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Task: Model Presence/Absence of Birds

Tried:
SVMs
boosted decision trees
bagged decision trees

neural networks
· · ·

Ultimate goal: understand avian population dynamics

Ran feature selection to find smallest feature set with excellent
performance.
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Bagging Likes Many Noisy Features (?)
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Surprised Reviewers

Reviewer A
[I] also found that the results reported in Figure 2 [were]
strange, where the majority [of] results show that classifiers
built from selected features are actually inferior to the ones
trained from the whole feature [set].

Reviewer B
It is very surprising that the performance of all methods
improves (or stays constant) when the number of features is
increased.
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Purpose of this Study

Does bagging often benefit from many features?

If so, why?
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Outline

1 Story Behind the Paper

2 Background

3 Experiment 1: FS and Bias-Variance

4 Experiment 2: Weak, Noisy Features
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Review of Bagging

Bagging: simple ensemble learning algorithm [Bre96]:
draw random sample of training data
train a model using sample (e.g. decision tree)
repeat N times (e.g. 25 times)
bagged predictions: average predictions of N models
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Facts about Bagging

Surprisingly competitive performance & rarely overfits [BK99].
Main benefit is reducing variance of constituent models [BK99].
Improves ability to ignore irrelevant features [AP96].
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Review of Bias-Variance Decomposition

Error of learning algorithm on example x comes from 3 sources:
noise intrinsic error / uncertainty for x ’s true label

bias how close, on average, is algorithm to optimal prediction
variance how much does prediction change if change training set

Error decomposes as:

error(x) = noise(x) + bias(x) + variance(x)

On real problems, cannot separately measure bias and noise.
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Measuring Bias & Variance (Squared Error)

Generate empirical distribution of the algorithm’s predictions [BK99]:
Randomly sample 1

2 of the training data.
Train model using sample and make predictions y for test data.
Repeat R times (e.g. 20 times).
Compute average prediction ym for every test example.

For each test example x with true label t :

bias(x) = (t − ym)2

variance(x) =
1
R

R∑
i=1

(ym − yi)
2

Average over test cases to get expected bias & variance for algorithm.
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Review of Feature Selection

Forward Stepwise Feature Selection
Start from empty selected set.
Evaluate benefit of selecting each non-selected feature (train
model for each choice).
Select most beneficial feature.
Repeat search until stopping criteria.

Correlation-based Feature Filtering
Rank features by individual correlation with class label.
Choose cutoff point (by statistical test or cross-validation).
Keep features above cutoff point. Discard rest.
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Experiment 1: Bias-Variance of Feature Selection

Summary:
19 datasets
order features using feature selection
forward stepwise feature selection or
correlation feature filtering, depending
on dataset size
estimate bias & variance at multiple
feature set sizes
5-fold cross-validation
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Case 1: No Improvement from Feature Selection
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Case 2: FS Improves Non-Bagged Model

bias/noise
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Take Away Points

More features ⇒ lower bias/noise, higher variance.
Feature selection does not improve bagged model performance (1
exception).
Best subset size corresponds to best bias/variance tradeoff point.

Algorithm dependant
Relevant features may be discarded if variance increase outweighs
extra information
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Why Does Bagging Benefit from so Many Features?
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Hypothesis

Bagging improves base learner’s ability to benefit
from weak, noisy features.
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Experiment 2: Noisy Informative Features

Summary:
generate synthetic data (6 features)
duplicate 1/2 of the features 20 times
corrupt X% of values in duplicated features
train single and bagged trees with corrupted features and 3
non-duplicated features
compare to:

ideal, unblemished feature set, and
no noisy features (3 non-duplicated only)
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Bagging Extracts More Info from Noisy Features
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Conclusions

After training 9,060,936 decision trees . . .

Experiment 1:
More features ⇒ lower bias/noise, higher variance.
Feature selection does not improve bagged model performance.
Best subset size corresponds to best bias/variance tradeoff point.

Experiment 2:
Bagged trees surprisingly good at extracting useful information
from noisy features. Different weak features in different trees.
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Exception: Overfitting Pseudo-Identifiers
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