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Hardware-workload	mismatch!

Data	re-shuffle	during	elasticity!

Fundamental	issue	in	shared-nothing	architectures:	Tight	coupling	of	compute	&	storage
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Statistics	from	70	million	queries	over	14	day	period
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Persistent	data	read/written	varies	over	several	orders	of	magnitude	within	each	class

Three	distinct	query	classes
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Read-Only	query	load	varies	significantly	over	time	
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						Intermediate	Data	Characteristics

Intermediate	data	sizes	->	variation	over	5	orders	of	magnitude

Difficult	to	predict	intermediate	data	sizes	upfront

												Decouple	compute	&	ephemeral	storage?
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• Each	file	assigned	to	unique	node
• Consistent	hashing
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Analysis,	Future	Directions

in	paper
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Sometimes	by	up	to	100x

20%	warehouses	exploit	elasticity

Resource	scaling	by	up	to	100x	needed	at	times
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Granularity	of	warehouse	elasticity	

>>	


Changes	in	query	load

Need	finer-grained	elasticity	in	order	to	better	match	demand
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Solution	#1

Finer-grained	elasticity	with	current	design

Solution	#2

Move	to	resource	shared	model

Statistical	Multiplexing

• Better	resource	utilization

• Helps	support	elasticity

For	30%	of	warehouses
Standard	deviation	>=	Mean
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Thank	You
Questions?


