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ABSTRACT

We describe a practical auditing approach designed to encourage fairness in peer-to-peer streaming. Auditing
is employed to ensure that correct nodes are able to receive streams even in the presence of nodes that do not
upload enough data (opportunistic nodes), and scales well when compared to previous solutions that rely on
tit-for-tat style of data exchange. Auditing involves two roles: local and global. Untrusted local auditors run on
all nodes in the system, and are responsible for collecting and maintaining accountable information regarding
data sent and received by each node. Meanwhile, one or more trusted global auditors periodically sample the
state of participating nodes, estimate whether the streaming quality is satisfactory, and decide whether any
actions are required. We demonstrate through simulation that our approach can successfully detect and react to
the presence of opportunistic nodes in streaming sessions. Furthermore, it incurs low network and computational
overheads, which remain fixed as the system scales.

1. INTRODUCTION

Video and audio streaming account for a large percentage of content accessed over the web. One popular style
of streaming on the web is on demand, in which users access pre-stored content at will. Another style requires
streams to be generated and disseminated in real-time. This may be the case with important social, political, or
sporting events. An important property of live-streaming is that data is not available in advance, being generated
just before transmission at the sender. Furthermore, interested users ideally want to receive the stream without
much delay from its original transmission.

Several practical live-streaming systems now allow large numbers of interested users to receive streamed data
in near real time, without requiring extensive amounts of resources. These systems are based on the peer-to-peer
(P2P) paradigm, where nodes interested in receiving data also help disseminate it to each other, alleviating the
bottleneck at the source. Initial protocols were based on building a tree-based overlay of nodes through which
data would be pushed.1–3

More recent systems, such as Chainsaw and Coolstreaming, have shown that the use of a mesh of connected
nodes and a pull-based data dissemination approach can provide similar results with better resilience to failures
and churn (nodes joining and leaving the system).4–7 In Chainsaw, for example, nodes notify each other of receipt
of data packets, and request packets from their neighbors based on the received notifications. Practical systems
based on pull-based streaming now exist in China, where they are used to disseminate television channels to
thousands of users.8

Even though the P2P paradigm allows systems to scale with the number of users, it also leaves them vulnerable
to opportunistic behavior. Opportunistic nodes attempt to receive a stream without uploading their fair share
of data, reducing the overall upload capacity of the system. Despite the damage that they may cause, not much
work has been done in studying mechanisms to avoid their presence in live-streaming systems. The goal of this
paper is to propose and evaluate a mechanism that can defend against this problem, whithout incurring large
overheads.

The approach that most closely relates to our work is the BAR Gossip protocol,9 which employs a tit-for-tat
approach for encouraging nodes to contribute: a node only sends as much data to another node as it receives
back. It provides an elegant solution shown to tolerate both opportunistic behavior and other malicious attacks.
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Figure 1. Minimum and average download rates across all nodes when using the BAR Gossip and Chainsaw protocols.

However, reliance on tit-for-tat does present a few undesirable requirements. To be efficient, the data source
should ensure that packets are evenly spread across the system by sending data to a fixed proportion of nodes,
and by sending different packets to different nodes. Furthermore, it requires the source and all nodes to have
full membership knowledge. These restrictions affect scalability when the data source has bounded upload
bandwidth.

To illustrate this problem, we fixed the upload capacity of a data source at 5 Mbps and simulated BAR Gossip
when streaming 500 Kbps with increasing numbers of receivers, varied between one and thirty thousand nodes.
We compare its scalability against the Chainsaw protocol,4 for which we fixed the source’s upload bandwidth
to 2 Mbps. In Figure 1, we present the average and minimum download rates (as ratios of the stream rate)
of both protocols when the number of nodes is increased. As observed, BAR Gossip is not able to sustain
its performance without scaling the upload capacity of the source proportionally with the size of the system.
Meanwhile, Chainsaw is able to scale well even with a fixed lower upload bandwidth at the source, but cannot
handle the presence of opportunistic nodes.

We propose to use auditing to encourage data-sharing in live-streaming systems like Chainsaw. Our auditing
approach establishes a minimum threshold for the amount of data sent by any node in the system, and removes
nodes that upload less data than the threshold. Instead of relying on a tit-for-tat mechanism, we focus on
encouraging nodes to respect the established protocol. Nodes are forced to provide accountable information
regarding packets sent to and received from neighbors, and the auditing system is responsible for detecting and
removing misbehaving nodes.

Notice that identifying the misbehaving nodes is not a trivial task, since there is no fixed minimum amount
of data that nodes should contribute to the system. If we assume a model where misbehaving nodes simply did
not upload any data, detecting them would be an easier task. However, once we assume that misbehaving nodes
may adjust their contribution level based on the policy used by an auditing system, a more elaborate approach
is required. This paper presents and evaluates an auditing model based on sampling the system and using the
sampled information to build a global view of how the system is currently behaving. Based on it, auditors employ
strategies to identify the misbehaving nodes that should be punished.

The paper is organized as follows. In section 2, we state the exact problem that we aim to solve and the
assumptions considered in this work. In section 3, we review the pull-based streaming protocol employed in
our system, followed by a description of our novel auditing approach in section 4. In section 5, we evaluate the
proposed approach. We then discuss the costs of auditing, and briefly describe how to extend our model for
heterogeneous systems, in section 6. Finally, we present related work in section 7, and conclude in section 8.

2. PROBLEM STATEMENT

Our approach focuses on a target streaming system consisting of one data source (assumed non-compromised),
which disseminates data at a fixed rate to a dynamic set of receivers. The source has limited upload bandwidth,
and hence can only send data directly to a small subset of interested receivers. Participating nodes are conse-
quently required to forward packets to their neighbors, helping disseminate all packets across the system. The



streamed data should be received by all nodes within a fixed latency from the source’s original transmission,
even in the presence of opportunistic nodes.

For simplicity, we first assume a system in which all nodes, except the source, have similar upload and
download bandwidths; in Subsection 6.2, we briefly discuss how to extend our model to work in heterogeneous
scenarios.

We assume that malicious nodes exhibit Byzantine behavior, while correct nodes follow the protocol as
defined, requesting data as needed and sending data as requested from them. Altrustic nodes are a subgroup
of correct nodes that are willing to upload more data than required from them. Finally, we employ the term
opportunistic to refer to a subgroup of Byzantine nodes that attempt to give less data than they would if they
behaved as correct nodes, with the intention of obtaining as much data as possible at least feasible cost. These
may employ a simple strategy, such as refuse to contribute any upload resources, or a more elaborate strategy
that allows them to cheat without being easily detected.

Notice that our model diverges from the one used in BAR Gossip,9 in which nodes are classified as Byzantine,
Altruistic, or Rational. In that model, rational nodes attempt to maximize their utility while still following
the defined protocol. Our model is actually less lenient: nodes employing strategies to maximize their utility
are classified as Byzantine, so that we can build a practical punishment-based system in which any node not
contributing its fair share of data may be expelled from the system.

Throughout the paper we use the terms upload factor and download factor to refer to the ratio between an
upload or download rate and the original stream rate. For example, given a stream rate of 500 Kbps, a download
rate of 400 Kbps corresponds to a download factor of 0.8.

3. STREAMING SYSTEM MODEL

Our auditing approach is used over the Chainsaw protocol.4 All nodes participating in the system are organized
into a fully connected mesh overlay, where each node has the same number of neighbors. The source is randomly
connected to a small subset of the nodes.

The streaming process starts at the source, which breaks the data stream into packets and sends notifications
to its neighbors as soon as it has packets to disseminate. These notifications are small messages used only to
inform neighbors of the availability of new packets. Based on the received notifications, each node requests
missing packets, and the source satisfies as many requests as allowed by its upload capacity. Unlike BAR Gossip,
with Chainsaw the upload capacity of the source does not need to increase with the size of the system; even an
upload capacity of twice the stream rate is sufficient to ensure that the system performs and scales well.

As nodes receive packets, they mimic the role of the source, sending notifications to their own neighbors in
the mesh, allowing packets to be propagated through the system. This pull-based approach to acquisition of
packets (notify-request-send data) provides some resilience to failure or malicious behavior, since a participant
will have multiple possible sources for each packet. The mesh overlay defines a predetermined set of neighbors
for each peer, which also makes it hard for malicious peers to round up on individual peers since attackers lack
a deterministic means of acquiring control of all of its neighbors. All nodes with exception of the source have a
fixed upper limit on their upload contribution (e.g. 1.2 times the stream rate), defined by the protocol. Of course,
this upper limit is not respected by opportunistic nodes, who attempt to reduce it with the goal of uploading
less data.

On the course of a streaming session, each node stores packets and forwards them to other peers only while
the packet is within its availability window, usually spanning a few seconds. Each node also maintains an interest
window, which represents the set of packets in which the peer is currently interested. Nodes choose packets to
request from each of its neighbors, respecting a maximum limit l on the number of outstanding requests to each
neighbor. This limit not only improves the general flow of packets, but also makes it harder for malicious peers
to overrequest packets from their neighbors: peers maintain a queue of non-satisfied requests from its neighbors,
keeping only the l most recent ones.
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Figure 2. Download and upload factors of nodes in an ideal system where all nodes behave correctly.

3.1 Expected Behavior

Our first goal is to explore the typical signature of the system, since an understanding of the behavior of pull-
based dissemination in the absence of opportunistic nodes will turn out to be important when we set out to
introduce auditing. We conducted experiments using an event-based simulator, which is described in more detail
in section 5.

In Figure 2, we evaluate the performance of 1000 nodes during an ideal execution of Chainsaw, where all
the nodes behave correctly. We fixed the upload factor of the source at 4.0 (2 Mbps), and the stream rate to
500 Kbps. We varied the maximum upload factor of nodes to see how it affected both the download and upload
factors of nodes across the system. The maximum upload factor is a fixed parameter which defines the maximum
rate at which a node will upload data to all its neighbors. For fairness in nodes’ bandwidth consumption, we
would like all nodes to upload data at a factor as close as possible to 1.0. We varied the maximum upload factor
of nodes from 0.9 to 1.2.

The left graph shows the minimum, average and maximum download factors across the nodes when the
maximum upload factor of nodes is increased. As observed, by increasing the maximum upload factor of nodes,
we increase the global upload capacity of the system, leading to a better flow of packets. However, the discrepancy
among the upload factors of individual nodes also increases, as seen in the graph to the right. When the maximum
upload factor is increased, some nodes participate more actively in dissemination while others end up contributing
less, even though all of them are behaving correctly. This is an important consideration: when we introduce
auditing, we do not want to punish nodes that are willing to contribute but cannot do so because of factors such
as their physical positioning in the system. In all our future experiments we set the maximum upload factor to
1.1.

3.2 Effect of Opportunistic Behavior

Our next goal was to understand the expected behavior of correct nodes under different scenarios where oppor-
tunistic nodes compromise the system. We therefore studied how the download and contribution rates of correct
nodes are affected under these conditions. Opportunistic nodes may contribute with some data in an attempt to
disguise their opportunistic behavior. Therefore, we considered different rates of contribution for opportunistic
nodes: 0 (pure freeloaders), 100, 200, 300 and 400 Kbps.

Figure 3 presents the average and minimum download factors among all correct nodes under different config-
urations. The stream rate was fixed at 500 Kbps, and all correct nodes had a maximum upload factor of 1.1 (550
Kbps). We ran experiments with 1000 nodes and increasing percentages of opportunistic nodes in the system
(from 0 to 90%). On the x-axis, we vary the percentage of opportunistic nodes. As expected, we can observe
that the download factors of correct nodes decreases since the aggregated upload capacity in the system becomes
insufficient to provide all nodes with all data. Nonetheless, the extent of the impact may be surprising: with
just 10% opportunistic nodes, performance drops by as much as 40%.

Figure 4 presents the average and minimum upload factors among all correct nodes. Once again, on the x-axis
we vary the percentage of opportunistic nodes, and on the y-axis we present the upload factors of nodes, which
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Figure 3. Minimum and average download factors across all correct nodes when opportunistic nodes are present. Each
curve corresponds to a different contribution rate used by opportunistic nodes.
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Figure 4. Minimum and average upload factors across all correct nodes when opportunistic nodes are present. Each curve
corresponds to a different contribution rate used by opportunistic nodes.

can vary up to 1.1. It is interesting to note that the average upload factor among correct nodes initially increases,
and then starts falling when the percentage of opportunistic nodes increases significantly. This behavior can be
explained by the fact that, initially, correct nodes start contributing more to compensate for the lack of data
provided by a small percentage of opportunistic nodes; however, once the effect of opportunistic nodes becomes
significant, the system collapses and correct nodes are not able to keep contributing.

Another important point to note is that the minimum upload factor does not follow a clearly defined pattern,
making it hard to estimate the minimum contribution of correct nodes under compromised scenarios. Therefore,
by applying thresholds to punish opportunistic nodes, correct nodes may also be unfairly penalized.

4. AUDITING PROTOCOL

Our idea for auditing the described live-streaming system against opportunistic behavior is motivated by the
graphs presented in the previous section: we propose to employ auditing to ensure that all nodes in the system
contribute more than a particular specified threshold. In Figure 5, we illustrate the potential benefit from using
auditing in a system where 70% of the nodes are correct and 30% are opportunistic. The latter do not upload
any data. During the first 100 seconds, no punishment was applied in an attempt to simulate a system with no
auditing. At time t = 100s, auditing is enabled and opportunistic nodes start to be expelled from the system
for low contribution. For this experiment, the minimum upload factor for nodes to stay in the system was set to
0.5.

We present the minimum, average and maximum download factors across correct nodes varying along 200
seconds. As observed in this particular example, auditing has the potential to improve the quality of streamed
sessions significantly, and at low cost. One important concern is that if the specified threshold is too high, more
opportunistic nodes may be caught, but correct nodes may also be unfairly punished. In this experiment, no
correct nodes were mistakenly expelled from the system.
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Figure 5. Download factor of correct nodes during a 200 second streaming session with 30% opportunistic nodes. Auditing
is enabled in the last 100 seconds.

4.1 Auditing components

We now give some additional details of the auditing architecture, focusing upon two aspects: (1) collecting
accountable information about the download and upload factors of individual nodes in the system; and (2)
establishing and applying the best threshold at any given time during execution. We employ two types of
components to perform these two roles: local and global auditors. Local auditors are executed on the nodes
participating in the system, and therefore cannot be trusted; if a node is malicious, it might report false data.
Global auditors are trusted components that run on dedicated external nodes. There can be just one or a few
global auditors. We describe their roles and interactions in detail below.

4.1.1 Local Auditors

Each node n runs a local auditor, which interacts with other local auditors and has two main roles:

Publish n’s data exchange history: n’s local auditor periodically compiles and distributes the history of
packets exchanged by n. To acomplish this, every δ seconds, it queries the local streaming application
running on n for the set of packets it sent and received using the streaming protocol in the most recent
time interval (Figure 6). The local auditor signs and publishes the collected history to an assigned subset
of its neighboring nodes, from whom other auditors may obtain it. This level of indirection is used to
prevent nodes from masking their real upload and download factors by presenting different information to
different auditors.

Audit n’s neighbors’ histories: n’s local auditor periodically audits the published histories of the nodes with
whom n exchanges packets. For instance, if node n exchanges packets with nodes p, q and r in the live-
streaming protocol, n’s local auditor compares these three nodes’ histories with n’s own history. This
involves ensuring that: (1) the amount of data sent by these nodes satisfies the defined minimum threshold
for the system; and (2) the set of packets they claim to have sent to and received from node n corresponds to
the set of packets n claims to have respectively received from and sent to them. If the first check comparison
fails, the local auditor issues an accusation against the node to a global auditor. In the second case, the local
auditor is not able to prove the neighbor’s misbehavior; instead, it instructs its local streaming application
to not further exchange packets with the misbehaving neighbor. More complex types of checks may also
be performed to address other types of Byzantine behavior.

There are two ways in which a node could pretend to be sending more or receiving less data than it actually
does. It could send different histories to each neighbor, always lying about its interactions with other neighbors.
For example, n could send a history to p pretending to send more data to q than it actually did, while it sends a
different history to q where it pretends to send more data to p than it actually did. n’s goal would be to send less
data while not being caught by any of its neighbors. The process of publishing a node’s history to a predefined set
of neighbors ensures that the node cannot send conflicting histories to different neighbors undetected, therefore
avoiding this problem.
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A node could also lie about the set of packets sent to or received from a particular neighbor p. In this case, p

will be able to identify that the node has lied and will therefore stop exchanging packets with n. Given that an
opportunistic node’s goal is to maximize its utility, it should have no interest in losing data exchange partners.
Therefore, opportunistic nodes have no incentive to publish incorrect histories.

Summary: Local auditing ensures that correct information is available regarding the set of data sent and
received by any node, and allows nodes to monitor each other’s contribution rates.

4.1.2 Global Auditors

Global auditors are trusted components with global membership knowledge, who interact with one another and
with the local auditors. As shown in Figure 7, global auditors execute on nodes external to the system. Their
main roles are:

Define the minimum upload threshold: Global auditors periodically sample the state of the system by
querying local auditors. They then cooperate to analyze the collected samples, and on this basis compute
the minimum upload contribution threshold. Different strategies may be employed for choosing the best
possible threshold, given different scenarios. Once thresholds are varied, they are gossiped to all local
auditors, who then enforce the determined threshold.

Expurge nodes from the system: Global auditors are also responsible for verifying accusations issued by
local auditors against particular nodes, and after validating the accusation, expurging misbehaving nodes
from the system. Validation involves verifying that the accused node’s history indeed indicates that the
node is sending less data than the current threshold. Expurging a node involves informing the nodes’
immediate neighbors of its status and forcing the removal of the node from the overlay mesh.

The number of global auditors may vary according to different parameters, such as the size of the system. The
use of more global auditors distributes the load of sampling and improves efficiency in reacting to accusations
against nodes. Global auditors are also perfect candidates to perform membership tasks such as acting as entry
points to the P2P system, since they are required to have full membership knowledge of the system for performing
their auditing roles.



Summary: Global auditing monitors the global health of the system to identify the best value for the min-
imum upload threshold at any time during a streaming session, and makes final decisions regarding punishment
of nodes.

4.2 Adaptive Threshold Strategies

Choosing an upload threshold requires care: a low threshold may not be sufficient to identify opportunistic nodes,
while high thresholds may incorrectly punish correct nodes. We considered different strategies for the choice of
the minimum contribution t hreshold used for identifying misbehaving nodes.

The simplest strategy sets a fixed threshold (e.g., t = 0.5), independent of the current state of the system. In
this case, any node contributing at a rate of less than 50% of the stream rate would be removed. One downside
of using a fixed threshold is that opportunistic nodes that learn the threshold can simply contribute at the lowest
possible upload factor, thus avoiding detection. From the graphs in section 3, it is clear that such a stretagy
may disrupt the streaming session. Meanwhile, choosing a high threshold is not a practical option, since correct
nodes would get unfairly punished.

To avoid this problem, we have explored adaptive strategies. One simple strategy starts with a minimum
threshold (e.g., t = 0.5), increasing it only if the system is compromised. Global auditors sample the system
to identify the average download factor, and if this factor is lower than 0.98, increase the threshold. Once the
download factor reaches a satisfactory level again, the threshold may be reduced back to its initial value. This
stepwise approach allows the system to catch opportunistic nodes in case their presence starts affecting the
performance of the system, while avoiding incorrect accusations of correct nodes.

We also considered a second adaptive strategy (percentile-based) for computing the threshold based on peri-
odically sampled download and upload factors. The average download factors once again are used for detecting
whether the threshold should be varied or not. In this strategy, our initial threshold is set to null, and the thresh-
old is chosen from sampled upload factors. After each sampling, if the system seems to be in a compromised
state, the collected upload factors are ordered and the value dividing the lowest 10 percent is used as the new
threshold. This approach relies on efficiently sampling the system, and on fact that if the system’s performance
is not satisfactory, then at least 10 percent of the nodes are opportunistic.

5. EVALUATION

In this section, we evaluate the performance of our proposed auditing strategy over the original streaming
protocol. We built an event-driven simulator and used it to simulate streaming sessions on networks with 1000
nodes and an average of 50ms inter-node latency. The target streaming rate in the experiments was fixed to 500
Kb/second, and all our experiments were repeated 10 times. Confidence intervals were small, and for simplicity
are omitted from the graphs.

In all experiments, the source of the stream has an upload capacity of four times the stream rate (2 Mbps)
and is connected to 20 arbitrarily selected nodes. Other nodes have enough download capacity to receive the
stream, and upload factor of 1.1. We defined an availability window of 10 seconds and an interest window of 8
seconds. To evaluate the quality of each auditing strategy, we evaluate the average download factors of correct
nodes during a 100 second time interval after auditing is first applied to the system. For the sample-based
techniques, we considered that global auditors collected information from 100 nodes between each interval of 20
seconds. Notice that the sample size does not increase with the size of the system, which is a positive aspect of
the auditing approach. In subsection 6.1 we discuss the costs involved in collecting these samples.

In Figure 8, we consider the use of fixed thresholds. We studied the effects of using different values for t,
starting from 0 (no auditing) and increasing it until 0.9 (90% of the stream rate), and present a detailed set of
results on applying different thresholds to different scenarios. In each scenario, the ratio of opportunistic nodes
is fixed to 30%, but their contribution factor (profile) is varied among 0, 100, 200, and 300 Kbps. All other 70%
nodes follow the protocol, with a maximum contribution rate set to 550 Kbps (upload factor = 1.1). We present
the average download rates (left) and the number of correct nodes mistakenly removed from the system, termed
false positives (right), for each of these configurations. The threshold applied is presented on the x-axis. In the
left graph, as the threshold increases, higher download averages are observed, since more opportunistic nodes are
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Figure 8. Quality of streaming when applying the fixed threshold strategy. Threshold is varied from 0 to 0.9 (x-axis),
and the contribution rate of opportunistic nodes is varied from 0 to 400 Kbps. The first graph (left) presents the average
download factors across all correct nodes. The second graph (right) presents the number of correct nodes incorrectly
punished (false positives).

detected and punished. However, the number of nodes incorrectly accused also increases with higher thresholds,
as observed in the right graph.

Scenarios where opportunistic nodes contribute at higher rates (300 Kbps) are less disruptive to the system,
but they also require higher thresholds to be applied. Different thresholds yield best results under different
scenarios, but overall, from the results presented in Figure 8, we concluded that the best fixed threshold is
t = 0.6, providing the best compromise in terms of performance and false positives across all scenarios.

In Figure 9, we compare all three strategies proposed in subsection 4.2 against each other and against a
configuration with no auditing, under different scenarios. We set t = 0.6 for the fixed threshold strategy and
as the initial threshold in the stepwise adaptive strategy. We summarize the three strategies in Table 1. We
simulated sessions where 30% of the nodes were opportunistic and with varying ratios of contribution. In the
x-axis, the contribution rate of opportunistic nodes is varied from 0 to 450 Kbps. All other nodes are correct,
contributing at a maximum rate of 550 Kbps. We present both the average and the minimum download factors
across all correct nodes in the system. As the contribution rate of opportunistic nodes increases, the download
factors are expected to increase, which is clear from the curves presented.

Strategy Description

No auditing Fixed t = 0.0
Fixed threshold Fixed t = 0.6
Stepwise adaptive Minimum t = 0.6. If avg sampled download factor < 0.98, increase t by 0.1.

Decrease t back to 0.6 when avg download is satisfactory again.
Percentile-based adaptive Minimum t = 0.0. If avg sampled download factor < 0.98, t is chosen based on

sampled upload factors (t > lower 10% sampled values).

Table 1. Strategies used for defining the minimum upload threshold t

Figure 9 shows that all strategies yield significantly better results compared to an approach with no auditing.
While both adaptive strategies yield excellent download rates to correct nodes, the fixed threshold strategy’s
performance is not as good when opportunistic nodes are contributing with 300 or slightly more Kbps (near 0.6
contribution factor). At those rates opportunistic nodes are harmful to the system, yet the fixed threshold of
0.6 is not able to detect them.

Finally, in Figure 10, we consider a scenario where opportunistic nodes contribute with different rates. We
varied the percentage of opportunistic nodes in the system from 0 to 90%, and evenly assigned them different
contribution rates. The graphs present the average and minimum download rates for these scenarios. Once
again, no auditing performs significantly worse than any of the proposed strategies. Here, the stepwise adaptive
approach yields the best results when large percentages of opportunistic nodes are present in the system. It
is also simpler than the percentile-based approach, since it is based only on samples of the download rates of



nodes. In both sets of experiments, the number of false positives was practically null under all three strategies
considered (at most one in some cases).

6. DISCUSSION

6.1 Auditing Costs

The overheads imposed by auditing are an important consideration, which we address in this subsection. Most
of the work of auditing is performed by local auditors, which are executed on the user nodes. The overhead is
constant, independent of the size of the system, and is not significant, since nodes only exchange a small amount
of accounting data at pre-defined intervals of time (for example, 10 seconds). If we consider a packet rate of
50 packets/s, in 10 seconds the maximum number of packets received and sent by each node is 1000. For each
packet sent or received, the history needs to indicate which neighbor sent or received the packet. By using 4 bits
to identify each neighbor, the history’s size adds up to 4000 bits, or 500 bytes. This is not significant compared
to the amount of regular data exchanged in a streaming session.

We also analyzed the costs of the global auditors. Since they are dedicated and external to the system, the
overhead imposed by them is of higher concern. Global auditors’ main tasks consist of sampling the system to
collect download and upload rates of nodes, and of occasionally disseminating updates to the threshold value,
through gossip. The sample size remains fixed independent of the size of the population. We ran simulations
to estimate the worst-case standard deviation of the download rates across all nodes. Accordingly, we estimate
that a sample size of 300 nodes is sufficient to provide 95% confidence, independent of the population size. For
smaller systems, such as the ones simulated in this work, even a smaller number of samples was found to be
sufficient to yield satisfactory results. Therefore, centralized costs are fixed, and provide a clear advantage for
using auditing against tit-for-tat approaches in large-scale systems.

6.2 Heterogenous Systems

So far we considered the use of auditing to enforce node contribution in systems where all nodes are assumed to
have homogeneous bandwidth resources, enough to upload and download at a rate close to the stream rate. Pull-
based streaming may be extended to heterogenous systems by organizing nodes into multiple groups, according
to their upload bandwidths: nodes able to upload at a rate higher than the stream rate are placed in higher-lever
groups, which are closer to the source. The source sends data to the highest level group only, who uses the
basic protocol to disseminate data among each other. Nodes in lower levels may receive data at smaller rates,
after some filtering is applied, and higher-level nodes may be used to act as sources to the lower-level nodes,
alleviating the burden at the source.

Auditing can be used to avoid the presence of opportunistic and lower bandwidth nodes in the higher-level
groups. It can ensure that the hierarchy of nodes is obeyed by all nodes, while allowing the system to leverage
additional resources from privileged altruistic nodes to forward data to lower level groups. We intend to explore
this further in future work.
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Figure 9. Minimum and average download factors across all correct nodes when using different strategies for choosing the
threshold. The upload contribution rate of opportunistic nodes is varied in the x-axis, and the number of opportunistic
nodes is fixed at 30%.
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Figure 10. Minimum and average download factors across all correct nodes when using different strategies for choosing
the threshold. Each session has mixed set of opportunistic nodes (contributing at different rates) and percentage of
opportunistic nodes is varied on the x-axis.

7. RELATED WORK

Several P2P live-streaming protocols have been previously proposed. The first generation of systems (Overcast,2

Narada1) relied on approaches based on pushing data through a single dissemination tree. Later approaches
focused on improving fairness among peers and resilience to churn by breaking data into multiple substreams
and sending them along disjoing paths (SplitStream,3 Bullet10).

More recent systems like CoolStreaming5 and Chainsaw4 use a pull-based style of data dissemination. Cool-
streaming breaks the data into packets, and peers organized into a mesh request packets from their neighbors
using a scheduling algorithm. As we saw earlier, Chainsaw uses a simpler policy for requesting packets, ran-
domly fetching them while respecting a maximum limit on the number of outstanding requests to each neighbor.
Chainsaw presents smaller delays for the receipt of packets compared to the Coolstreaming protocol. In a more
recent work,11 mesh-based approaches are shown to present better performance over tree-based approaches.

Previous papers have considered a variety of possible mechanisms to encourage node contribution. Oversight12

is a framework proposed to enforce download rate limitations on P2P media streaming systems. The protocol
relies on a set of trusted nodes that store information on the data downloaded by each node receiving data.
Nodes only send an object after consulting the trusted nodes to verify if the nodes requesting the stream are not
overrequesting data. It is targeted to systems where nodes upload full media objects from each other, and not
for live-streaming systems where all nodes are interested in receiving the exact same data in close to real time.

Ngan et al.13 consider fairness issues in the context of tree-based peer-to-peer streaming protocols. The
authors present mechanisms that rank peers according to their level of cooperation with the system. One of
their techniques involves the reconstruction of trees as a way of punishing opportunistic nodes. Most of their
mechanisms require peers to keep track of their parents’ and children’s behavior.

Pai et al. studied the effect of different types of incentives on the Chainsaw protocol.14 After exploring
tit-for-tat and some variations, the authors propose an algorithm that sets up local markets at every node, where
neighbors compete for the node’s upload capacity. Nodes favor neighbors who contribute more. Experiments
were limited, with nodes classified as fast or slow nodes. The results indicate that the proposed algorithm
improves the performance of the system when the total upload capacity is not enough to supply all the nodes.
Pulse15 is another live-streaming system where nodes choose their neighbors based on their history of interaction.
Nodes are placed in the system according to their current trading performances, encouraging nodes to contribute
more and therefore be closer to the source.

BAR Gossip9 is a more recent live-streaming approach that tolerates the existence of opportunistic and
malicious nodes. Time is divided into rounds, in which each peer communicates with another peer selected using
a pseudo-random function. In each round, peers exchange their current history containing the identifiers of all
the current data they hold, as basis for the next exchanges. Nodes also perform a phase of optimistic push,
forwarding useful updates to pseudo-randomly picked peers with no guarantee of useful return.



8. CONCLUSION

We propose and evaluate a scalable auditing-based technique for enforcing fairness in a live-streaming system.
Our approach employs local auditors that execute on all nodes in a streaming session. They are responsible for
collecting auditable information about other neighbors’ data exchanges, and for verifying that neighbors upload
more data than a specified threshold. This threshold is defined by dedicated global auditors, which periodically
sample the state of the system to determine if the overall download rate is compromised by the presence of
opportunistic nodes. Global auditing determines the minimum threshold for uploads, and works with local
auditing to punish nodes that do not upload enough data. We study the efficiency of our auditing approach
through simulation, and show that it is able to maintain the throughput of the streaming system even in the
presence of a large number of opportunistic nodes.
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