
Building	an	Elastic	Query	Engine	
on	Disaggregated	Storage

															Midhul														Justin																Rachit																	Dan																		Ashish																Thierry



Traditional	Shared-Nothing	Architectures



Traditional	Shared-Nothing	Architectures

• Data	partitioned	across	servers

• Each	server	handles	its	own	partition



Traditional	Shared-Nothing	Architectures

Workload	A

50x 20x

• Data	partitioned	across	servers

• Each	server	handles	its	own	partition



Traditional	Shared-Nothing	Architectures

Workload	A

50x 20x
25	VMs

80x wasted!

• Data	partitioned	across	servers

• Each	server	handles	its	own	partition



Traditional	Shared-Nothing	Architectures

Workload	A

50x 20x
25	VMs

80x wasted!

Workload	B

5x 24x

• Data	partitioned	across	servers

• Each	server	handles	its	own	partition



Traditional	Shared-Nothing	Architectures

Workload	A

50x 20x
25	VMs

80x wasted!

Workload	B

5x 24x
6	VMs

7x wasted!

• Data	partitioned	across	servers

• Each	server	handles	its	own	partition



Traditional	Shared-Nothing	Architectures

Workload	A

50x 20x
25	VMs

80x wasted!

Workload	B

5x 24x
6	VMs

7x wasted!

Hardware-workload	mismatch!

• Data	partitioned	across	servers

• Each	server	handles	its	own	partition



Traditional	Shared-Nothing	Architectures

Hardware-workload	mismatch!

• Data	partitioned	across	servers

• Each	server	handles	its	own	partition



Traditional	Shared-Nothing	Architectures

Hardware-workload	mismatch!

• Data	partitioned	across	servers

• Each	server	handles	its	own	partition



Traditional	Shared-Nothing	Architectures

Hardware-workload	mismatch!

Data	re-shuffle	during	elasticity!

• Data	partitioned	across	servers

• Each	server	handles	its	own	partition



Traditional	Shared-Nothing	Architectures

Hardware-workload	mismatch!

Data	re-shuffle	during	elasticity!

Fundamental	issue	in	shared-nothing	architectures:	Tight	coupling	of	compute	&	storage

• Data	partitioned	across	servers

• Each	server	handles	its	own	partition



Query	Engines	on	Disaggregated	Storage

• Decouple	compute	and	persistent	storage

• Independent	scaling	of	resources




Query	Engines	on	Disaggregated	Storage

• Decouple	compute	and	persistent	storage

• Independent	scaling	of	resources




Query	Engines	on	Disaggregated	Storage

• Decouple	compute	and	persistent	storage

• Independent	scaling	of	resources




Query	Engines	on	Disaggregated	Storage

• Decouple	compute	and	persistent	storage

• Independent	scaling	of	resources


Design	aspects Data-driven	insights Future	Directions



Query	Engines	on	Disaggregated	Storage

• Decouple	compute	and	persistent	storage

• Independent	scaling	of	resources


• Warehousing	as	a	service

• In	production	for	over	5	years

• 1000s	of	customers,	millions	of	queries	/	day

Design	aspects Data-driven	insights Future	Directions



Query	Engines	on	Disaggregated	Storage

• Decouple	compute	and	persistent	storage

• Independent	scaling	of	resources


• Warehousing	as	a	service

• In	production	for	over	5	years

• 1000s	of	customers,	millions	of	queries	/	day

Design	aspects Data-driven	insights Future	Directions

Statistics	from	70	million	queries	over	14	day	period




						Diversity	of	Queries



						Diversity	of	Queries

• Read-Only	->	28%



						Diversity	of	Queries

• Read-Only	->	28%
• Write-Only	->	13%



						Diversity	of	Queries

• Read-Only	->	28%
• Write-Only	->	13%
• Read-Write	->	59%



						Diversity	of	Queries

• Read-Only	->	28%
• Write-Only	->	13%
• Read-Write	->	59%

Persistent	data	read/written	varies	over	several	orders	of	magnitude	within	each	class

Three	distinct	query	classes



						Query	distribution	over	time

Read-Only	query	load	varies	significantly	over	time	



						High-level	architecture

Virtual	Warehouse

• Abstraction	for	computational	resources

• Under	the	hood	->	Set	of	VMs

• Distributed	execution	of	queries

DRAM

Local	SSD

DRAM

Local	SSD

DRAM

Local	SSD



						High-level	architecture
Virtual	Warehouse	1

DRAM

Local	SSD

DRAM

Local	SSD

DRAM

Local	SSD

Virtual	Warehouse	2

DRAM

Local	SSD

DRAM

Local	SSD



						High-level	architecture
Virtual	Warehouse	1

Persistent	Storage	(S3)

Persistent	Data

DRAM

Local	SSD

DRAM

Local	SSD

DRAM

Local	SSD

Virtual	Warehouse	2

DRAM

Local	SSD

DRAM

Local	SSD



						High-level	architecture
Virtual	Warehouse	1

Persistent	Storage	(S3)

Persistent	Data

Intermediate	Data

DRAM

Local	SSD

DRAM

Local	SSD

DRAM

Local	SSD

Virtual	Warehouse	2

DRAM

Local	SSD

DRAM

Local	SSD



						High-level	architecture
Virtual	Warehouse	1

Persistent	Storage	(S3)

Persistent	Data

Intermediate	Data

DRAM

Local	SSD

DRAM

Local	SSD

DRAM

Local	SSD

Virtual	Warehouse	2

DRAM

Local	SSD

DRAM

Local	SSD
Ephemeral	StorageEphemeral	Storage



						Ephemeral	Storage	System

DRAM

Local	SSD

DRAM

Local	SSD

DRAM

Local	SSD

Persistent	Storage	(S3)

Intermediate	Data

Key	Features



						Ephemeral	Storage	System

DRAM

Local	SSD

DRAM

Local	SSD

DRAM

Local	SSD

Persistent	Storage	(S3)

Intermediate	Data

Key	Features

• Co-located	with	compute	in	VWs



						Ephemeral	Storage	System

DRAM

Local	SSD

DRAM

Local	SSD

DRAM

Local	SSD

Persistent	Storage	(S3)

Intermediate	Data

Key	Features

• Co-located	with	compute	in	VWs



						Ephemeral	Storage	System

DRAM

Local	SSD

DRAM

Local	SSD

DRAM

Local	SSD

Persistent	Storage	(S3)

Intermediate	Data

Key	Features

• Co-located	with	compute	in	VWs
• Opportunistic	caching	of	persistent	data



						Ephemeral	Storage	System

DRAM

Local	SSD

DRAM

Local	SSD

DRAM

Local	SSD

Persistent	Storage	(S3)

Intermediate	Data

Key	Features

• Co-located	with	compute	in	VWs
• Opportunistic	caching	of	persistent	data
• Elasticity	without	data	re-shuffle



						Ephemeral	Storage	System

DRAM

Local	SSD

DRAM

Local	SSD

DRAM

Local	SSD

Persistent	Storage	(S3)

Intermediate	Data

Key	Features

• Co-located	with	compute	in	VWs
• Opportunistic	caching	of	persistent	data
• Elasticity	without	data	re-shuffle



						Intermediate	Data	Characteristics



						Intermediate	Data	Characteristics



						Intermediate	Data	Characteristics



						Intermediate	Data	Characteristics

Intermediate	data	sizes	->	variation	over	5	orders	of	magnitude

Difficult	to	predict	intermediate	data	sizes	upfront

												Decouple	compute	&	ephemeral	storage?



							Persistent	Data	Caching



							Persistent	Data	Caching

• Intermediate	data	volume		->			Peak								Average


• Opportunistic	caching	of	persistent	data	in	ephemeral	storage	system

Hides	latency	of	S3	access

Persistent	Storage	(S3)F1 F2 F3 F4

F2



							Persistent	Data	Caching

• Intermediate	data	volume		->			Peak								Average


• Opportunistic	caching	of	persistent	data	in	ephemeral	storage	system

Hides	latency	of	S3	access

Persistent	Storage	(S3)F1 F2 F3 F4

F2

How	to	ensure	consistency?



							Persistent	Data	Caching

• Intermediate	data	volume		->			Peak								Average


• Opportunistic	caching	of	persistent	data	in	ephemeral	storage	system

Hides	latency	of	S3	access

Persistent	Storage	(S3)F1 F2 F3 F4

F1 F2 F3F4

How	to	ensure	consistency?

• Each	file	assigned	to	unique	node
• Consistent	hashing

• Write-through	caching



							Persistent	Data	Caching

• Intermediate	data	volume		->			Peak								Average


• Opportunistic	caching	of	persistent	data	in	ephemeral	storage	system

Hides	latency	of	S3	access

Persistent	Storage	(S3)F1 F2 F3 F4

F1 F2 F3F4

How	to	ensure	consistency?

• Each	file	assigned	to	unique	node
• Consistent	hashing

• Write-through	caching

Analysis,	Future	Directions

in	paper



						Elasticity



						Elasticity

• Persistent	storage	–	easy,	offloaded	to	S3



						Elasticity

• Persistent	storage	–	easy,	offloaded	to	S3
• Compute	–	easy,	pre-warmed	pool	of	VMs



						Elasticity

• Persistent	storage	–	easy,	offloaded	to	S3
• Compute	–	easy,	pre-warmed	pool	of	VMs

• Ephemeral	storage	–	challenging,	due	to	co-location	with	compute

Back	to	shared-nothing	architecture	problem	(data	re-shuffle)



						Elasticity

• Persistent	storage	–	easy,	offloaded	to	S3
• Compute	–	easy,	pre-warmed	pool	of	VMs

• Ephemeral	storage	–	challenging,	due	to	co-location	with	compute

Back	to	shared-nothing	architecture	problem	(data	re-shuffle)

F3F2F1F4



						Elasticity

• Persistent	storage	–	easy,	offloaded	to	S3
• Compute	–	easy,	pre-warmed	pool	of	VMs

• Ephemeral	storage	–	challenging,	due	to	co-location	with	compute

Back	to	shared-nothing	architecture	problem	(data	re-shuffle)

F3F2F1F4



						Elasticity

• Persistent	storage	–	easy,	offloaded	to	S3
• Compute	–	easy,	pre-warmed	pool	of	VMs

• Ephemeral	storage	–	challenging,	due	to	co-location	with	compute

Back	to	shared-nothing	architecture	problem	(data	re-shuffle)

F3F2F1 F4



						Lazy	Consistent	Hashing

Persistent	Storage	(S3)

F2 F3

Scheduler

Node	1 Node	2 Node	3

F1F4



						Lazy	Consistent	Hashing

Persistent	Storage	(S3)

F2 F3

Scheduler

Locality	aware	task	scheduling

Node	1 Node	2 Node	3

F1F4



						Lazy	Consistent	Hashing

Persistent	Storage	(S3)

F2 F3

Scheduler

T2 T3

Locality	aware	task	scheduling

Node	1 Node	2 Node	3

F1F4



						Lazy	Consistent	Hashing

Persistent	Storage	(S3)

F2 F3

Scheduler

Node	1 Node	2 Node	3

F1F4



						Lazy	Consistent	Hashing

Persistent	Storage	(S3)

F2 F3

Scheduler

Elasticity	without	data	re-shuffle

Node	1 Node	2 Node	3

F1F4



						Lazy	Consistent	Hashing

Persistent	Storage	(S3)

F2 F3
F4

Scheduler

Elasticity	without	data	re-shuffle

Node	1 Node	2 Node	3 Node	4

F1F4



						Lazy	Consistent	Hashing

Persistent	Storage	(S3)

F2 F3
F4

T4

Scheduler

Elasticity	without	data	re-shuffle

Node	1 Node	2 Node	3 Node	4

F1F4



						Lazy	Consistent	Hashing

Persistent	Storage	(S3)

F2 F3
F4

T4

Scheduler

F4

Elasticity	without	data	re-shuffle

Node	1 Node	2 Node	3 Node	4

F1F4



						Do	customers	exploit	elasticity	in	the	wild?



						Do	customers	exploit	elasticity	in	the	wild?



						Do	customers	exploit	elasticity	in	the	wild?

Sometimes	by	up	to	100x

20%	warehouses	exploit	elasticity

Resource	scaling	by	up	to	100x	needed	at	times



						At	what	time-scales	are	warehouses	resized?



						At	what	time-scales	are	warehouses	resized?



						At	what	time-scales	are	warehouses	resized?



						At	what	time-scales	are	warehouses	resized?

Granularity	of	warehouse	elasticity	

>>	


Changes	in	query	load



						At	what	time-scales	are	warehouses	resized?

Granularity	of	warehouse	elasticity	

>>	


Changes	in	query	load

Need	finer-grained	elasticity	in	order	to	better	match	demand



						Resource	Utilization



						Resource	Utilization



						Resource	Utilization

Significant	room	for	improvement	in	resource	utilizations



						Resource	Utilization

Virtual	Warehouse	abstraction

• Good	performance	isolation

• Trade-off:	Low	resource	utilization

Significant	room	for	improvement	in	resource	utilizations



						Resource	Utilization

Virtual	Warehouse	abstraction

• Good	performance	isolation

• Trade-off:	Low	resource	utilization

Significant	room	for	improvement	in	resource	utilizations

Solution	#1

Finer-grained	elasticity	with	current	design

Solution	#2

Move	to	resource	shared	model



						Alternate	design:	Resource	Sharing

	Customer
per-hour per-hour



						Alternate	design:	Resource	Sharing

	Customer
per-hour

per-second



						Alternate	design:	Resource	Sharing

	Customer
per-second per-second



						Alternate	design:	Resource	Sharing

Move	to	per-second	pricing	->	pre-warmed	pool	not	cost	effective

	Customer
per-second per-second



						Alternate	design:	Resource	Sharing

Move	to	per-second	pricing	->	pre-warmed	pool	not	cost	effective

	Customer
per-second per-second

Solution	#1

Finer-grained	elasticity	with	current	design



						Alternate	design:	Resource	Sharing

Move	to	per-second	pricing	->	pre-warmed	pool	not	cost	effective

	Customer
per-second per-second

Solution	#1

Finer-grained	elasticity	with	current	design

Solution	#2

Move	to	resource	shared	model



						Alternate	design:	Resource	Sharing

Move	to	per-second	pricing	->	pre-warmed	pool	not	cost	effective

	Customer
per-second per-second

Solution	#1

Finer-grained	elasticity	with	current	design

Solution	#2

Move	to	resource	shared	model

Statistical	Multiplexing

• Better	resource	utilization

• Helps	support	elasticity



						Alternate	design:	Resource	Sharing

Move	to	per-second	pricing	->	pre-warmed	pool	not	cost	effective

	Customer
per-second per-second

Solution	#1

Finer-grained	elasticity	with	current	design

Solution	#2

Move	to	resource	shared	model

Statistical	Multiplexing

• Better	resource	utilization

• Helps	support	elasticity

For	30%	of	warehouses
Standard	deviation	>=	Mean



						Resource	sharing	challenges



						Resource	sharing	challenges

• Challenges	of	moving	to	a	resource	shared	architecture

• Maintaining	isolation	guarantees

• Shared	Ephemeral	Storage	System



						Resource	sharing	challenges

• Challenges	of	moving	to	a	resource	shared	architecture

• Maintaining	isolation	guarantees

• Shared	Ephemeral	Storage	System

Tenant	A Tenant	B

Shared	Warehouse



						Resource	sharing	challenges

• Challenges	of	moving	to	a	resource	shared	architecture

• Maintaining	isolation	guarantees

• Shared	Ephemeral	Storage	System

• Sharing	cache
• No	pre-determined	lifetime
• Co-existence	with	int.	data

Tenant	A Tenant	B

Shared	Warehouse



						Resource	sharing	challenges

• Challenges	of	moving	to	a	resource	shared	architecture

• Maintaining	isolation	guarantees

• Shared	Ephemeral	Storage	System

• Sharing	cache
• No	pre-determined	lifetime
• Co-existence	with	int.	data

• Elasticity	without	violating	isolation
• Possible	cross-tenant	interference
• Need	private	address-spaces	for	tenants

Tenant	A Tenant	B

Shared	Warehouse



						Resource	sharing	challenges

• Challenges	of	moving	to	a	resource	shared	architecture

• Maintaining	isolation	guarantees

• Shared	Ephemeral	Storage	System

• Sharing	cache
• No	pre-determined	lifetime
• Co-existence	with	int.	data

• Elasticity	without	violating	isolation
• Possible	cross-tenant	interference
• Need	private	address-spaces	for	tenants

Tenant	A Tenant	B

Shared	Warehouse



						Resource	sharing	challenges

• Challenges	of	moving	to	a	resource	shared	architecture

• Maintaining	isolation	guarantees

• Shared	Ephemeral	Storage	System

• Sharing	cache
• No	pre-determined	lifetime
• Co-existence	with	int.	data

• Elasticity	without	violating	isolation
• Possible	cross-tenant	interference
• Need	private	address-spaces	for	tenants

Tenant	A Tenant	B

Shared	Warehouse



Conclusion

Design	aspects Data-driven	insights Future	Directions

https://github.com/resource-disaggregation/snowset


Conclusion

Design	aspects Data-driven	insights Future	Directions

https://github.com/resource-disaggregation/snowset


Conclusion

• Dataset	publicly	released

• https://github.com/resource-disaggregation/snowset

Design	aspects Data-driven	insights Future	Directions

https://github.com/resource-disaggregation/snowset


Thank	You
Questions?


