation [Bri50,Daw84,FV98,KF08,FH18]. For multi-class prediction tasks, the strongest definition
is known as distribution calibration [KF15,SDKF19], and is known to require exponentially many
samples in the number of labels. Consequently, practitioners commonly use very weak notions
such as confidence calibration [P+99,GPSW17], class-wise calibration [KPNK+19]. To address this
tension, [ZKS+21] recently proposed a notion of decision calibration, which ensures that the predic-
tions are calibrated with respect to downstream decisions, avoiding the infeasibility of calibrating to
the predictions, but strengthening the marginal guarantees of confidence and class-wise calibration.
Naturally, one could extend the definition of decision calibration to decision multicalibration, with
similar motivations to low-degree multicalibration but incomparable guarantees.

3 Defining the Multicalibration Hierarchy

Notation. In a generic supervised learning problem, we are given a distribution D on X × Y,
where X is the domain and Y is the set of labels. We consider the multi-class setting where Y = [l]
for l ≥ 2. We represent each outcome i ∈ [l] by the “one-hot” encoding ei ∈ Rl. We denote
sampling from D by (x,y) ∼ D where x ∈ X and y ∈ Rl, so that y` is the indicator for label
equalling ` ∈ [l]. Let ∆l denote the space of probability distributions over [l]. We associate every
distribution p ∈ ∆l with a vector in p ∈ Rl where p` = Pry∼p[y = e`]. An l-class predictor is a
function f : X → ∆l which maps each point to a distribution over labels. Throughout, we use
f∗ : X → ∆l to denote the Bayes optimal predictor, defined as

f∗(x) = E [ y | x = x ]

where for each ` ∈ [l], f∗` (x) = Pr [ y` = 1 | x = x ]. In other words, f∗(x) governs the true
distribution over classes for a given individual x ∈ X . Some of our results will be stated for the
special case of binary prediction (l = 2), in which case, we let f : X → [0, 1], where f(x) estimates
of Pr [ y = 1 | x ].

3.1 Multicalibration with Weight Classes

We present a unified framework for defining variants of multicalibration that captures the original
notions, as defined by [HKRR18], but also naturally captures the novel notions of low-degree and
smooth multicalibration. We present all of the definitions in terms of l-class predictors, which
generalizes their original definitions for binary predictors.

Multicalibration is parameterized by a hypothesis class of functions C ⊆ {c : X → [0, 1]}. The
class C may be finite or infinite, but importantly, we think of C as having a simple representation.
Natural choice of C include linear/logistic hypotheses, decision forests of a fixed depth, or neural
networks of a fixed size and architecture. Departing from prior works, we additionally parameterize
multicalibration by a weight class W ⊆

{
w : ∆l → [0, 1]l

}
. The weight functions will be applied on

the predictions from f .

11



The classic calibration constraint requires that predictions be accurate in expectation, even after
conditioning on the predicted value. Intuitively, the class of weight functions serves as an analog
of “conditioning” on a prediction. Taking different choices of W will realize the original and novel
variants of multicalibration. Generically, we define multicalibration in terms of the calibration class
C, the weight class W, and an approximation parameter α ≥ 0.

Definition 3.1. Given a hypothesis class C ⊆ {X → [0, 1]} a weight class W ⊆
{

∆l → [0, 1]l
}

and
α ≥ 0, a predictor f : X → ∆l is (C,W, α)-multicalibrated if for every c ∈ C and w ∈ W∣∣∣∣ED [ c(x) ·

〈
w(f(x)),y − f(x)

〉 ]∣∣∣∣ ≤ α. (2)

With this general framework in place, we instantiate it with various choices of weight functions to
derive four notions of increasing strength.

Multiaccuracy. [HKRR18, KGZ19] The weakest notion, multiaccuracy, requires that predictions
be accurate in expectation on each c ∈ C. Specifically, an l-class predictor f : X → ∆l is (C, α)-
multiaccurate if for each ` ∈ [l], ∣∣∣∣ED [ c(x) · (y` − f(x)`) ]

∣∣∣∣ ≤ α. (3)

To instantiate (C, α)-multiaccuracy from (C,W, α)-multicalibration, we can take W = {w`}`∈[l]

where w`(p) = e` for all p ∈ ∆l. In words, w` is constantly the `th standard basis vector. In the
case where f : X → [0, 1] is a binary predictor, we can simply take W = {w0} to contain the
constant function w0(p) = 1 for all p ∈ [0, 1]. We use MA(α) to denote the set of all predictors that
satisfy Equation (3).

MA(α) = {f : X → ∆l satisfying (3)}

Low-degree multicalibration. Intuitively, multiaccuracy enforces a collection of linear (in f(x))
constraints based on C. In low-degree multicalibration, we strengthen these constraints by taking
the class of weight functions to be the family of low-degree polynomials. For instance, in the binary
prediction setting, degree-2 multicalibration enforces the following nonlinear constraint.∣∣∣∣ED [ c(x) · f(x) · (y − f(x)) ]

∣∣∣∣ ≤ α.
A degree-k polynomial is a function

q(z) =
∑

S∈[l]j : j≤k

qS ·
∏
i∈S

zi

where S goes over all multisets of elements from [l], of size at most k. Pk is the family of all
degree-k polynomials that satisfy the following two conditions

q(z) ∈ [0, 1] ∀z ∈ ∆l, (4)∑
S∈[l]j : j≤k

|qS | ≤ 1. (5)
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We refer to (4) as boundedness and (5) as sparsity. For k ≥ 1, we define the weight class Wk as all
functions where each coordinate belongs to Pk−1.

Wk =
{
w : ∆l → [0, 1]l such that wi ∈ Pk−1 ∀i ∈ [l]

}
Note that we define the degree-k weight class in terms of degree-(k−1) polynomials. We adopt this
convention because, as we will see, using degree-(k − 1) polynomials allows us to reason about the
kth moments of the predictor. With this class in place, we can define degree-k multicalibration.

Definition 3.2. For k ≥ 1, a predictor f : X → ∆l is (C, α)-degree-k multicalibrated if it is
(C,Wk, α)-multicalibrated.

Let MCk(α) be the set of degree-k-multicalibrated predictors with approximation parameter α.

Proposition 3.3. For any calibration class C and approximation parameter α, multiaccuracy and
degree-1-multicalibration are identical, hence

MA = MC1(α),

and for every k ≥ 2, degree-k-multicalibration implies degree-(k − 1)-multicalibration, hence

MCk−1(α) ⊇ MCk(α).

In other words, low-degree multicalibration is a strengthening of multiaccuacy, and becomes a
more restrictive notion as we increase the degree k. The proposition follows immediately by the
construction of Pk and the fact that Pk−1 ⊆ Pk.

Smooth multicalibration. As we increase k, intuitively, low-degree multicalibration will be-
gin to approximate multicalibration with arbitrary, smooth weight functions. This motivates
our definition of smooth multicalibration using Lipschitz functions. We consider weight functions
w : ∆l → [0, 1]l that are `1 → `∞ Lipschitz; that is, for all z, z′ ∈ ∆l∥∥w(z)− w(z′)

∥∥
∞ ≤

∥∥z − z′∥∥
1
. (6)

We consider the class L1→∞ of all such Lipschitz functions.

L1→∞ =
{
w : ∆l → [0, 1]l satisfying (6)

}
Definition 3.4. A predictor f : X → ∆l is (C, α)-smoothly multicalibrated if it is (C,L1→∞, α)-
multicalibrated.

While we define smooth multicalibration in terms of 1-Lipschitz weight functions, the property
naturally extends to any weight function with bounded Lipschitz constant. Denote rL1→∞ as the
set of weight functions w : ∆l → [0, 1]l, where for all z, z′ ∈ ∆l, ‖w(z)− w(z′)‖∞ ≤ r · ‖z − z′‖1.

Proposition 3.5. For any calibration class C, approximation parameter α, and constant r > 1, if
f : X → ∆l is (C, α)-smoothly multicalibrated, then for any w ∈ rL1→∞,∣∣∣∣ED [ c(x) · w(f(x)) · (y − f(x)) ]

∣∣∣∣ ≤ r · α.
This proposition is an immediate consequence of the smooth multicalibration guarantee and lin-
earity of expectation.
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Full Multicalibration. [HKRR18] The strongest variant of multicalibration corresponds to the
classic notion of calibration, where the expectation is taken conditional on the predicted value. We
present our generalization to the multi-class setting.

For a measurable set S ⊆ ∆l, let 1S be the indicator function of the set; that is, for any z ∈ ∆l,

1S(z) =

{
1 z ∈ S
0 z 6∈ S

Let Π be a partition of ∆l and denote by IΠ = {1P : P ∈ Π}. For binary predictors, we focus on
the interval basis. For δ > 0, we define a partition Πδ of the interval [0, 1] to be

Πδ =
{

[(j − 1)δ, jδ) for j ∈ {1, . . . , d1/δe}
}
.

We use Iδ = IΠδ to denote the basis of indicator functions on each δ-interval. Taking Iδ as our
weight class in the binary setting, (C, Iδ, α)-multicalibration gives us the notion we call (C, α, δ)-full
multicalibration, which recovers the original notion of multicalibration, as defined by [HKRR18].7

For l > 2, we define the partition Πl
δ of the interval [0, 1]l to be the l-wise Cartesian product of

Πδ, whose elements are products of δ-width intervals in each dimension. We set I lδ = IΠlδ
and use

these as weight functions in full multicalibration. We will use the easy bound |Πδ
l | ≤ d1/δe

l, it also

holds that |Πδ
l | ≤ l d1/δe

l−1.

Definition 3.6. A predictor f : X → ∆l is (C, α, δ)-full multicalibrated if it is (C, I lδ, α)-multicalibrated.

3.2 Understanding the Hierarchy

Proposition 3.3 demonstrates that there is a hierarchy of notions of low-degree multicalibration.
Next, we show how low-degree multicalibration compares to smooth and full multicalibration. We
show how for any k ∈ N, for appropriately chosen approximation parameters, smooth multical-
ibration can implement degree-k multicalibration. Then, we show how full multicalibration can
implement smooth multicalibration.

Theorem 3.7. Fix a calibration class C and an approximation parameter α ≥ 0. For any k ≥ 2,
every (C, α)-smoothly multicalibrated predictor is (C, (k − 1)α)-degree-k multicalibrated.

MCs(α) ⊆ MCk((k − 1)α).

The theorem follows by bounding the `1 → `∞ Lipschitz constant of weight functions w ∈ Wk by
(k − 1) and then appealing to Proposition 3.5.

Lemma 3.8. For k ≥ 2, the degree-k weight functions are (k − 1)-Lipschitz; that is,

Wk ⊆ (k − 1)L1→∞.

7Technically, [HKRR18] work with a version of this notion that requires α error, defined relative to the probability
mass of c−1(1) and Pr[f(x) ∈ [(j − 1)δ, jδ)], whereas our notion gives an absolute approximation guarantee. By
adjusting the choice of α appropriately, it is easy to implement one notion as the other. We follow other works
adopting this absolute-error convention, to avoid many of the hassles of dealing with conditional expectations.
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Proof. To prove the claim, we need to show for any z, z′ ∈ ∆l,∥∥w(z)− w(z′)
∥∥
∞ ≤ (k − 1) ·

∥∥z − z′∥∥
1
.

Recall that each coordinate of w : ∆l → [0, 1]l can be expressed as an sparse degree-(k − 1)
polynomial wi ∈ Pk−1. To obtain this `1 → `∞ bound, we start with the max over class predictions
i ∈ [l], and bound this quantity in terms of the gradient of wi ∈ Pk−1.∥∥w(z)− w(z′)

∥∥
∞ ≤ max

i∈[l]

∣∣w(z)i − w(z′)i
∣∣

≤ max
i∈[l]

max
z∗∈∆l

〈∇wi(z∗), z − z′〉 (7)

≤ max
i∈[l]

max
z∗∈∆l

‖∇wi(z∗)‖∞ ·
∥∥z − z′∥∥

1

where (7) follows by the smoothness of wi and the mean value theorem, establishing that for some
z̄ ∈ ∆l, |w(z)i − w(z′)i| = 〈∇wi(z̄), z − z′〉. Thus, to bound ‖∇wi(z∗)‖∞ it suffices to bound the
gradient over any q ∈ Pk−1 on z∗ ∈ ∆l. Using the degree and sparsity bounds, a simple convexity
argument demonstrates that for any polynomial q ∈ Pk−1 and i ∈ [l],

max
z∈∆l

∂q

∂zi
(z) ≤ k − 1.

In all, we derive the bound∥∥w(z)− w(z′)
∥∥
∞ ≤ max

q∈Pk−1

max
z∗∈∆l

‖∇q(z∗)‖∞ ·
∥∥z − z′∥∥

1
≤ (k − 1) ·

∥∥z − z′∥∥
1
.

Next we show that full multicalibration with a sufficiently small error parameter leads to smooth
multicalibration.

Theorem 3.9. Fix a calibration class C and an approximation parameter α ≥ 0. Every (C, β, δ)-full
multicalibrated predictor is (C, α)-smooth multicalibrated for

α = β · d1/δel + lδ.

Hence for δ ≤ α/l and 1/δ ∈ N, we have MCf
δ(αδ

l − lδl+1) ⊆ MCs(α).

To prove Theorem 3.9, we first establish a few key properties of calibration defined by weight
functions that will be useful throughout our discussion. We start by showing that (C,W, α)-
multicalibration is robust to small perturbations of the weight functions in W.

Lemma 3.10. Let v, w : ∆l → [0, 1]l be weight functions such that

max
p∈∆l

‖v(p)− w(p)‖∞ ≤ η.

Then for any l-class predictor f : X → ∆l and any c : X → [0, 1],∣∣∣∣ED [ c(x)〈v(f(x)),y − f(x)〉 ]−E
D

[ c(x)〈w(f(x)),y − f(x)〉 ]

∣∣∣∣ ≤ 2η.
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Proof. Observe that for any x ∈ X and y ∈ Y,

|c(x) · (〈v(f(x))− w(f(x)), y − f(x)〉)| ≤ |c(x)| · ‖v(f(x))− w(f(x))‖∞ · ‖y − f(x)‖1
≤ 2η

since |c(x)| ≤ 1 and ‖y − f(x)‖1 ≤ 2. The claim follows by averaging over (x,y) ∼ D .

A key application of the robustness to weight functions is that one can infer smooth multicalibration—
a condition defined in terms of an infinite weight class—from multicalibration for a finite basis of
functions that uniformly approximates every function in L1→∞.

Definition 3.11. A collection of weight functions W = {wi}ki=1 is a (η, L) basis for L1→∞ if for
every u ∈ L1→∞, there exists v : ∆l → [0, 1]l such that ‖u− v‖∞ ≤ η where

v =
k∑
i=1

λiwi,
k∑
i=1

|λi| ≤ L.

Typically, both k and L will be functions of η. Our interest in `∞ approximations is motivated by
the following lemma.

Lemma 3.12. If W is (η, L) basis for L1→∞ and the predictor f is (C,W, β)-multicalibrated on C,
then f is (C, α)-smoothly multicalibrated where α = βL+ 2η.

Proof. For a weight function u ∈ L1, let v =
∑

i λiwi be the `∞ approximation guaranteed from
the definition of W. Then by linearity of expectation

E
D

[c(x)〈v(f(x), (y − f(x))〉] = E
D

[
c(x)

n∑
i=1

λi〈wi(f(x)),y − f(x)〉

]

=

n∑
i=1

λi E
D

[c(x)〈wi(f(x)),y − f(x)〉]

Taking absolute values and using the assumption that f is (β,W)-multicalibrated on C gives∣∣∣∣ED [c(x)v(f(x))(y − f(x))]

∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

λiβ

∣∣∣∣∣ ≤ βL
To complete the proof, we now use Lemma 3.10 to conclude that f is α = βL + 2η-smoothly
multicalibrated on C.

Proposition 3.13. For any l ≥ 2, the set I lδ is a (lδ/2, d1/δel) basis for L1→∞.

Proof. Recall that Πl
δ partitions [0, 1]l in a set of cubes (products of intervals). For each cube

π ∈ Πl
δ, we pick the center point zπ ∈ π, note that it satisfies ‖z − x‖1 ≤ δl/2 for every x ∈ π.

Given a weight function u ∈ L1, we approximate it by the function v where

v(x) =
∑
π∈Πlδ

u(zπ)1π(x)
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which assigns the value u(zπ) to every point x ∈ π. Since u ∈ L1→∞, for x ∈ π

‖v(x)− u(x)‖∞ = ‖u(x)− u(zπ)‖∞ ≤ ‖x− zπ‖1 ≤ lδ/2,∑
π∈Πlδ

|u(zπ)| ≤ |Πl
δ| ≤ d1/δe

l

hence the claim follows.

Combining Proposition 3.13 with Lemma 3.12 completes the proof of Theorem 3.9. In the setting
of binary labels, one gets the following strengthening, which improves the dependence on δ, by
observing that |Πδ| ≤ d1/δe.

Proposition 3.14. For binary classification, let δ < α and 1/δ ∈ N. If f is (C, αδ − δ2, δ)-full
multicalibrated then it is (C, α)-smoothly multicalibrated, hence MCf

δ(αδ − δ2) ⊆ MCs(α).

3.3 Robustness of Low-Degree and Smooth Multicalibration

While calibration is an intuitively desirable property of predictors, one frustration in reasoning
about calibrated and multicalibrated predictors is that full (multi)calibration is not robust to small
perturbations in predictions. For instance, consider a binary prediction setting where X = X0 ∪X1

is equally partitioned such that in one half all X0 have associated label y = 0, and in the other half
X1 all have y = 1. Then, the constant predictor f(x) = 1/2 is perfectly calibrated, but the ε-close
predictor f(x) = 1/2− ε for x ∈ X0 and f(x) = 1/2 + ε for x ∈ X1, is far from calibrated.

In this section, we show that—in stark contrast to full multicalibration—low-degree and smooth
multicalibration are both robust to small perturbations of the predictor.

Theorem 3.15. Let f, g : X → ∆l be l-class predictors such that for δ > 0,

E [ ‖f(x)− g(x)‖1 ] ≤ δ.

• If f is (C, α)-degree-k-multicalibrated, then g is (C, α+ (2k − 1)δ)-degree-k multicalibrated.

• If f is (C, α)-smoothly multicalibrated, then g is (C, α+ 3δ)-smoothly multicalibrated.

This theorem is a consequence of the following more general lemma which applies to any weight
family W with bounded `1 → `∞ Lipschitz constant.

Lemma 3.16. Let f, g : X → ∆l be l-class predictors such that for δ > 0,

E [ ‖f(x)− g(x)‖1 ] ≤ δ.

Let W ⊆ rL1→∞. If f is (C,W, α)-multicalibrated, then g is (C,W, α+ (2r + 1)δ)-multicalibrated.

Proof. Fix any w ∈ rL1→∞. By the Lipschitz property, we derive the following inequalities:

|〈w(f(x))− w(g(x)), y〉| ≤ ‖w(f(x))− w(g(x))‖∞ ≤ r ‖f(x)− g(x)‖1
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and

|〈w(f(x)), f(x)〉 − 〈w(g(x)), g(x)〉|
= |〈w(f(x)), f(x)− g(x)〉+ 〈w(f(x))− w(g(x)), g(x)〉|
≤ ‖w(f(x)‖∞ · ‖f(x)− g(x)‖1 + ‖w(f(x))− w(g(x))‖∞ · ‖g(x)‖1
≤ (r + 1) ‖f(x)− g(x)‖1 .

Thus, for every x ∈ X , by the triangle inequality, we bound the difference of the expressions by

|〈w(f(x)), y − f(x)〉 − 〈w(g(x)), y − g(x)〉| ≤ (2r + 1) ‖f(x)− g(x)‖1

Fix c ∈ C and consider the difference for f and g in the smooth multicalibration constraint for c.∣∣∣∣ED [ c(x)〈w(f(x)),y − f(x)〉 ]−E
D

[ c(x)〈w(g(x)),y − g(x)〉 ]

∣∣∣∣
=

∣∣∣∣ED [ c(x) (〈w(f(x)),y − f(x)〉 − 〈w(g(x)),y − g(x)〉) ]

∣∣∣∣
≤ max

x∈X
|c(x)| ·

∣∣∣∣ED [ 〈w(f(x)),y − f(x)〉 − 〈w(g(x)),y − g(x)〉 ]

∣∣∣∣
≤ (2r + 1) E

D
[ ‖f(x)− g(x)‖1 ]

= (2r + 1)δ

where we use the fact that |c(x)| ≤ 1 for all c ∈ C. Since by assumption f is (C,W, α) multicali-
brated, we get∣∣∣∣ED [ c(x)〈w(g(x)),y − g(x)〉 ]

∣∣∣∣ ≤ ∣∣∣∣ED [ c(x)〈w(f(x)),y − f(x)〉 ]

∣∣∣∣+ (2r + 1)δ

≤ α+ (2r + 1)δ.

This holds for all c ∈ C, w ∈ W, hence g is (C,W, α+ (2r + 1)δ)-multicalibrated.

4 Moment Sandwiching from Low-Degree Multicalibration

In this section, we prove the key technical results, establishing moment sandwiching bounds for
low-degree multicalibrated predictors. We begin by establishing the general theorem, then show
various corollaries, for bounds on the confusion probabilities in multi-class prediction, and the
correlation between the predicted values and the true outcomes.

We begin with some useful notational shorthand. Recall that C = {c : X → [0, 1]}. We denote the
measure of c under D by µc = ED[c(x)]. Define the distribution Dc over X × {0, 1} obtained by
conditioning on c by

Dc(x, y) =
c(x)D(x, y)

µc

For ease of notation, we will sometimes use αc = α/µc.
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Lemma 4.1. Let k ≥ 2 and f ∈ MCk(α). For every degree d ∈ [k], label ` ∈ [l] and c ∈ C,∣∣∣∣EDc[f`(x)d−1f∗` (x)]− E
Dc

[f`(x)d]

∣∣∣∣ ≤ α

µc
= αc. (8)

Proof. We consider the function w : ∆l → [0, 1]l where w`(f) = fd−1
` and wj(f) = 0 for j 6= `. It

is easy to see that w ∈ Pk−1. For this choice of w, degree k multicalibration implies∣∣∣∣ED [c(x)f`(x)d−1(y` − f`(x))]

∣∣∣∣ ≤ α.
Switching to the conditional distribution Dc, we can rewrite this as

µc

∣∣∣∣EDc[f`(x)d−1(f∗` (x)− f`(x))]

∣∣∣∣ ≤ α
since E[ y`|x] = f∗(x). Dividing both sides by µc and rearranging gives the desired bound.

Note that this guarantee is meaningful only if µc is larger than α. This is to be expected, since we
cannot hope to get strong conditional guarantees for sets that are very small.

Our goal is to show the following sandwiching bound which we state for the setting α = 0 for
clarity. For all d ∈ [k], ` ∈ [l], c ∈ C,:

E
Dc

[f∗` (x)d] ≥ E
Dc

[f`(x)d] = E
Dc

[f`(x)d−1f∗` (x)] ≥ E
Dc

[f`(x)d−1] E
Dc

[f∗` (x)].

The middle equality is by Lemma 4.1, which is immediate from the definition of degree-k multi-
calibration. The key ingredients are the outer inequalities. The lower bound can be interpreted as
saying that fd−1

` is positively correlated with the label being `, since

CovDc [f`(x)d−1,y`] = E
Dc

[f`(x)d−1f∗` (x)]− E
Dc

[f`(x)d−1] E
Dc

[f∗` (x)] ≥ 0.

The upper bound can be seen as an upper bound in lieu of exact moment matching, it says that
the first k moments of f` are dominated by those of the ground truth f∗` for every ` ∈ [l].

When α > 0, the overall form of the inequalities stays the same, with some slack depending on αc.
But the two terms in the middle are only approximately equal. This makes it easier to state the
bounds separately, which we do in Theorem 4.2 and Corollary 4.3.

Theorem 4.2 (Formal restatement of Theorem 2). Fix k ≥ 2 and a predictor f : X → ∆l where
f ∈ MCk(α). For every degree d ∈ [k], label ` ∈ [l] and c ∈ C, the following sandwiching bound
holds:

d
α

µc
+ E
Dc

[f∗` (x)d] ≥ E
Dc

[f`(x)d] ≥ E
Dc

[f∗` (x)] E
Dc

[f`(x)d−1]− α

µc
. (9)

Proof. We first prove Equation (9), starting from the upper bound on E[f`(x)d]. We claim that

E
Dc

[f`(x)d]
d−1
d E
Dc

[f∗` (x)d]
1
d ≥ E

Dc
[f`(x)d−1f∗` (x)] ≥ E

Dc
[f`(x)d]− αc
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The the upper bound is by Holder’s inequality whereas the lower bound is by Equation (8). Drop-
ping the term in the middle,

E
Dc

[f`(x)d]
d−1
d E
Dc

[f∗` (x)d]
1
d ≥ E

Dc
[f`(x)d]− αc

We may assume f is not identically 0, since otherwise the upper bound is trivial, and hence that
its moments are positive. Divide both sides by EDc [f`(x)d] to get(

EDc [f
∗
` (x)d]

EDc [f`(x)d]

) 1
d

≥
(

1− αc
EDc [f`(x)d]

)
Raising both sides to the power d, and using (1− η)d ≥ 1− dη for k ∈ Z+ and η > 0

EDc [f
∗
` (x)d]

EDc [f`(x)d]
≥
(

1− αc
EDc [f`(x)d]

)d
≥
(

1− d αc
EDc [f`(x)d]

)

Multiplying throughout by EDc [f`(x)d]

E
Dc

[f∗` (x)d] ≥ E
Dc

[f`(x)d]− dαc (10)

which gives the desired upper bound for d ∈ {1, . . . , k}.

We now prove the lower bound on E[fd] in Equation (9). By multiaccuracy and convexity,

E
Dc

[f∗` (x)] ≤ E
Dc

[f`(x)] + αc ≤ E
Dc

[f`(x)d]
1
d + αc

E
Dc

[f`(x)d−1] ≤ E
Dc

[f`(x)d]
d−1
d

Multiplying these together gives

E
Dc

[f`(x)d−1] E[f∗` (x)] ≤ (E
Dc

[f`(x)d]
1
d + αc) E

Dc
[f`(x)d]

d−1
d ≤ E

Dc
[f`(x)d] + αc

where the last inequality uses the fact that f` ∈ [0, 1]. This completes the proof of Equation (9).

Corollary 4.3. Under the conditions of Theorem 4.2, the following sandwiching bound holds:

(d+ 1)
α

µc
+ E
Dc

[f∗` (x)d] ≥ EDc [f`(x)d−1f∗` (x)] ≥ E
Dc

[f∗` (x)] E
Dc

[f`(x)d−1]− 2
α

µc
. (11)

Proof. We start from the bound on E[fd] in Equation (9) and use Equation (8) which implies that
the bounds hold for E[fd−1f∗] with an additional slack of αc.
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4.1 Bounding the True Positive Rates

Imagine a binary prediction problem on a population P = A ∪ B where one half A has a 70%
chance of having outcome y = 1, and the other half B has only a 30% chance. When we consider
this population in isolation, multiaccuracy is a very weak condition. In particular, the predictor
g : X → [0, 1] that predicts g(x) = 1 on A, and g(x) = 0 on B satisfies accuracy-in-expectation
over P . This predictor is over-confident in its predictions; it does not give an accurate sense of the
uncertainty in its predictions. A key property of calibration is that it disallows such overconfidence,
by explicitly requiring that when f(x) ≈ v, then E[y|f(x)] ≈ v.

A different way to quantify confidence is to look at E[f(x)|y = 1] and E[f(x)|y = 0]. The latter
has been termed the generalized false positive rate, so we refer to the former as the generalized true
positive rate. Common sense suggests that we want a low false positive rate, and a high true positive
rate. But how low a false positive rate is desirable? A quick calculation shows that the predictor
g above has a generalized false positive rate of 0.3, whereas even the Bayes optimal predictor f∗

has a higher false positive rate of 0.58! In general, only seeking to minimize the false positive rate
and false negative rate risks preferring predictors that overstate their confidence, since it does not
incentivize the predictor to convey the level of uncertainty in its predictions.

We give bounds on the true positive rates of any predictor in MC2.

Definition 4.4. For a predictor f : X → ∆l, label ` ∈ [l] and c ∈ C, define the true positive rate
for f on ` conditioned on c ∈ C to be τc(f, `) = EDc [f`(x)|y` = 1].

Lemma 4.5. Every predictor f ∈ MC2 satisfies

3α

EDc [f
∗
` (x)]µc

+ τc(f
∗, `) ≥ τc(f, `) ≥ E

Dc
[f`(x)]− 2α

EDc [f
∗
` (x)]µc

The lower bound says the true positive rate for label ` is at least as much as the overall positive
rate for that label in the population C. This is equivalent to positive correlation between f`(x) and
y` conditioned on c. The upper bound asserts that the correlation is not exaggerated, being upper
bounded by the true positive rate of the Bayes optimal predictor. Our proof relies on the following
characterization of true positive rates:

Lemma 4.6. We have

τc(f, `) =
EDc [f`(x)f∗` (x)]

EDc [f
∗
` (x)]

Proof. By the definition of τc,

τc(f, `) = E
Dc

[f`(x)|y` = 1]

=

∑
xDc(x = x ∧ y` = 1)f`(x)∑

xDc(x = x ∧ y` = 1)

=

∑
xDc(x = x)f∗` (x)f`(x)∑

xDc(x = x)f∗` (x)

=
EDc [f`(x)f∗` (x)]

EDc [f
∗
` (x)]

.
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Proof of Lemma 4.5. Equation (11) for d = 2 gives

3
α

µc
+ E
Dc

[f∗` (x)2] ≥ EDc [f`(x)f∗` (x)] ≥ E
Dc

[f∗` (x)] E
Dc

[f`(x)]− 2
α

µc
. (12)

The claimed bounds follow by dividing throughout by E[f∗` ] and observing that by Lemma 4.6,

τc(f, `) =
EDc [f

∗
` (x)f`(x)]

EDc [f
∗
` (x)]

τc(f
∗, `) =

EDc [f
∗
` (x)2]

EDc [f
∗
` (x)]

.

We can define higher moment analogues of the true positive rate by considering the quantity
E[f`(x)d|y` = 1] for d ≥ 2; for which we prove the following bound:

Lemma 4.7. For every d ∈ [k − 1] and c ∈ C, every f ∈ MCk satisfies the following bounds :

(d+ 1)α

EDc [f
∗
` (x)]µc

+ E
Dc

[f∗` (x)d|y` = 1] ≥ E
Dc

[f`(x)d|y` = 1] ≥ E
Dc

[f`(x)d]− 2α

EDc [f
∗
` (x)]µc

4.2 Bounds for the Confusion Matrix

We generalize the discussion of error rates to the multi-class setting. Here, we are concerned with
the confusion matrix, whose ijth entry corresponds to the probability of predicting j when the true
label is i. In this setting, we think about sampling a predicted label z according to the prediction
f(x); this bears similarity to the model of outcome indistinguishability. With some manipulation,
it is not hard to see that the collision and confusion rates can be audited directly within the OI
framework [DKR+21,DKR+22] to test the closeness of the matrices as in Lemma 4.8.

Given a distribution D on X × [l] and a predictor f : X → ∆l, let us assume that the predictor
f generates a label z ∈ [l] where Pr[z = j|x] = fj(x). The l × l confusion matrix has entries
bij = PrD[y = i ∧ z = j] for i, j ∈ [l]. It is easy to see that

Pr
D

[y = i ∧ z = j] = E
D

[f∗i (x)fj(x)].

Associating points in ∆l with column vectors in Rl,and using fT to denote the transpose of f , we
can define the confusion matrix as

BD(f∗, f) = E
D

[f∗(x)f(x)T ].

Define the max norm of a matrix A = {aij}i,j∈[l] by ‖A‖max = maxi,j∈[l] |aij |.

Lemma 4.8. Let f ∈ MC2(α) and c ∈ C. Then we have

‖BDc(f∗, f)−BDc(f, f)‖max ≤
α

µc
.
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Proof. For i, j ∈ [l], define the function w : ∆ → [0, 1]l by wi(f) = fj and wi′(f) = 0 for i′ 6= i.
Clearly w ∈ P1, hence by the definition of degree-2 multicalibration applied to w,

µc

∣∣∣∣EDc[fj(x)(yi − fi(x)]

∣∣∣∣ ≤ α.
We can rewrite this condition as∣∣∣∣EDc[f∗i (x)fj(x)]− E

Dc
[fi(x)fj(x)]

∣∣∣∣ ≤ αc
which implies the claim.

Next we show that the confusion matrix for f is dominated by that for f∗ in the PSD order.

Lemma 4.9. For any f ∈ MC2(α) and c ∈ C, we have

B(f, f) 4 B(f∗, f∗) + 2lα · Il×l.

Proof. Fix a unit vector u ∈ R`. By the definition of the PSD order, it suffices to show that

E
Dc

[(uT f(x))2] ≤ E
Dc

[(uT f∗(x))2] + 2lα.

We have

E[(uT f(x))2] =
∑
ij

uiuj E
Dc

[fi(x)fj(x)]

≤
∑
ij

uiuj E
Dc

[f∗i (x)fj(x)] + α
∑
ij

uiuj

≤ E
Dc

[(utf∗(x))(utf(x))] + lα

≤ E
Dc

[(utf∗(x))2]1/2] E
Dc

[(utf(x))2]1/2 + lα

Dividing both sides by EDc [(u
T f(x))2] we get

EDc [(u
T f∗(x))2]1/2

EDc [(u
T f(x))2]1/2

≥ 1− lα

EDc [(u
T f(x))2]

Squaring and using (1− η)2 ≥ 1− 2η gives

E
Dc

[(uT f∗(x))2] ≥ E
Dc

[(uT f(x))2]− 2lα,

which implies the desired bound.

As an application, we can generalize our bounds on true positive rates to allow combinations of
labels. As motivation, consider a model trained to assign images from a large label set [l]. We
might want to know how well the model does on the set of cat images, where cats correspond to a
subset L ⊆ [l]. In analogy with the true positive rate on label, we could measure the probability
that the image belongs to L, and the predicted label is also in L, without distinguishing between
labels within L. This motivates our next definition. We use the notation fL(x) =

∑
`∈L f`(x).
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Definition 4.10. For a predictor f : X → ∆l, set L ⊆ [l] and c ∈ C, define the true positive rate
for f on L conditioned on c ∈ C to be

τc(f, L) = E
Dc

[
fL(x)|

∑
l∈L

y` = 1
]
.

We present the following generalization of Lemma 4.5:

Lemma 4.11. For a subset L ⊆ L of labels, every predictor f ∈ MC2 satisfies

2l|L|2α
EDc [fL(x)]µc

+ τc(f
∗, L) ≥ τc(f, L) ≥ E

Dc
[fL(x)]− (|L|2 + |L|)α

EDc [f
∗
L(x)]µc

.

Proof. In analogy with Lemma 4.6, we can show that

τc(f, L) =
EDc [fL(x)f∗L(x)]

EDc [f
∗
L(x)]

=
1
T
LBDc(f

∗, f)1L
EDc [f

∗
L(x)]

.

Using Lemma 4.8, we have

1
T
LBDc(f

∗, f)1L ≥ 1
T
LBDc(f, f)1L − |L|2αc

= E
Dc

[fL(x)2]− |L|2αc

≥ E
Dc

[fL(x)]2 − |L|2αc

≥ E
Dc

[fL(x)] E
Dc

[f∗L(x)]− (|L|2 + |L|)αc

where the last line used the following consequence of multiaccuracy∣∣∣∣EDc[fL(x)− f∗L(x)]

∣∣∣∣ ≤ |L|αc
Lemma 4.9 implies an upper bound of

1
T
LBDc(f

∗, f)1L ≤ 1
T
LBDc(f

∗, f∗)1L + 2l|L|2αc
≤ E
Dc

[f∗L(x)2] + 2l|L|2α+ c.

The claim now follows by dividing throughout by EDc [f
∗
L(x)]

4.3 Covariance Guarantees for Degree-2 Multicalibration

We present a detailed analysis of the covariance between the predictions f`(x) and label being `
conditioned on c. As one might expect, the ground truth predictor is indeed positively correlated
with the labels. Multiaccuracy guarantees that the expectations of f`(x) and y` are equal condi-
tioned on c, but this need not imply that they are positively correlated. Our main result of this
section is MC2 guarantees positive correlation, and that the correlation is conservative compared
with the ground truth predictor. We also provide an example showing that the correlation can
indeed be negative for f ∈ MC1.

24



Theorem 4.12. For f ∈ MC2(α) and c ∈ C, we have

VarDc [f`(x)]− 2αc ≤ CovDc [f`(x),y`] ≤ CovDc [f
∗
` (x),y`] + 6αc. (13)

Our key technical lemma uses these to show that conditioned on any c ∈ C, every predictor in MC2

has variance not much larger than the Bayes optimal predictor. Its proof will use the following
properties every f ∈ MC2(α) satisfies by Equation (8).

∣∣∣∣EDc[f`(x)]− E
Dc

[y]

∣∣∣∣ ≤ αc, (14)∣∣∣∣EDc[f`(x)2]− E
Dc

[f`(x)f∗` (x)

∣∣∣∣ ≤ αc. (15)

Lemma 4.13. For f ∈ MC2 and c ∈ C1,

VarDc [f`(x)] ≤ VarDc [f
∗
` (x)] + 4αc. (16)

CovDc [f
∗
` (x)y] = VarDc [f

∗
` (x)]. (17)

|CovDc [f`(x)y]−VarDc [f`(x)]| ≤ 2αc. (18)

Proof. We observe that by Equation (10) with d = 2,

E
Dc

[f∗` (x)2] ≥ E
Dc

[f`(x)2]− 2αc. (19)

By Equation (14) we have∣∣∣∣EDc[f`(x)]2 − E
Dc

[f∗` (x)2]

∣∣∣∣ ≤ ∣∣∣∣EDc[f`(x)] + E
Dc

[f∗` (x)]

∣∣∣∣ ∣∣∣∣EDc[f`(x)]− E
Dc

[f∗` (x)]

∣∣∣∣ ≤ 2αc.

Applying this together with Equation (19) gives

VarDC [f∗` (x)]−VarDc [f`(x)] ≥ E
Dc

[f∗` (x)2]− E
DC

[f`(x)2] + E
DC

[f`(x)]2 − E
Dc

[f∗` (x)]2

≥ −2αc − 2αc = −4αc

which implies the desired bound.

By definition of f∗, E[y|x] = f∗` (x). Hence

CovDc [f
∗
` (x)y] = E

Dc
[f∗` (x)y]− E

Dc
[f∗` (x)] E

D
[y] = E

Dc
[f∗` (x)2]− E

Dc
[f∗` (x)]2 = VarDc [f

∗
` (x)]. (20)

By Equation (15), ∣∣E[f`(x)y]−E[f`(x)2]
∣∣ ≤ αc (21)

Using Equation (14) we have∣∣E[f`(x)] E[y]−E[f`(x)]2
∣∣ ≤ E[f`(x) |E[f`(x)− y]| ≤ αc E[f`(x)] ≤ αc. (22)

Finally, using the definitions of variance and covariance, we have

|Cov[f`(x),y]−Var[f`(x)]| ≤
∣∣E[f`(x)y]−E[f`(x)2]

∣∣+
∣∣E[f`(x)] E[y]−E[f`(x)]2

∣∣ ≤ 2αc

where we use Equations (21) and (22).
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Proof of Theorem 4.2. The lower bound is an immediate consequence of Equation (18). The upper
bound follows since

CovDc [f`(x), y] ≤ VarDc [f`(x)] + 2αc ≤ VarDc [f
∗
` (x)] + 6αc = CovDc [f

∗
` (x), y] + 6αc

where we use Equations (18), (16) and (17) respectively.

We complement this by an example showing that the correlation between f`(x) and y` can be
negative for f ∈ MA = MC1. In particular, we show that this is true even when y` is obtained by
standard methods such as least-squres or logistic regression (on linear combinations from C).
Lemma 4.14. There exist a distribution D on {0, 1}2 × {0, 1}, a constraint set C, a constraint c,
and a label ` ∈ {0, 1}, such that if f ∈ MA is obtained by least-squares or logistic regression, then

CovDc [f`(x),y`] = −1/12 < 0.

The example we provide is in the binary classification setting, with D = {0, 1}2 and the sets C all
being edges (that is, the sets x1 = 0, x1 = 1, x2 = 0, and x2 = 1). The covariance we achieve
is −1/12, though we note that it can be made arbitrarily close to −1/4, the minimum possible
covariance of two [0, 1] random variables. The full example is provided in Appendix A.

5 The Complexity of Low-Degree Multicalibration

Here, we establish upper bounds on the time and sample complexity for obtaining low-degree
multicalibration. We begin by describing a completely generic multicalibration algorithm that
works for any class of weight functions W and for any number of class labels k ∈ N. Importantly,
following [HKRR18,KGZ19], the algorithm reduces the task of learning a weighted multicalibrated
predictor to the task of weak agnostic learning the class C. We analyze the algorithm in terms of
its oracle-efficiency, assuming access to a weak agnostic learner.

With upper bounds on the complexity of learning a multicalibrated predictor using a generic weight
class W, we instantiate the bounds for the low-degree, smooth, and indicator variants of multical-
ibration. We show that, for meaningful settings of the parameters, low-degree multicalibration is
considerably more sample efficient than the original formulation of multicalibration. This effect is
particularly pronounced as the number of class labels l grows.

5.1 Learning Weighted Multicalibrated Predictors

In Algorithm 1, we describe a procedure for learning multicalibrated predictors. The algorithm
assumes oracle-access to a weak agnostic learner [KMV08,Fel09].

Definition 5.1 (Weak Agnostic Learning). For a data distribution D supported on X × [−1, 1], a
weak agnostic learner for a hypothesis class C ⊆ {c : X → [0, 1]} is a learning procedure that takes
labeled data D = {(xi, zi)}mi=1, where each sample (x, z) ∼ D. For α > 0, the learning procedure
returns an element of C ∪ {⊥}

c←WALC,α(D)

satisfying the following properties.
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(1) if there exists c′ ∈ C such that ED [ c′(x) · z ] 6∈ [−α, α], then c 6= ⊥ and ED [ c(x) · z ] ≥ α/2.

(2) if c = ⊥, then for all c′ ∈ C, ED [ c′(x) · z ] ∈ [−α, α].

We say the sample complexity of the weak agnostic learner, m = m(C, α, β), is the number of
samples from D necessary to guarantee properties (1) and (2) with probability at least 1− β.

Intuitively, a weak agnostic learner searches for some c ∈ C that correlates nontrivially with the
labels given by z.8 With this definition in place, we can describe the Weighted Multicalibration
algorithm and state its guarantees.

Algorithm 1 Weighted Multicalibration
Input: training data {(xi, yi)}mi=1

Concept class C ⊆ {c : X → [0, 1]},
Weight class W ⊆

{
w : ∆l → [0, 1]l

}
,

approximation α > 0,
step size η
Output: (C,W, α)-multicalibrated predictor f : X → [0, 1]l

f0(·)← (1/2, . . . , 1/2) ∈ [0, 1]l

mc← false
t← 0
while ¬mc do
mc← true
for w ∈ W do
ct+1 ←WALC,α

({(
xi, 〈w(ft(xi)), yi − ft(xi)〉

)}m
i=1

)
if ct+1 = ⊥ then

continue
else

∆t+1(·)← w(ft(·)) · ct+1(·)
ft+1(·)← π[0,1]l (ft(·) + η ·∆t+1(·)) // where π[0,1]l projects onto [0, 1]l

mc← false
t← t+ 1
break

end if
end for

end while
return ft

The algorithm is an iterative boosting-style procedure. We initialize the hypothesis to be the
constant function f0(x) = (1/2, . . . , 1/2) ∈ [0, 1]l. Then, in the tth iteration, for each w ∈ W we
reduce the problem of searching for some c ∈ C where ft is miscalibrated to the problem of weak
agnostic learning. If we find some c ∈ C such that

E [ c(x)〈w(ft(x)),y − ft(x)〉 ] > α

8Our analysis does not assume that WAL is a proper learner. All of the results hold equally for improper weak
agnostic learners.
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then we can use c(x) ·w(ft(x)) to update the predictor to be better calibrated in this direction. If
for all w ∈ W we fail to find any c ∈ C that correlates with the residual, then we return the current
hypothesis. We describe the procedure in Algorithm 1.

Analysis of the algorithm. The exact running time of the algorithm depends intimately on the
model of computation and the time complexity of weak agnostic learning, which for most classes C
will dominate the time complexity. With this in mind, we bound the iteration complexity T of the
algorithm, noting that each iteration makes at most |W| calls to WALC,α, which results in a time
complexity bounded by T · |W| times the complexity of weak agnostic learning C.

First, we argue correctness—that if the algorithm terminates, then the returned hypothesis satisfies
multicalibration.

Lemma 5.2. If Algorithm 1 returns a hypothesis f : X → [0, 1]l, then f is (C,W, α)-multicalibrated.

Proof. Observe that Algorithm 1 only returns a hypothesis ft if, in the tth iteration, for every
w ∈ W, the call to the weak agnostic learner WALC,α returns ⊥. By the weak agnostic learning
property (2), returning ⊥ in every call indicates that for all w ∈ W and for all c ∈ C, the correlation
between c and the weighted residual is bounded by α in magnitude.

E [ c(x) · 〈w(ft(x)),y − ft(x)〉 ] ∈ [−α, α]

By definition, this means that ft is (C,W, α)-multicalibrated.

Next, we argue that the number of iterations that the algorithm ever runs for is bounded polyno-
mially in l and 1/α.

Lemma 5.3. Algorithm 1 returns fT after T ≤ l/α2 iterations.

Proof. The iteration complexity follows by a potential argument. Using the expected squared error
as a potential function, we lower bound the progress at each iteration. Specifically, we use the
following potential function,

φ(f) = E
[
‖f∗(x)− f(x)‖2

]
.

By the assumption that f∗ : X → [0, 1]l and our choice of f0(x)i = 1/2 for all i ∈ [l], the initial
potential value is at most φ(f0) ≤ l/4.

Consider the change in potential after the tth update.

E
[
‖f∗(x)− ft(x)‖2

]
−E

[
‖f∗(x)− ft+1(x)‖2

]
= E

[
‖f∗(x)− ft(x)‖2

]
−E

[
‖f∗(x)− ft(x)− η ·∆t+1(x)‖2

]
= 2η ·E [ 〈f∗(x)− ft(x),∆t+1(x)〉 ]− η2 ·E

[
‖∆t+1(x)‖2

]
≥ 2η ·E [ 〈f∗(x)− ft(x), w(ft(x)) · ct+1(x)〉 ]− η2
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By the weak agnostic learning property (1), we know that if ct+1 is the output from WALC,α with
the given training data, ct+1 has nontrivial correlation with the labels.

E [ 〈f∗(x)− ft(x), w(ft(x)) · ct+1(x)〉 ] = E [ ct+1(x) · 〈w(ft(x)),y − ft(x)〉 ] ≥ α/2

Plugging this bound into the last inequality and taking η = α/2, the progress in φ in each iteration
is at least α2/4. By the initial bound on φ(f0), the total number of iterations is upper bounded by
T ≤ l/α2.

We upper bound the sample complexity necessary to run Algorithm 1 in terms of the number of
iterations, the cardinality of the weight class W, and the sample complexity of the weak agnostic
learner for C. Note that in the tth iteration, for each w ∈ W, we assign xi a label that depends on
ft. This dependence on prior hypotheses (and thus prior access to the data), results in an adaptive
data analysis problem. Naively, we can handle this by resampling at each iteration. We obtain the
following generic bound.

Proposition 5.4. For a hypothesis class C and approximation parameter α0 > 0, the sample
complexity m to run Algorithm 1 with success probability at least 1− β is upper bounded by

m ≤ O
(
l ·m(C, α0, β0)

α2
0

)
where m(C, α0, β0) is the sample complexity of running WALC,α0 with failure probability β0 ≤

α2
0β

l·|W| .

Proof. The upper bound follows by using a fresh sample for each iteration. We leverage the upper
bound on the number of iterations necessary from Lemma 5.3, T ≤ l/α2

0. Then, to obtain an overall
failure probability of β, we take β0 small enough that we can union bound the failure probability

of WALC,α0 over T · |W| calls. Again, leveraging the bound on T , we bound β0 ≤
α2
0β

l·|W| .

Using Proposition 5.4, we obtain a concrete upper bound on the sample complexity based on
specifying a weak agnostic learner and a class of weight functions W. For instance, if C is a finite
class, the weak agnostic learner that iterates over C and evaluates the correlation with labels as a
statistical query obtains sample complexity log(|C| /β0)/α2

0, for an overall sample complexity of

m ≤ O
(
l · log(l |C| |W| /α0β)

α4
0

)
.

For VC classes C that have a weak learner that obtains optimal sample complexity, m(C, α0, β0) ≤
(VC(C) + log(1/β0)) /α2

0, the overall bound goes as

m ≤ O
(
l · (VC(C) + log(l |W| /α0β))

α4
0

)
. (23)

Better analyses. Improved sample complexity analyses are possible for specialized implemen-
tations of the weak agnostic learner. Following [HKRR18, Kim20], we can avoid some of the cost
of resampling by appealing to generalization guarantees for differentially-private learning algo-
rithms [DMNS06]. Note that Algorithm 1 only touches the data through the weak agnostic learner,

29



in order to search for a violated constraint for some c ∈ C. By implementing this search step under
differential privacy, we can appeal to the results of [DFH+15, BNS+16, JLN+19], demonstrating
that such algorithms guarantee statistical generalization, even under adaptive access to the data.
For instance, using a bound from Corollary 6.4 of [BNS+16], in the case where C is a finite class,
we can actually bound total the sample complexity as follows.

m ≤ O

(
l1/2 · log(|C| |W| /α) · log(1/αβ)3/2

α3

)

This bound follows by viewing each iteration as an optimization over the simultaneous choice of
w ∈ W and c ∈ C to maximize the multicalibration violation. While this approach improves the
sample complexity, computationally it requires exhaustive search over the choice of c ∈ C and
w ∈ W to execute the exponential mechanism [MT07].

5.2 Comparing the Sample Complexity Across Notions

As a final comparison, we instantiate the general bound from Proposition 5.4 using the different
weight classes W, corresponding to low-degree, smooth, and full multicalibration. To make a fair
comparison, we instantiate each bound using the approximation parameter α0 that is required
to guarantee the returned hypothesis satisfies α-degree-(k + 1) multicalibration for some k ∈ N.
In other words, for smooth and full multicalibration, we upper bound the sample complexity us-
ing the best choice of α0 known to guarantee the multicalibrated predictor f is degree-(k + 1)
mutlicalibrated; that is, in every case f ∈ MCk+1(α).

While many comparisons of this form could be made based on the properties of C, we assume
that C is a VC class and that WALC,α obtains optimal sample complexity. Thus, we instantiate
the concrete bound given in (23). Note that, by the relevant choices of α0, any increase in the
sample complexity’s dependence on α0 will increase the gap in sample complexities. In this sense,
assuming a sample-optimal weak agnostic learner gives a conservative estimate on the gap.

Theorem 5.5 (Formal restatement of Theorem 3). Suppose C has a weak agnostic learner with
sample complexity

m(C, α0, β0) ≤ VC(C) + log(1/β0)

α2
0

to obtain desired accuracy α0 over C with all but probability β0. Then, for any k ∈ N and any
failure probability β > 0, there exists an implementation of Algorithm 1 to obtain the variants of
multicalibration, obtaining sample complexity as follows.

• (Low-Degree).

mk ≤ O
(
l · (VC(C) + k · log(l/αβ))

α4

)
to obtain (C, α)-degree-(k + 1) multicalibration.
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• (Smooth).

ms ≤ O
(
k4l ·

(
VC(C) + log(kl/αβ)

α4
+

(kl)l−1 poly(l, log(k/α))

αl+3

))
to obtain (C, α/k)-smooth multicalibration.

• (Full).

mi ≤ O

(
(2kl)4(l+1) · (VC(C) + log(kl/αβ))

α4(l+1)

)
to obtain (C, α0)-full multicalibration for α0 ≤ (α/2kl)l+1.

In the case of binary prediction, the full multicalibration bound can be improved to

mi,bin ≤ O
(
k4 · (VC(C) + log(k/αβ))

α8

)
.

Proof. The proof instantiates the bound in (23) with an appropriate weight class to achieve the
desired notions.

(Low-Degree). To guarantee that the calibration constraint is satisfied for all w ∈ Wk+1, we use a
discrete set of functionsMk defined by monomials of degree ≤ k. In particular, we know that each
coordinate of a given w is implemented by some q ∈ Pk. We consider a finite class of functions,
where for each i ∈ [l] and each monomial s(z) =

∏
i∈S zi of degree ≤ k (where S is a multiset

of elements from [l]), we include a 1-sparse function equal to s(z) in the ith coordinate and 0
elsewhere.

Mk =
{
s(i) : i ∈ [l], S ∈ [l]n, n ≤ k

}
where s(i)(z)j =

{∏
i∈S zi j = i

0 o.w.

For z ∈ ∆l, these functions satisfy boundedness and sparsity. Further by convexity, obtaining
(C,Mk, α)-multicalibration implies (C, α)-degree-(k + 1) multicalibration. The cardinality of this
set |Mk| grows as O(lk). We plug this bound on the number of weight functions into the generic
sample complexity bound.

mk+1 ≤ O
(
l · (VC(C) + k log(l/αβ))

α4

)
(Smooth). By Theorem 3.7, we can take α0 ≤ α/k to guarantee a (C, α0)-smooth multicalibrated
predictor f is also (C, α)-degree-(k + 1) multicalibrated. Then, for our choice of weight class W to
guarantee smooth multicalibration, we appeal to Lemma 5.6, which upper bounds the cardinality

|W| ≤ exp
(
Õ((l/α0)l−1)

)
, proved below in Section 5.3. With the choice of α0, we bound the log

of this cardinality as follows.

log |W| ≤ Õ

((
l

α0

)l−1
)
≤
(
kl

α

)l−1

· poly(l, log(k/α))
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Combining these bounds, we can bound the sample complexity for smooth multicalibration as
follows.

ms ≤ O
(
k4l · (VC(C) + log(kl/αβ) + log |W|)

α4

)
≤ O

(
k4l ·

(
VC(C) + log(kl/αβ)

α4
+

(kl)l−1 poly(l, log(k/α))

αl+3

))

(Full). For δ > 0, by Theorem 3.9, MCf
δ(αδ

l/k−lδl+1) ⊆ MCs(α/k) ⊆ MCk+1(α). Balancing terms,

we take δ = α
2kl , which results in α0 ≤ l−l

(
α
2k

)l+1
to guarantee that a (C, α0, δ)-full multicalibrated

predictor is also (C, α)-degree-(k + 1) multicalibrated. The interval basis Iδ has 1/δl functions, so
we can bound log |Iδ| as follows.

log |Iδ| = l · log (2kl/α)

With the choice of δ and α0, we bound the sample complexity as follows.

mi ≤ O
(
l · (VC(C) + (l + 1) · log(2kl/αβ) + l · log(2kl/α))

l4(α/2kl)4(l+1)

)
≤ O

(
(2kl)4(l+1) · VC(C) + log(kl/αβ)

l2α4(l+1)

)
≤ O

(
(2kl)4(l+1) · (VC(C) + log(kl/αβ))

α4(l+1)

)

Finally, using the containment of full multicalibration within smooth multicalibration specialized
to binary prediction, we can tighten the analysis for l = 2. In this case, we can take the binary

interval basis Iδ of size 1/δ functions for δ = Θ(α
1/2
0 ), and applying Proposition 3.14, we can

take α0 ≤ O(α2/k), to ensure (C, α/k)-smooth multicalibration. In all, we can bound the sample
complexity

mi,bin ≤ O
(
k4 · (VC(C) + log(k/αβ))

α8

)
,

establishing Theorem 5.5.

Consistent with the prior results on the relationship between the notions of multicalibration, we
see that focusing on low-degree multicalibration can lead to significant sample complexity savings.
In particular, in the multi-class setting, the low-degree complexity provides exponential savings
compared to the smooth and full complexity. For the binary prediction case, the savings from
low-degree multicalibration are only polynomial factors in α, but still practically-relevant. Even
for very modest values of α, say 0.25, low-degree multicalibration obtains more than a 200-fold
decrease in sample complexity.

While this analysis doesn’t establish lower bounds on the sample complexity, the point is that the
savings are coming from the difference in the necessary choice of α0. Thus, it seems that any sample
complexity upper bound should apply equally well for all notions (in terms of α0), will result in an
improved complexity for low-degree multicalibration. Of particular note, a recent work of [GJN+21]
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establishes an (inefficient) algorithm with optimal dependence of α−2
0 for full multicalibration in

the binary prediction case. Specifically, in our notation, for classes where each group c ∈ C has
constant measure in D, they achieve (C, α0, δ)-full mutlicalibration with probability at least 1− β
in sample complexity that grows as

O

(
log(|C| /δβ)

α2
0

)
.

Setting α0 and δ to achieve even (C, α)-multiaccuracy, gives a dependence of α−4. It would be
interesting to extend their game-theoretic analysis to low-degree multicalibration, towards obtaining
α−2 dependence.

5.3 Better bases for smooth multicalibration in high dimensions

In l dimensions, we can construct a sparse basis at the cost of a much larger sized family of weight
functions.

Lemma 5.6. For any η ∈ (0, 1), there exists a (η, 1)-basis Bη for L1→∞ of size exp(O(lη−1)l−1 log 1
η ).

Proof. We assume that 1/η ∈ N is an integer. It will be enough to show such a basis for L1, since
we can handle each coordinate of the output separately, at the cost of a multiplicative factor of l
on the size of the family.

Break up [0, 1]l−1 into (3l/η)l−1 cubes of side length η/3l each. Then, let Bη be the all functions
on ∆l which take one of the constant values 0, η/3, 2η/3, . . . , 1 on each of these cubes (where we
have projected away the last coordinate xl in ∆l). We have

|Bη| ≤ (3/η + 1)(3l/η)l−1
= exp

(
O(lη−1)l−1 log

1

η

)
Now, we claim that every u ∈ L1 can be approximated to within η by a single function in Bη.
Indeed, for each of the cubes, round u down to the nearest multiple η/3 on one of the corners of the
cube. Construct the function v ∈ Bη by letting v take on this rounded value on that cube. Then,
v will be within η/3 of u on that corner of the cube.

We claim that the whole cube (projected up to ∆l) is within distance 2η/3 in L1 from the corner.
To see this, note that by construction, the distance in L1 in the first l − 1 coordinates is at most
(l − 1) · η/3l < η/3. Also, in ∆l, the distance in the last coordinate is at most the L1 distance in
the rest of the coordinates, so this is at most η/3 as well.

Thus the whole cube is within 2η/3 in L1 from the corner, so since u ∈ L1, this means that the
value of u on the whole cube is within 2η/3 of its value of the corner. Therefore, the value of u on
the whole cube is within η/3 + 2η/3 = η of the value of v on the cube. Thus, ‖u− v‖∞ ≤ η.

6 Experiments

We use a numerical experiment to compare boosting for multiaccuracy (MA), degree-2 multicali-
bration (MC2) and full multicalibration (MC-full). The goal of this experiment is two-fold. First,
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the theoretical sample complexity results are asymptotic; here, we show that qualitatively similar
results hold empirically in the finite sample regime. Second, the sandwiching bounds show that
MC2 can reduce overconfidence, as compared to multiaccurate predictors; we supplement the theory
by showing a setting in which multiaccuracy post-processing does not correct for initial overconfi-
dence, but degree-2 multicalibration does. In combination, these preliminary experiments suggest
that the strongest notion of multicalibration is not always better. Given a fixed data set size, the
realized fairness guarantees may actually improve by choosing a lower degree of multicalibration.

Metrics. We measure the performance of predictors across the first two moments across subpop-
ulations c ∈ C. Specifically, we measure the multiaccuracy error as

multiaccuracy error: max
c∈C

E[c(x)(f(x)− f∗(x))]−E[(1− c(x))(f(x)− f∗(x))] (24)

Intuitively, this is the multi-accuracy error on the subpopulation and its complement. Second, we
measure the excess variance as

excess variance: max
c∈C

(Var[f(x) | c(x) = 1]−Var[f∗(x) | c(x) = 1]) · Pr[c(x) = 1] (25)

which intuitively is how much the variance of the predicted probability exceeds the variance of the
optimal predictions over all subpopulations in C.

Setup. To estimate the excess variance we need access to the true probability f∗ which is un-
available for real datasets. Therefore, we use a semi-synthetic dataset by fitting a neural network
to the real UCI-adult dataset and use the neural network’s predicted probability as the “true”
Bayes optimal probability. We also fit a generative model (a variational autoencoder) to model
the distribution on the features x. Combined we create a synthetic dataset where we can sample
x from the generative model, compute the “true” probability f∗(x), and draw samples y from the
“true” probability. Note that all learning algorithm only have access to the samples (x,y) and not
the “true” probability; we use the “true” probability exclusively for computing the excess variance.

We generate three datasets: a pre-training set, a training set, and a test set. We first pretrain a
three-layer neural network on the pre-training set, then use our boosting algorithms to adjust the
predictions of the pretrained neural network to achieve multi-accuracy or calibration, and finally
use the test set to assess performance. For the calibration class C, we use linear functions with
sigmoid activation.

Results. Our results are summarized in Figure 1. We make the following observations.

• The boosting-style algorithm for multi-accuracy (MA), degree 2 multi-calibration (MC2) and
full multicalibration (MC-full) all improve the multi-accuracy error on the training set. This
is consistent with our result that MC2 and MC-full imply MA, hence by achieving MC2 and
MC-full we can also achieve multiaccuracy (MA). However, on the test set, we observe that
multicalibration is much more prone to overfitting and the multi-accuracy error increases
rapidly without carefully regularization (e.g. by early stopping).
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Figure 1: Comparing the excess variance and multiaccuracy error for three methods: boosting for
multiaccuracy (MA), degree-2 multicalibration (MC2) and full multicalibration (MC-full). Error
bars are 1 standard deviation of the results based on 5 randomly drawn datasets. Both MA and
MC2 achieve low multiaccuracy error, but MC2 has much lower excess variance, consistent with
our theoretical results. MC-full is very prone to overfitting.

• Boosting algorithms for degree-2 multicalibration (MC2) and full multicalibration (MC-full)
can significantly decrease the excess variance. However, degree-2 multi-calibration is much less
prone to overfitting and can consistently keep the excess variance low, while multicalibration
rapidly overfits.

Overall we observe that running Algorithm 1 for degree-2 multicalibration (MC2) can reduce the
excess variance without harming the multiaccuracy error, and generally maintains the general-
ization performance as compared to multiaccuracy (MA) only. On the other hand, boosting for
multicalibration (MC-full) is significantly more prone to overfitting.
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Figure 2: Diagram illustrating Example A.1. Black points indicate points x such that y = 1 always,
and white points indicate where y = 0 always. The points are labeled with their probability under
D. The constraints each contain two points, and are drawn as edges.

A Multiaccuracy does not imply positive correlation

Note that many common regression methods do not in fact guarantee a positive or near-positive
correlation between f and y, conditioned on a constraint c. We provide an example in the case of
binary classification illustrating this.

Example A.1. Let X = {0, 1}2; we will refer to the two coordinates as x1 and x2. Let the four
constraints ci,b, for i ∈ {1, 2} and b ∈ {0, 1} be 1 exactly when xi = b, and 0 elsewhere. Let the
distribution D have weight 1/3 on (0, 0) and (0, 1), and weight 1/6 on (1, 0) and (1, 1). Finally, let
the value y be always equal to the parity of x; that is, y = x1 ⊕ x2. Fig. 2 illustrates this example.

We will show that, in Example A.1, both L2 and logistic regression obtain predictions f which have
negative correlation with y conditioned on c1,1.

First, L2 regression finds the predictor f of the form

f(x) =
∑
i,b

λi,bci,b(x),

such that the objective
E
D

[(f(x)− y)2]

is minimized. By first order optimality, f is actually a multiaccurate predictor. We can see that if
we apply L2 regression, the obtained coefficients and predictor f are:

λ1,0 = λ1,1 = 1/2, λ2,1 = 1/6, λ2,0 = −1/6,

f((0, 0)) = f((1, 0)) = 2/3, f((0, 1)) = f((1, 1)) = 1/3. (26)

This can be seen by running L2 regression, or as follows. First, note that the constraints ci,b are
linearly dependent (satisfying c1,0 + c1,1 = c2,1 + c2,0), so we may assume that λ1,0 = 1/2. The
remaining constraints are now linearly independent, so since the objective is strictly convex, there
is a unique optimal choice of λi,b. Now note that the example exhibits symmetry by exchanging
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x2 = 0 and x2 = 1, and flipping each of the y values. Thus, the value of the objective is conserved
under the substitutions

λ1,1 ← 1− λ1,1, λ2,0 ← −λ2,1, λ2,1 ← −λ2,0.

But since the optimum is unique, this implies that λ1,1 = 1/2 and λ2,0 = −λ2,1. Finally, we can
obtain the actual value of λ2,0 by using multiaccuracy, or by directly optimizing the objective.
Finally, with the predicted values (26) we obtain the covariance conditioned on c = c1,1 equal to

CovDc [f(x),y] = −1/12,

showing that f is negatively correlated with y conditioned on c1,1.

Next, logistic regression finds the predictor

h(x) =
1

1 + exp
(
−
∑

i,b θi,bci,b(x)
) ,

maximizing the objective
E
D

[y log h(x) + (1− y) log(1− h(x))].

Again, by first-order optimality h is also a multiaccurate predictor. This time, the obtained coeffi-
cients and predictor are:

θ1,0 = θ1,1 = 0, θ2,1 = log 2, θ2,0 = − log 2,

h((0, 0)) = h((1, 0)) = 2/3, h((0, 1)) = h((1, 1)) = 1/3. (27)

This can again be seen by essentially an identical argument as for L2 regression. Note that this is
also the exact same predictor as that of L2, so we obtain a similar negative correlation.

Note that these examples can also be modified by changing the probabilities under the distribution
D from 1/3 and 1/6 to 1/2− ε and ε, respectively, as ε gets arbitrarily small. The same argument
shows that f((1, 0)) gets arbitrarily close to 1 while f((1, 1)) gets arbitrarily close to 0. This
achieves covariance arbitrarily close to −1/4, which is the lowest possible covariance between [0, 1]
random variables. This is at the cost of D(c1,1) = 2ε getting arbitrarily small, so the constraint
that we condition on gets arbitrarily low in probability, making statements about the constraint
less meaningful.
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