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Abstract

A common characteristic of relational data sets
—degree disparity—can lead relational learning
algorithms to discover misleading correlations.
Degree disparity occurs when the frequency of a
relation is correlated with the values of the target
variable. In such cases, aggregation functions
used by many relational learning algorithms will
result in misleading correlations and added com-
plexity in models. We examine this problem
through a combination of simulations and ex-
periments. We show how two novel hypothesis
testing procedures can adjust for the effects of
using aggregation functions in the presence of
degree disparity.

1.  Introduction

Many current techniques for inductive logic programming
and relational learning use aggregation functions. These
functions (e.g., AVG, MODE, SUM, EXISTS, COUNT, MAX,
MIN) are used to summarize the complex and varying re-
lational structure found in many learning tasks. For ex-
ample, molecules have varying numbers of atoms and
bonds, web pages have varying numbers of incoming and
outgoing links, and movies have varying numbers of ac-
tors and producers.

If learning algorithms use aggregation functions without
adjusting for the underlying structure of relational data,
they can produce misleading models. In particular, if the
number of items to be aggregated varies systematically
with the target variable, then applying any one of a large
set of aggregation functions will lead to an apparent cor-
relation between the aggregated variable and the target
variable.

The results in this paper complement previous results
(Jensen & Neville, 2002) showing that concentrated link-
age and autocorrelation can bias feature selection in algo-
rithms for relational learning. Together, these results
show the perils inherent in simple approaches to proposi-
tionalizing relational data, as well as other approaches
that ignore the correlation between attribute values and
relational structure.

1.1  An example of feature evaluation

Consider the problem of learning to predict the box office
success of movies based on characteristics of the actors in
the movies. Some fragments of a relevant data set are
shown in Figure 1. Each movie is characterized by a bi-
nary class label indicating whether the movie made more
than $2 million in its opening weekend. Each movie is
linked to the set of actors that appear in the movie, and
each of those actors are characterized by a set of twenty
discrete attributes (e.g., the gender of the actor, whether
the actor has won an award, etc.).

Figure 1. Example fragments of relational data about movies.

For many learning algorithms, a subtask of this problem is
to determine whether any of the actor attributes predict
movie success. Because each movie has different numbers
of actors, relational learning algorithms often examine
aggregations of the attribute values on actors. For discrete
attributes, we might examine whether a particular value is
the MODE of the values of a given actor attribute or
whether a particular value EXISTS among all the possible
values. MODE and EXISTS are often called aggregation
functions, and such functions are common to many lan-
guages for handling relational data (e.g., SQL). In this
case, the number of possible features, |features| = kna =
200, where k is the number of attributes (e.g., 20), n is the
number of values per attribute (5), and a is the number of
aggregation functions (2).

Are any of these features useful for prediction? That is, do
any of them perform better than would be expected by
chance alone? Happily, 79 of the 100 EXISTS features on
actors appear to be useful in predicting the box office suc-
cess of movies, using a standard chi-square test of statisti-
cal significance (a=0.05, adjusted for 200 tests). Ten of
the 100 MODE features appear useful.



Unfortunately, these results demonstrate an important
flaw in the evaluation of features in relational data. The
attribute values discussed above were generated ran-
domly, without respect to the box office receipts of the
corresponding movies. Specifically, we simulated actor
attributes by generating five-valued discrete attributes
with the probability distribution {0.40, 0.30, 0.20, 0.05,
0.05}. Thus, the values of actor attributes should tell us
nothing about the expected box office receipts of movies.
Instead, the aggregated values of actor attributes reflect a
difference in the structure of the movie data. This struc-
ture was not generated randomly, but reflects the actual
structure of the Internet Movie Database (IMDb).

1.2  Heterogeneous structure

In the IMDb (www.imdb.com), the number of actors as-
sociated with any given movie varies systematically with
class label. As shown in Figure 2, successful movies tend
to have more actors than unsuccessful movies. Though
subtle, the effect is highly significant (p<2.2e-16), if we
compare movies based on whether they gross more than
$2 million in their opening weekend. We call this system-
atic difference degree disparity.

Figure 2. Actor degree varies with box office receipts

Given degree disparity, nearly any aggregated attribute
can show apparent correlation with the class label. Some
of these effects are obvious. For example, the SUM of a
continuous attribute such as actor age will be much higher
for movies with many actors than for those with few.
Other effects are relatively clear when you consider the
effects of degree disparity. For example, the MIN or MAX
values of a particular continuous attribute of actors will
tend to be larger, given the opportunity to select from a
larger number of actors. Similarly, the probability that a
particular value EXISTS will be higher, given a larger
number of actors.

Given that we can recognize degree disparity, can we ac-
count for its effects? One option is to adjust the calcula-
tion of chi-square to account for the effects of degree dis-
parity. We discuss the details of this adjustment in more

detail in Section 5, but the effect of making this adjust-
ment is shown in Figure 3. From right to left, the figure
shows the sampling distribution of chi-square for a con-
ventional calculation, the sampling distribution for a cor-
rected calculation, and a theoretical sampling distribution.
Clearly, the corrected distribution is a far better approxi-
mation to the theoretical sampling distribution.

Figure 3. Theoretical, corrected, and conventional distributions
of the chi-square statistic given the actor degree disparity in the
IMDb data.

In the next two sections of this paper, we discuss how
aggregation functions are used in relational learning algo-
rithms, and we define degree disparity. The next section
details the misleading correlations that can result when
aggregation functions are used in the presence of degree
disparity. Then we present two types of significance tests
that can be used to adjust for the biases introduced by
degree disparity and present experimental evidence that
these corrections result in more understandable models.
Finally, we conclude with some discussion and pointers to
future work.

2.  Aggregation in Relational Learners

Many algorithms for relational learning use aggregation
functions.1 Perhaps the most common approach is to use
EXISTS in an explicit or implicit manner, although the full
range of aggregation functions are used by some tech-
niques. Specifically, learning algorithms can apply aggre-
gation as either a pre-processing step or as part of the ac-
tual learning procedure.

Some techniques “propositionalize” relational data and
then apply a conventional non-relational learning algo-
rithm. This preprocessing often uses aggregation func-
tions. For example, Krogel and Wrobel (2001) use AVG,

—————
1 Aggregation is one of many characteristics of the knowledge represen-
tations employed in inductive logic programming and relational learn-
ing. Other characteristics of knowledge representation and reasoning
systems that are not discussed in the paper include variable bindings,
functors, relational skeletons, and slot chains.



MIN, MAX, SUM, and COUNT functions as part of their
RELAGGS approach. RELAGGS propositionalizes rela-
tional data into features that are then supplied to either
C4.5 or an algorithm for learning a support-vector ma-
chine.

Other algorithms have been specifically designed for re-
lational learning. These techniques often employ aggre-
gation functions directly in their model representations.
For example, probabilistic relational models (PRMs) use
MODE, AVG, MEDIAN, MAX, MIN, and SIZE. PRMs (Getoor,
Friedman, Koller & Pfeffer, 2001) learn a form of graphi-
cal model that represents the joint probability distribution
over individual and aggregated values of particular attrib-
utes. Similarly, Knobbe, Siebes, and Marseille (2002)
present a general framework for aggregation, and demon-
strate the framework in the context of rule learning. Their
approach uses COUNT, MIN, MAX, SUM, and AVG. Finally,
our own work on learning relational probability trees
(Neville, Jensen, Friedland, & Hay, 2003) creates di-
chotomous divisions within a tree using COUNT, PRO-
PORTION, MIN, MAX, SUM, AVG, MODE, and EXISTS.

Other approaches to learning in relational data make
heavy use of EXISTS. For example, Popescul, Ungar, Law-
rence, and Pennock (2002) adapt logistic regression to the
problem of relational learning, using EXISTS to create
logical features that serve as independent variables in the
regression equation. Blockeel and De Raedt (1998), use
EXISTS to create logical features for induction of relational
classification trees. Several other systems use similar
techniques (e.g. Kramer, 1996).

Although the use of aggregation functions is a frequent
technique in relational learning, some approaches use
other techniques for handling the varying structure of re-
lational instances. For example, Lachiche and Flach
(2002) discuss the use of set-valued probability estima-
tors, and Emde and Wettschereck (1996) use an instance-
based approach to learning that calculates a similarity
measure between cases represented in first-order logic.
However, approaches that eschew explicit aggregation are
relatively rare. The dominant approach appears to be ag-
gregating values either in pre-processing or as part of the
actual learning procedure.

3.  Degree Disparity

What is degree disparity? For purposes of this paper, we
define degree disparity as “systematic variation in the
distribution of the degree with respect to the target vari-
able.” For example, actor degree disparity exists with re-
spect to the box office receipts of movies if successful
movies tend to have more (or fewer) actors than unsuc-
cessful movies. Indeed, as shown in Figure 2 above, this
is true for the IMDb. The effects of aggregation and de-
gree disparity are quite general and could affect many
learning tasks. However, for simplicity, this paper focuses
on their effects with respect to classification.

Figure 4. degree disparity in IMDb and Cora data sets

Degree disparity is a common characteristic of relational
data. Figure 4 shows the degree distributions for two rela-
tional data sets commonly used for evaluating relational
learning algorithms. The first data set is drawn from the
IMDb. We gathered a sample of 1382 movies released
from January 1996 to September 2001. The data set con-
sisted of all movies released in the United States during
that time period with opening weekend receipt informa-
tion. Other time periods and geographic regions have
much sparser attribute information. In addition to movies,
the data set contains objects representing actors, directors,
producers, and studios. In total, the data set contains ap-
proximately 46,000 objects and 68,000 links. The learning
task was to predict movie opening-weekend box office
receipts. We discretized the attribute so that a positive
label indicates a movie that garnered more than $2 million
in opening-weekend receipts (P(+)=0.45). Figure 4 (top)
shows degree disparity of the three types of entities. We
tested those differences using the Kolmogorov-Smirnoff
(K-S) distance, a measure of the maximum difference
between two cumulative probability distributions (Sachs,
1982). K-S distance has a known sampling distribution
parameterized by sample size, and thus can be used to test
whether two degree distributions are drawn from the same
parent distribution. The degree disparity with respect to
actors and producers is statistically significant
(p<0.0001); the degree disparity with respect to directors
is not significant. Although the degree disparity for actors
and producers appears small, it has large effects, as we
showed in the introduction and will show later.

The second data set is drawn from Cora, a database of
computer science research papers extracted automatically
from the web using machine learning techniques
(McCallum, Nigam, Rennie & Seymore, 1999). We se-



lected the set of 4330 papers with topic “Artificial Intelli-
gence/Machine Learning” along with their associated
authors, journals, books, publishers, institutions and cited
papers. The resulting collection contains approximately
11,500 objects and 26,000 links. Machine learning papers
are further subdivided into seven categories (e.g., “The-
ory”, “Reinforcement learning”). The prediction task was
to identify whether a paper’s topic is Neural Networks
(P(+)=0.32). The degree disparity for all three types of
entities—references, authors, and journals—are statisti-
cally significant (p<0.0001). Although the degree dispar-
ity for references, authors, and journals appears remarka-
bly small, it can have large effects, as we will show in
later sections.

4.  Apparent Correlation

Given degree disparity, the use of aggregation functions
can lead to correlation between the aggregated feature and
the class label even if the individual attribute values are
independent of the class label. This is true regardless of
which of a large class of aggregation functions are used—
COUNT, EXISTS, SUM, MAX, MIN, AVG, MODE—although
the amount of correlation depends on the aggregation
function employed, the extent of degree disparity, and the
distribution of the attribute being aggregated.

Such correlation reflects degree disparity alone, and it can
have strong negative effects on model learning. First, this
type of correlation produces models that are easily misun-
derstood as representing correlation between the attribute
values themselves and the class label. At the very least,
correlation due to degree disparity introduces an added
level of indirection into a user's understanding of an in-
duced model. Second, correlation due to degree disparity
can vastly increase the number of apparently useful fea-
tures, making induced models much more complex. This
added complexity makes models correspondingly much
less understandable and much less computationally effi-
cient to use. For many techniques, particularly graphical
models such as PRMs, the identification of conditional
independence among attributes is a central goal, because
it improves both interpretability and computational effi-
ciency. Both these goals are impaired by added complex-
ity. In addition, the large number of surrogate features for
degree will cause some types of models to spread the
credit for the predictive ability of degree across a large
number of other features, making it appear that many
features are weakly predictive rather than the truth—that a
single structural feature (degree) is strongly predictive.

4.1  Apparent Correlation in Theory

The effects of degree disparity are relatively straightfor-
ward to prove for certain, restricted classes of attribute
distributions. In the interests of brevity, we omit detailed
proofs, but provide informal sketches for three types of
aggregation functions.

The probability that a given discrete value EXISTS changes
strongly with degree. For example, if we assume that the
genders of all actors in a given movie are mutually inde-
pendent, then the probability of a given number s of fe-
male actors is determined by the binomial distribution
(Sachs, 1982). That is, the probability distribution of the
random variable S is b(s;t,p), where t is the total number
of actors in a movie and p is the probability that a given
actor will be female. The cumulative binomial distribution
increases monotonically with increasing t. Similarly, ag-
gregated features using AVG can be influenced by degree.
Based on Bernoulli's theorem (or the weak law of large
numbers), for a given distribution with mean m, the prob-
ability that the average value of a set of independent
draws from that distribution will exceed a given threshold
x, where x > m, decreases as sample size increases. Fi-
nally, The probability of achieving a particular MAX or
MIN also varies with the number of items t (Jensen &
Cohen, 2000).

4.2  Apparent Correlation in Practice

Do apparent correlations between aggregated attributes
and a class label happen in practice? Specifically: 1) Will
actually observed levels of degree disparity produce sig-
nificant correlations in attributes whose values are other-
wise uncorrelated with the class label; and 2) Will those
correlations exceed the correlations of simple features
based on degree as well as other features unaffected by
degree disparity? Below, we present evidence for positive
answers to both questions.

To illustrate the bias caused by degree disparity, we took
the existing relational structure of the IMDb data and
generated attributes whose values were uncorrelated with
the class label. On the data set of 1382 movies, we added
a pair of attributes (one discrete and one continuous) to
each object related to a movie (actors, directors, and pro-
ducers). The attributes' values were uniformly distributed,
and independent of the class label.

We generated 300 such data sets and recorded the chi-
square scores for each aggregated feature. Figure 5 shows
the distributions of these scores. The top plot shows the
distribution of scores for features formed from the two
random attributes on actors. The bias is highest for the
aggregation functions SUM and EXISTS and the bias tends
to decrease as degree disparity decreases. As shown in
Figure 4, actors have high degree disparity, producers
moderate disparity and directors have no significant de-
gree disparity.

To test the effect of degree disparity on feature selection,
we ranked all features and then applied both a conven-
tional chi-square test and a randomization test (described
in Section 5) to assess the statistical significance of the
association between the given feature and the class label
(a<0.05, adjusted for multiple comparisons). Figure 6
shows ranked scores for all features deemed significant
based on the conventional test. Each bar corresponds to a



feature, and its length indicates the chi-square score of the
feature. Dark shading indicates that the feature was also
deemed significant using a randomization test. The two
methods produce very different results. In the IMDb data,
a randomization test eliminates the top-ranked feature,
and in Cora, it eliminates the vast majority of features.

 Figure 5. Simulation results for different types of attributes

5.  Hypothesis Tests

We have devised two alternatives to traditional hypothesis
tests that can adjust for the effects of degree disparity.

5.1  Traditional Tests

Relatively simple adjustments can be made to standard
hypothesis tests that account for the effects of degree dis-
parity. The introduction contained one example of this
type of test—a modification of a standard chi-square test.

The chi-square statistic is the summation of normalized
squared deviations from expected values. That is:

† 

(oi - ei)
2

eii
Â

where oi is the actual value and ei is the expected value.
Given a value of this statistic, we can compare it to a
known sampling distribution.

For example, the contingency table shown in Figure 7a
summarizes the relationship between a feature value x and
a class label y, where xŒ{T,F} and yŒ{+,-}. Based on
Figure 7a, we can calculate the expected values for each

cell under the assumptions that the class label and feature
value of each instance are independent and that the data
instances are independent. Given actual counts (Figure
7a) and expected counts (7b), we can calculate the prob-
ability of actual counts at least as extreme as those ob-
served under the null hypothesis of independence (p  =
0.003).

Figure 6. Histograms of ranked scores of features in two rela-
tional data sets. Bar length indicates the raw chi-square score.
Shading indicates whether the feature is significant.

+ – + – + –
T 11 3 T 7 7 T 10.7 3.3
F 4 12 F 8 8 F 4.3 11.7

(a) (b) (c)

Figure 7. An example contingency table (a), expected cell
counts (b), and expected cell counts with degree disparity (c).

As we showed in Section 4, degree disparity can intro-
duce dependence between class labels and feature values,
thus violating the first of these assumptions. However,
given a particular empirical distribution of degree for each
class, we can calculate the expected feature values, given
only the dependence introduced by degree disparity. For
example, we can calculate expected values for the feature
COUNT(actor.gender=female)>2 with respect to movies.
The overall distribution of actor.gender in our sample of
movies is 66% male and 34% female. To calculate the
table of expected values, we assume that each attribute
value is independent of any other, and use the cumulative
binomial distribution to determine the probability distri-
bution over the possible attribute values for each movie.
For a movie with 10 actors, the probability distribution for
the feature values {T,F} is {0.716,0.284}; for a movie
with 5 actors, the distribution is {0.220,0.780}. By sum-
ming the fractional counts across all instances, we can
obtain a table such as the one in Figure 7c. Given these
expected values, the probability of obtaining a table such
as 7a (or a more extreme table), under the null hypothesis
of attribute value independence, is large (p = 0.813). This
method was used to calculate the corrected distribution in
Figure 3.



This approach to producing a chi-square score “factors
out” degree disparity. It is theoretically justified, compu-
tationally efficient, and often simple in practice. However,
it assumes that each value being aggregated is independ-
ent, and that attribute values are independent of degree.
Both assumptions are violated in practice. In addition, it is
difficult to calculate for some combinations of aggrega-
tion function and attribute distribution.

5.2  Randomization Tests

Randomization tests provide an alternative method for
hypothesis testing under the assumption of degree dispar-
ity. A randomization test (also called a permutation test)
is a type of computationally intensive statistical test
(Edgington, 1980). Randomization tests generate many
data sets—called pseudosamples—and use the scores de-
rived from these pseudosamples to estimate a sampling
distribution. Each pseudosample is generated by ran-
domly permuting the values of one or more variables in
the original data. Each unique permutation of the values
corresponds to a unique pseudosample. A score is then
calculated for each pseudosample, and the distribution of
these randomized scores approximates the sampling dis-
tribution for the score calculated from the actual data.

To construct pseudosamples in relational data with degree
disparity, we permute the assignment of attribute values
to entities across the entire data set prior to aggregation.
Thus, each entity in a pseudosample (e.g., an actor) will
be assigned a random attribute value (e.g., gender) drawn
without replacement from the multiset of all such values
in the real data. Then, the values are aggregated (e.g.,
MODE(actor.gender)) and the association between the ag-
gregated feature (e.g., MODE(actor.gender)=F) and the
class label in the pseudosample is scored using a conven-
tional chi-square statistic. Note that this calculation is
made without the adjustments discussed in Section 5.1.
The chi-square statistic is calculated as if degree disparity
does not introduce any correlation between the feature
values and the class labels.

The set of scores—one per pseudosample—approximates
the sampling distribution of chi-square under the null hy-
pothesis, given the amount of degree disparity present in
the actual data. In contrast, the procedure discussed in
Section 5.1 alters how the chi-square statistic itself is cal-
culated, adjusting the value of the statistic so that a known
sampling distribution can be used to test the statistical
significance of the resulting value.

As with the previous approach, this approach to hypothe-
sis testing “factors out” degree disparity. Like the ad-
justed chi-square calculation, randomization tests are both
theoretically justified and practically simple. However,
randomization tests are computationally intensive, typi-
cally generating and evaluating hundreds of pseudosam-
ples. While this only introduces a constant factor increase
in computation time, the practical impact can be large,
particularly if the hypothesis test constitutes an inner loop

of a learning procedure. What countervailing benefits
offset the disadvantage of added computation?

Randomization tests can be used to adjust for a much
broader range of statistical effects than the modified chi-
square calculation presented in Section 5.1. For example,
we have developed randomization tests to adjust for the
effects of autocorrelated class labels in relational data
(Jensen & Neville, 2002). Autocorrelation violates the
other assumption of the traditional chi-square test men-
tioned in the previous section; autocorrelation means that
individual instances are not independent. In addition, we
have developed randomization tests to adjust for the ef-
fects of other biases in learning algorithms (Jensen &
Cohen, 2000). The same randomization test can be used
to adjust for all of these effects simultaneously, so it is
preferable in cases where all effects are present.

6.  Experiments

To examine the practical effects of degree disparity and
the effectiveness of randomization tests in adjusting for
those effects, we applied an algorithm for learning rela-
tional probability trees (Neville et al., 2003).

6.1  Learning algorithm

Relational Probability Trees (RPTs) extend probability
estimation trees (Provost & Domingos, 2000) to a rela-
tional setting. The RPT algorithm constructs a probability
estimation tree that predicts a target class label given: 1)
the attributes of the target object; 2) the aggregated attrib-
utes of other objects and links in the relational neighbor-
hood of the target object; and 3) graph attributes that
characterize the structure of relations (e.g., degree). We
selected RPTs for experimentation because they select a
subset of all features and because the recursive partition-
ing paradigm presents a set of simple univariate hypothe-
sis tests rather than more complex multivariate tests.

The RPT learning algorithm searches over a space of bi-
nary relational features. The algorithm considers the at-
tributes of different related object or link types and multi-
ple methods of aggregating the values of those attributes,
creating binary features from the aggregated values. For
example, the algorithm considers features such as
AVG(actor.age)>25 for numeric attributes such as ac-
tor.age, and features such as MODE(actor.gender)=Male
for nominal attributes such as actor.gender. The algo-
rithm also searches over degree features that count the
number of items in each relation (e.g., DEGREE(actor)>6).
The algorithm uses Bonferroni-adjusted chi-square tests
of significance to select features (Jensen & Cohen, 2000).
All the experiments reported in this paper used a Bonfer-
roni-adjusted a value of 0.05 as the stopping criteria.

In order to separate the effects of the randomization tests
from the rest of the RPT learning algorithm we included a
conventional tree learner in the evaluation. Following the
approach of Krogel and Wrobel (2001), we generated



propositional data sets containing all the binary features
considered by the RPT and supplied these data to C4.5.
All experiments reported in this paper used the Weka im-
plementation of C4.5 (Witten & Frank, 1999).

6.2  Classification tasks

Our first task (RANDOM) uses a subset of the IMDb data
described in Section 3. Due to limitations of our randomi-
zation procedure, which can only randomize among data
sets with non-zero degree, we selected the set of 1364
movies with at least one actor, director, studio and pro-
ducer. We created a classification task for the RPTs where
the only feature correlated with the class label was the
degree of the objects in the relational data. Recall that
movies with a positive class label tend to have higher de-
gree with respect to actors and producers (there is no sig-
nificant difference in director degree). On each actor, di-
rector, and producer object we added 10 random attributes
(5 discrete and 5 continuous). Discrete attributes were
drawn from a uniform distribution of ten values; continu-
ous attribute values were drawn from a uniform distribu-
tion of integer values in the range [1,10]. The model con-
sidered 3 degree features, one for each type of object
linked to the movie.

The second task (IMDB) also used the IMDb data de-
scribed above, but used both the structure and the attrib-
utes in the original data. RPT models were built to predict
movie success based on 14 attributes, such as movie genre
and actor age. There were two continuous and two dis-
crete attributes on each non-target entity type (actors, di-
rectors, and producers). Movies had two attributes (genre
and year). The model also considered 3 degree features,
one for each type of object linked to the movie.

The third task (CORA) used a subset of the Cora data de-
scribed in Section 3 where the class label indicates
whether a paper’s topic is “neural networks.” We selected
the set of 1511 papers with at least one author, reference
and journal. The RPT models had 12 attributes available
for classification, including a cited paper's high-level
topic (e.g. Artificial Intelligence) and an author's number
of publications. There were equal proportions of discrete
and continuous attributes on each non-target object.

For each of the three tasks, we built trees using three
methods: the RPT algorithm with randomization tests
(RTs), the RPT algorithm with only conventional signifi-
cance tests (CTs), and the C4.5 algorithm. To examine the
effect of degree disparity on the types of features selected,
we recorded the number of nodes in the tree that used
features based only on relational structure, which we
called degree features, as well as recording the overall
number of nodes. We weighted each count based on the
proportion of training instances which travel through a
given node. We also measured tree accuracy and area
under the ROC curve (AUC). The experiments used two-
tailed, paired t-tests to assess the significance of the re-
sults obtained from ten-fold cross-validation trials.

6.3  Results

As shown in Figure 8, CTs and RTs produced trees with
equivalent performance with respect to accuracy and
AUC across all data sets. C4.5’s trees were significantly
less accurate on RANDOM and equivalent on CORA. On
IMDB, C4.5 trees were more accurate assuming equal mis-
classification costs (traditional accuracy), but less accu-
rate when the entire area under the ROC curve is consid-
ered.

Figure 8. Tree accuracy and AUC.

Despite similar accuracy, trees built by the different
methods have radically different structure. Figure 9 sum-
marizes the features used in trees built with conventional
tests and randomization tests. Each bar expresses both the
size of the tree and the weighted proportion of degree
features. In all data sets, RTs and C4.5 add much more
non-degree structure than CTs.

Figure 9. Tree size and weighted proportion of degree features.

The empirical results support our earlier conjectures.
First, aggregation functions can cause misleading correla-
tions in the presence of degree disparity. For example, in
RANDOM, where only degree disparity of “actor” and
“producer” objects are predictive, more than 60% of the



features selected by CTs, and more than 90% of the fea-
tures selected by C4.5, were derived from random attrib-
utes that serve as surrogates for degree. Second, the trees
from RANDOM show that aggregation functions can add
complexity. Trees built with CTs and C4.5 were, on aver-
age, four times and 40 times larger, respectively, than
trees built with randomization tests. Finally, randomiza-
tion tests can adjust for the effects of degree disparity. In
three different data sets, randomization tests result in trees
with similar accuracy that are vastly smaller and contain a
much larger proportion of degree features.

7.  Conclusions and Future Work

Understanding the effects of degree disparity should af-
fect the design of almost all approaches to relational
learning, including algorithms for learning logic pro-
grams, probabilistic relational models, and structural lo-
gistic regression equations. However, to our knowledge,
no learning algorithm for these models adjusts for the
effects of degree disparity. This issue is not faced by other
fields that consider autocorrelation (e.g., temporal or spa-
tial analysis) because these fields generally consider
problems with uniform degree.

Much interesting work remains to be done. First, we have
largely ignored the issue of autocorrelation among attrib-
ute values (though we do adjust for autocorrelation among
class labels). Autocorrelation among attribute values
could have strong effects on hypothesis tests, and we in-
tend to explore new approaches to randomization that can
also adjust for attribute autocorrelation. Second, the ef-
fects of degree disparity highlight potential problems of
inference in incompletely sampled relational data. We
intend to explore how to improve the accuracy of learning
through the use of metadata on sampling rates and poten-
tially missing data.
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