Building an Elastic Query Engine
on Disaggregated Storage

Midhul

Traditional Shared-Nothing Architectures

Traditional Shared-Nothing Architectures

e Data partitioned across servers
* Each server handles its own partition

Traditional Shared-Nothing Architectures

& | [Ew [FE N
E):)| | | | o * Data partitioned across servers
% % % * Each server handles its own partition
Workload A

50x & 20x:{a):

Traditional Shared-Nothing Architectures

) | a6 @ &) @ * Data partitioned across servers

% % % e Each server handles its own partition

Workload A 25 VMs
SOxg ZOXE@E - SOXE@E wasted!

Traditional Shared-Nothing Architectures

) | a6 @ &) @ * Data partitioned across servers

% % % e Each server handles its own partition

Workload A 25 VMs
SOxg ZOXE@E - SOXE@E wasted!
Workload B

5x & 24x:(m):

Traditional Shared-Nothing Architectures

80x @ wasted!

O O HMECE A MECHED:
{03 O I EOSE O I E CHE O
Workload A

50x & 20x {i):
Workload B

5x & 24x:(m):

25 VMs

6 VMs
=

7x = wasted!

e Data partitioned across servers
* Each server handles its own partition

Traditional Shared-Nothing Architectures

@ CANED: @ &) @ * Data partitioned across servers

% % % e Each server handles its own partition

Workload A 25 VM

Hardware-workload mismatch!
SOxg ZOX:@: - SOXE@E wasted!

Workload B 6 VMs

5x g 24x @ - 7X g wasted!

Traditional Shared-Nothing Architectures

e Data partitioned across servers
* Each server handles its own partition

Hardware-workload mismatch!

5] i3] 453 [e=

Traditional Shared-Nothing Architectures

e Data partitioned across servers
* Each server handles its own partition

Hardware-workload mismatch!

Traditional Shared-Nothing Architectures

@ CANED: @ (&) @ (&) @ * Data partitioned across servers

J!i::LE @ EE ﬁ * Each server handles its own partition

Hardware-workload mismatch!

Data re-shuffle during elasticity!

Traditional Shared-Nothing Architectures

e Data partitioned across servers
* Each server handles its own partition

Hardware-workload mismatch!

Data re-shuffle during elasticity!

Fundamental issue in shared-nothing architectures: Tight coupling of compute & storage

Query Engines on Disaggregated Storage

 Decouple compute and persistent storage
* Independent scaling of resources

(0 ®
(O |:o:
((NEC

Query Engines on Disaggregated Storage
m): m): @

 Decouple compute and persistent storage
* Independent scaling of resources

((©
((©
((©

Query Engines on Disaggregated Storage

 Decouple compute and persistent storage
* Independent scaling of resources

((©
((©
((©

Query Engines on Disaggregated Storage

 Decouple compute and persistent storage
* Independent scaling of resources

/&\ Design aspects Q\ Data-driven insights ..= Future Directions

Query Engines on Disaggregated Storage

 Decouple compute and persistent storage
* Independent scaling of resources

/&\ Design aspects @ Data-driven insights ..= Future Directions

N i

 Warehousing as a service

§°‘2 snowflake * In production for over 5 years

e 1000s of customers, millions of queries / day

Query Engines on Disaggregated Storage

 Decouple compute and persistent storage
* Independent scaling of resources

/&\ Design aspects @ Data-driven insights ..= Future Directions

N il
 Warehousing as a service

[k
2‘0'5 snowflake * In production for over 5 years
e 1000s of customers, millions of queries / day

Statistics from 70 million queries over 14 day period

Diversity of Queries

1014

1012-
1010+
108 -
10° 1

104_

Persistent Bytes Written + 1

1024

100 I 1 1 1 1 T
10° 102 10* 10° 108 10%° 10'2 10%4
Persistent Bytes Read + 1

Diversity of Queries

1014
. 10°
+ 1012- o
c 10° ¢ Read-OnIy -> 28%
g 1010_
= 10*
$ 108_
c% 106- 103
§ 104 - 102
g , [- i .
nq.) 10“ 10

100 ! J I 1 T T
10° 10%10* 10° 10® 10%° 10¥ 10

Persistent Bytes Read + 1

Diversity of Queries

1014
, 10°
. |
c \ 105 Read-Only ->28%
£] -l - e Write-Only -> 13%
; i :':-
n - '
. . : 103
om "._
wn ; o - ey
e i -
S] 10!
(a8

0° 10°

10° 102 10* 10° 108 10%° 1012 104
Persistent Bytes Read + 1

Diversity of Queries

1014
— / 106
+ 1012_
c _ \ 105 e Read-Only ->28%
£ 10194 ' :
= 2 108 Write-Only -> 13%
8 .
o 10 3 e Read-Write -> 59%
5 6 10
a 10°-
< 4] 102
-4% 10 | : /
5 107] | 10!
[a
100 10°

10° 102 10* 10° 108 10%° 1012 104
Persistent Bytes Read + 1

Diversity of Queries

1014
6

1012 N\ N
1012
c 10° e Read-Only ->28%
9 1010 .
§ 10 108 Write-Only -> 13%
o 10% * Read-Write -> 59%
5 100 10°
c 2
2 10%4 10
g 10% 10

10° 10°

10° 102 10* 10°® 108 100 102 10
Persistent Bytes Read + 1

Three distinct query classes

Persistent data read/written varies over several orders of magnitude within each class

Query distribution over time

Read-Only Write-Only Read-Write
160000 ————n———n———
140000 |
.. 120000 F .
S 100000 —
@)
> 80000
g 60000 |
@)
40000 .
O . . . | . . . | . . . | . . . | . . . | . . . | .
02/22 02/24 02/26 02/28 03/02 03/04 03/06
Time

Read-Only query load varies significantly over time

,8/\ High-level architecture

<

Virtual Warehouse

* Abstraction for computational resources
e Under the hood -> Set of VMs
 Distributed execution of queries

DRAM DRAM DRAM

— o o O . e O S EE R S EEe R S S S e Eee e e e e s sl

,8/\ High-level architecture

Virtual Warehouse 1

DRAM

DRAM

DRAM

Local SSD

Local SSD

Local SSD

Virtual Warehouse 2

DRAM

DRAM

Local SSD

Local SSD

,8/\ High-level architecture

Virtual Warehouse 1 Virtual Warehouse 2
|
-III- -lll- -lll- | -Ill- -lll-
@ @ @ : @ @
|
DRAM DRAM DRAM : DRAM DRAM
Local SSD | | Local ssD | | Local SsD ; Local SSD | | Local SSD
Persistent Data A :
|
|
|
\ 4

Persistent Storage (S3) *

,8/\ High-level architecture

Persistent Data A

Virtual Warehouse 1 Virtual Warehouse 2
|
-lll- -lll- -lll- | -lll- -lll-
@ @ @ : @ @
|
DRAM DRAM DRAM : DRAM DRAM
Local SSD | | LocalssD | | Local ssD ; Local SSD | | Local SsD
|
|
|
|
|

Intermediate Data

Persistent Storage (S3) *

,8/\ High-level architecture

Virtual Warehouse 1 Virtual Warehouse 2
@ @ @ @ @

A A A A
g
Ephemeral Storage

Ephemeral Storage

Persistent Data A

Intermediate Data

Persistent Storage (S3) *

,& Ephemeral Storage System

Key Features

DRAM DRAM DRAM
Local SSD Local SSD Local SSD

Intermediate Data

Persistent Storage (S3) *

,& Ephemeral Storage System

Intermediate Data

DRAM

DRAM DRAM

Local SSD

Local SSD Local SSD

Key Features

Co-located with compute in VWs

Persistent Storage (S3)

,& Ephemeral Storage System

Intermediate Data

DRAM DRAM DRAM
Local SSD Local SSD Local SSD
\ 4

Key Features

Co-located with compute in VWs

Persistent Storage (S3)

,& Ephemeral Storage System

Intermediate Data

DRAM DRAM DRAM
Local SSD Local SSD Local SSD
\ 4

Key Features

Co-located with compute in VWs
Opportunistic caching of persistent data

Persistent Storage (S3)

,& Ephemeral Storage System

Intermediate Data

DRAM DRAM DRAM
Local SSD Local SSD Local SSD ’
\ 4

Key Features

Co-located with compute in VWs
Opportunistic caching of persistent data
Elasticity without data re-shuffle

Persistent Storage (S3)

,& Ephemeral Storage System

Intermediate Data

Key Features

@: e Co-located with compute in VWs

« Opportunistic caching of persistent data ! |

DRAM DRAM DRAM |1
|
Local SSD Local SSD localssp | 1°_ Elasticity without data re-shuffle J
\ 4

Persistent Storage (S3) *

Intermediate Data Characteristics

Intermediate Data Characteristics

© 14
O 10 I
CCD 100

12
rcc 10 7 I

10°

§<) 1010_
L 104
S 9 10%
O o
D > 106_ 3 103
o8
4('_5’ 4 L 102
5 107 :
9 L 101
- 102- 5‘10
| - r
3 0 [100
c —- 10

10° 102 10* 105 108 1010 1012 104
Total CPU Time (Microseconds)

Intermediate Data Characteristics

1014

k5 © 14
% 10124 | c 1012- 10°
< 5 ©
8 10 10 <
X 10°" 1 >/ 1010_]_05
L 4 L>lj

—~ 10 .
S v 1084 © T 100 Lot
rDU S L 103 © 3 i
0 & 10° Q2 10°] 103
5 10 10 2 10% 102
Q i Q i
€ 102 =101 c 102 L 10!
| - E (- ;
40_)) 00 T T T T T T — 0 % 00 T T T T 'Il T T — 0
= 10° 102 10* 10° 108 101° 1012 10 = 10° 102 10* 10°® 108 101° 102 104

Total CPU Time (Microseconds) Total Persistent Data Read (Bytes)

Intermediate Data Characteristics

1014

D © 14
o I 106 9 10 I
% 10124 | c 1012- I 10°
S 10° e
u% 1010 < 1010 : : 10°
—~~ 104 L . ;3 :._‘!_: .
S v o108- © " 108 el | 104
c 2 20 P :
L 3 + r
?) ﬂ>3\ 10°- =10 % CEN 106 : =103
= 10% - 10° g 1041 I 102
7] ! Q | i
£ 10 107 £ 102 I - 10°
8 00 T T T T T T _-' 0 -'g 100 T T T T 'Il T T __‘ 100
£ 10° 102 10% 105 108 10° 102 101 £ 10° 102 104 10°® 108 10%° 10!2 104
Total CPU Time (Microseconds) Total Persistent Data Read (Bytes)

Intermediate data sizes -> variation over 5 orders of magnitude

Difficult to predict intermediate data sizes upfront

; Decouple compute & ephemeral storage?

/8/\ Persistent Data Caching

/8/\ Persistent Data Caching

* Intermediate data volume -> PeakI Averagel

* Opportunistic caching of persistent data in ephemeral storage system

Z Hides latency of S3 access

F1 ‘FZ\ F3 || Fa Persistent Storage (S3) *

/8/\ Persistent Data Caching

* Intermediate data volume -> PeakI Averagel

* Opportunistic caching of persistent data in ephemeral storage system

Z Hides latency of S3 access

How to ensure consistency?

F1

F3

F4

Persistent Storage (S3)

/8/\ Persistent Data Caching

* Intermediate data volume -> PeakI Averagel

* Opportunistic caching of persistent data in ephemeral storage system

How to ensure consistency?

% : : :
>/ » Each file assigned to unique node
F1]| F4 F3 e Consistent hashing
/

 Write-through cachin
Z Hides latency of S3 access 5 5

\ 4
F1 ‘FZ\ F3 || Fa Persistent Storage (S3) *

/8/\ Persistent Data Caching

* Intermediate data volume -> PeakI Averagel

* Opportunistic caching of persistent data in ephemeral storage system

How to ensure consistency?

% : : :
>/ » Each file assigned to unique node
F1]| F4 F3 e Consistent hashing
/

 Write-through cachin
Z Hides latency of S3 access 5 5

\ 4
F1 ‘FZ\ F3 || Fa Persistent Storage (S3)

* Analysis, Future Directions

in paper

,& Elasticity

,& Elasticity

* Persistent storage — easy, offloaded to S3

,& Elasticity

* Persistent storage — easy, offloaded to S3
* Compute — easy, pre-warmed pool of VMs

,& Elasticity

* Persistent storage — easy, offloaded to S3
* Compute — easy, pre-warmed pool of VMs

* Ephemeral storage — challenging, due to co-location with compute
Back to shared-nothing architecture problem (data re-shuffle)

,& Elasticity

* Persistent storage — easy, offloaded to S3
* Compute — easy, pre-warmed pool of VMs

* Ephemeral storage — challenging, due to co-location with compute
Back to shared-nothing architecture problem (data re-shuffle)

,& Elasticity

* Persistent storage — easy, offloaded to S3
* Compute — easy, pre-warmed pool of VMs

* Ephemeral storage — challenging, due to co-location with compute
Back to shared-nothing architecture problem (data re-shuffle)

,& Elasticity

* Persistent storage — easy, offloaded to S3
* Compute — easy, pre-warmed pool of VMs

* Ephemeral storage — challenging, due to co-location with compute
Back to shared-nothing architecture problem (data re-shuffle)

,& Lazy Consistent Hashing

[Scheduler]

(m):
I | |

Node 2 Node 3

Persistent Storage (S3) *

,& Lazy Consistent Hashing

Locality aware task scheduling

[Scheduler]

(m):
M | @

Node 2 Node 3

Persistent Storage (S3) *

,& Lazy Consistent Hashing

Locality aware task scheduling

[Scheduler }
7\

Persistent Storage (S3) *

,& Lazy Consistent Hashing

[Scheduler]

(m):
I | |

Node 2 Node 3

Persistent Storage (S3) *

,& Lazy Consistent Hashing

Elasticity without data re-shuffle

[Scheduler]

(m):
] o | | E

Node 1 Node 2 Node 3

Persistent Storage (S3) *

,& Lazy Consistent Hashing

Elasticity without data re-shuffle

[Scheduler]

(m):
| |y | Iy | | @

Node 1 Node 2 Node 3 Node 4

Persistent Storage (S3) *

,& Lazy Consistent Hashing

[SchedulerJ

Node 2

Node 3

Elasticity without data re-shuffle

A e

T4

]
' F4 |

Node 4

Persistent Storage (S3) *

,& Lazy Consistent Hashing

Elasticity without data re-shuffle

[SchedulerJ

Persistent Storage (S3) *

Do customers exploit elasticity in the wild?

Do customers exploit elasticity in the wild?

1 F
o — |
= 0.8 |
>
S 0.6 e
- i
-8 04
O s
© s
. 0.2 e
0 i
10° 10’ 10?

Maximum VW Resize

Do customers exploit elasticity in the wild?

1 T A
__//';_ | 20% warehouses exploit elasticity
gosf 17
>
5 0.6 .
S |
-% 0.4 5 1 Sometimes by up to 100x
© i
T ¢ e : 4
0 l1 2
10° 10 10
. Maximum VW Resize N

Resource scaling by up to 100x needed at times

At what time-scales are warehouses resized?

At what time-scales are warehouses resized?

26
,&’ —— Query Inter-arrival
ﬁ 24 Warehouse Size
3
o
% 22]
g

20 T T T T T

2-22 2-23 2-24 2-25 2-26 2-27 2-28

Event time

At what time-scales are warehouses resized?

2
,qﬁ —— Query Inter-arrival .
ﬁ 24 { —— Warehouse Size N [
(g JL
o
5 22 —
3
=
2
o 10
£
©
Z 10
5
2
= 10! . . . — .
2-22 2-23 2-24 2-25 2-26 2-27 2-28

Event time

At what time-scales are warehouses resized?

Warehouse Size

Inter-arrival time

22_

—— Query Inter-arrival
24 4 —— Warehouse Size

/]

10°

103 _

10?t
2-22

2-23

2-24

2-25
Event time

2-26

2-27

2-28

Granularity of warehouse elasticity
>>

Changes in query load

At what time-scales are warehouses resized?

—— Query Inter-arrival 1 N ‘—

24 4 —— Warehouse Size J"\
22_ —_— . « .
Granularity of warehouse elasticity
20 :
>>

” Changes in query load

Warehouse Size

103 _

Inter-arrival time

10?t ; . . —1 .
2-22 2-23 2-24 2-25 2-26 2-27 2-28

Event time

Need finer-grained elasticity in order to better match demand

Resource Utilization

Resource Utilization

100 System-wide resource utilizations

804 S—— S— — |

604 A S— — |

Utilization

CPU Memory Network-Tx Network-Rx

Resource Utilization

100 System-wide resource utilizations

A A A A
| | | |
: : I I
I I I |
| | | |
I I I I
N E N (S — T T
S 4 | | I
S : : |
! | | I
2 404 I | %
|
| !
204 B |

CPU Memory Network-Tx Network-Rx

Significant room for improvement in resource utilizations

Resource Utilization

System-wide resource utilizations : :
100 —— ; : : Virtual Warehouse abstraction
|_ | : ! * Good performance isolation
o : | -y * Trade-off: Low resource utilization
| | | |
I I l l
- 604 | 1 I . B
S ¥ | | I
N I I |
= I I I
o 40 4 [[%
| |
| .|
%

CPU Memory Network-Tx Network-Rx

Significant room for improvement in resource utilizations

Resource Utilization

System-wide resource utilizations : :
100 —— ; : : Virtual Warehouse abstraction
| | | ! e Good performance isolation
80 1 : : : : * Trade-off: Low resource utilization
| | | |
| | | |
s % H : : : Solution #1
;j_gj ! : ! Finer-grained elasticity with current design
> 40+ i | i
| |
| |
20 - v | Solution #2
y Move to resource shared model

CPU Memory Network-Tx Network-Rx

Significant room for improvement in resource utilizations

per-hour
Customer < >

Sz snowflake «

per-hour

)

>

dWsS

per-hour
Customer < >

Sz snowflake «

)

>
per-second

dWsS

@) Alternate design: Resource Sharing

[Customer } < - oz snowflake < - aWS
per-second

ar per-second

5 Alternate design: Resource Sharing

[Customer } < - oz snowflake < - aWS
per-second

r per-second

Move to per-second pricing -> pre-warmed pool not cost effective

{ Customer } < - oz snowflake < - aWS
per-second

ar per-second

Move to per-second pricing -> pre-warmed pool not cost effective

Solution#1
. inod alactici " losi

Customer | < - oz snowflake <
per-second hr

>
per-second

dWsS

Move to per-second pricing -> pre-warmed pool not cost effective

Solution#1

Solution #2

bacrerminodelbstieiponiregrropidosion Move to resource shared model

5 Alternate design: Resource Sharing

r per-second

[Customer } < - oz snowflake < - aWS
per-second

Move to per-second pricing -> pre-warmed pool not cost effective

Solution#1 Solution #2
bacrerminodelbstieiponiregrropidosion Move to resource shared model

Statistical Multiplexing
e Better resource utilization

e Helps support elasticity

@) Alternate design: Resource Sharing

[Customer } < - oz snowflake < - aWS
per-second

r per-second

Move to per-second pricing -> pre-warmed pool not cost effective

Solution#1 Solution #2
bacrerminodelbstieiponiregrropidosion Move to resource shared model

Statistical Multiplexing For 30% of warehouses

e Better resource utilization Standard deviation >= Mean

e Helps support elasticity

© Resource sharing challenges

% .
.....

5 Resource sharing challenges

. .
. .

* Challenges of moving to a resource shared architecture
 Maintaining isolation guarantees
* Shared Ephemeral Storage System

5 Resource sharing challenges

. .
. .
......

* Challenges of moving to a resource shared architecture

 Maintaining isolation guarantees
* Shared Ephemeral Storage System

Tenant A Tenant B

Shared Warehouse

. .
......

5 Resource sharing challenges

* Challenges of moving to a resource shared architecture

 Maintaining isolation guarantees
* Shared Ephemeral Storage System

Tenant A

Tenant B

Shared Warehouse

* Sharing cache

No pre-determined lifetime
Co-existence with int. data

). Resource sharing challenges

.. o
oo

* Challenges of moving to a resource shared architecture

 Maintaining isolation guarantees
* Shared Ephemeral Storage System

Tenant A Tenant B ° Sharing cache
* No pre-determined lifetime
:@: e Co-existence with int. data

* Elasticity without violating isolation
e Possible cross-tenant interference
 Need private address-spaces for tenants

Shared Warehouse

). Resource sharing challenges

. .
......

* Challenges of moving to a resource shared architecture

 Maintaining isolation guarantees
* Shared Ephemeral Storage System

Tenant A Tenant B ° Sharing cache
* No pre-determined lifetime
e Co-existence with int. data

* Elasticity without violating isolation
e Possible cross-tenant interference
 Need private address-spaces for tenants

Shared Warehouse

). Resource sharing challenges

. .
......

* Challenges of moving to a resource shared architecture

 Maintaining isolation guarantees
* Shared Ephemeral Storage System

Tenant A Tenant B ° Sharing cache
* No pre-determined lifetime
e Co-existence with int. data

* Elasticity without violating isolation
e Possible cross-tenant interference
 Need private address-spaces for tenants

Shared Warehouse

Conclusion

/& Design aspects @ Data-driven insights ..= Future Directions

N i

https://github.com/resource-disaggregation/snowset

Conclusion

/&\ Design aspects ®\ Data-driven insights ..= Future Directions

Sz snowflake

https://github.com/resource-disaggregation/snowset

Conclusion

/&\ Design aspects @ Data-driven insights ..= Future Directions

N Dol

db
X snowflake

* Dataset publicly released
* https://github.com/resource-disaggregation/snowset

https://github.com/resource-disaggregation/snowset

Thank You

Questions?

