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Traditional Shared-Nothing Architectures

e Data partitioned across servers
* Each server handles its own partition

Hardware-workload mismatch!

Data re-shuffle during elasticity!

Fundamental issue in shared-nothing architectures: Tight coupling of compute & storage
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2‘0'5 snowflake * In production for over 5 years
e 1000s of customers, millions of queries / day

Statistics from 70 million queries over 14 day period
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Three distinct query classes

Persistent data read/written varies over several orders of magnitude within each class
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Read-Only query load varies significantly over time
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Intermediate data sizes -> variation over 5 orders of magnitude

Difficult to predict intermediate data sizes upfront

; Decouple compute & ephemeral storage?
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* Intermediate data volume -> PeakI Averagel
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* Analysis, Future Directions

in paper
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Do customers exploit elasticity in the wild?
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Resource scaling by up to 100x needed at times
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Need finer-grained elasticity in order to better match demand
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System-wide resource utilizations : :
100 —— ; : : Virtual Warehouse abstraction
| | | ! e Good performance isolation
80 1 : : : : * Trade-off: Low resource utilization
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| | | |
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y Move to resource shared model
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Significant room for improvement in resource utilizations
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[ Customer } < - oz snowflake < - aWS
per-second

r per-second

Move to per-second pricing -> pre-warmed pool not cost effective

Solution#1 Solution #2
bacrerminodelbstieiponiregrropidosion Move to resource shared model

Statistical Multiplexing For 30% of warehouses

e Better resource utilization Standard deviation >= Mean

e Helps support elasticity
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* Dataset publicly released
* https://github.com/resource-disaggregation/snowset
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Thank You

Questions?



