
Towards High Performance Abstractions for

Strong Geo-Replicated Systems

Matthew Burke

February 3, 2024

© 2024 Matthew Burke

ALL RIGHTS RESERVED

TOWARDS HIGH PERFORMANCE ABSTRACTIONS FOR STRONG

GEO-REPLICATED SYSTEMS

Matthew Burke, Ph.D.

Cornell University 2024

Large-scale Internet applications have become ubiquitous in everyday life because they

seamlessly and persistently connect people to each other and to service providers. These

applications are built on geo-replicated services that reliably process and store user

data. Application developers prefer services that provide strong guarantees because they

simplify the process of programming correct applications. However, existing approaches

to implementing geo-replicated services that meet the high throughput and low latency

requirements of large-scale Internet applications sacrifice strong guarantees or generality

in the application programming interface.

This dissertation argues that geo-replicated services that provide strong guarantees

can meet the high throughput and low latency requirements of large-scale Internet

applications without sacrificing generality in the API. To do so, we propose that services

more effectively leverage semantic information already present in existing, general APIs.

We demonstrate this approach in the design of two systems, Morty and Gryff. Morty

is a replicated transactional storage system that provides serializable transactions with

high throughput under contention in geo-replicated settings. Morty achieves higher

throughput than existing systems by leveraging a continuation passing style API—which

is already commonly used in networked services—to implement transaction re-execution.

Gryff is a replicated coordination service that provides linearizability with low read tail

latency in geo-replicated settings. Gryff achieves lower read tail latency than existing

systems by processing simple reads and writes with a shared register protocol instead of

consensus. Because coordination services already differentiate between reads and writes

and stronger synchronization operations like read-modify-writes, developers can leverage

Gryff’s more efficient design to provide lower latency to end-users without significantly

rewriting their applications.

BIOGRAPHICAL SKETCH

Matthew Burke was born on March 5, 1995 to Andrew and Dana Burke in Worcester,

Massachusetts. He grew up in Upton, Massachusetts with his older sister, Kimberly

Burke, and developed an interest in computers during his early teen years by working on

automation bots for Runescape, a massive multiplayer online role playing game.

Matthew moved to Los Angeles, California in 2013 to attend the University of

Southern California (USC). While at USC, he was drawn to the challenges and impact of

working on large scale distributed system under mentorship from Professor Wyatt Lloyd.

He also began playing ultimate frisbee after being cut from the club soccer team. In 2017,

he graduated Summa cum laude from USC with a B.S. in Computer Science.

Later in 2017, Matthew began his Ph.D. at Cornell University in the Computer

Science Department under the supervision of Professor Lorenzo Alvisi. While at Cornell,

he completed an internship at Microsoft Research working with Dan Ports. He also

played one season of ultimate frisbee with Cornell’s team and began coaching the team

thereafter. In the summer of 2021, he moved to the San Francisco Bay Area to work as a

visiting scholar at the University of California, Berkeley with Professor Natacha Crooks

while finishing his graduate work at Cornell. He continued to play ultimate frisbee at the

club amateur level with a team in Berkeley, California and at the professional level with

a team in Oakland, California. Immediately following graduate school, Matthew joined

Databricks as a software engineer to work on novel problems in distributed caching.

iii

I dedicate this document to my parents and my sister for providing a loving and

supportive environment for me to grow.

iv

ACKNOWLEDGEMENTS

I am enormously grateful to my advisor, Lorenzo Alvisi, for providing kind mentorship,

intellectual stimulation, and endless support throughout my journey. Lorenzo’s warmth

and kindness helped make Ithaca an inviting oasis in which I could explore and challenge

myself. My discussions with Lorenzo about my work always seemed to bear fruit in part

due to his ability to see both the forest and the trees, even when discussing the fractal

details of distributed executions of protocols. Perhaps most importantly, Lorenzo showed

me how to nurture and express my passion for working at the intersection of principled

and practical challenges in distributed systems.

I also am thankful to Wyatt Lloyd for helping me begin my exploratory journey in

this field. As an inexperienced undergraduate, he welcomed me with open arms to his

research group and treated me as if I was seasoned researcher. Furthermore, Wyatt’s

enthusiasm and Socratic teaching method gave me the excitement and confidence to

tackle problems in this space.

Natacha Crooks has been an indispensable mentor and friend across my time in

graduate school. The late night paper pushes in Gates Hall will remain some of my

fondest memories - perhaps only behind the subsequent ice cream celebrations at the

Dairy Bar. I also greatly appreciate the hospitality that Natacha offered me during my

extended visit to Berkeley, fully welcoming me into her research group.

Much of the work and ideas in this dissertation would not have reached this stage of

development without contributions from my close collaborators: Florian, Jeff, Audrey,

Sowmya, and Shannon. Likewise, I am grateful to have learned from and worked with

Dan, Irene, Jacob, and Adriana during my internship at Microsoft Research.

I thank the other members of my thesis committee, Rachit Agarwal and Hakim

Weatherspoon, for their thoughtful feedback throughout this process. Additionally, I

thank Robbert van Renesse for his support and encouragement.

v

My time in Ithaca was made particularly special by many people, too numerous to

enumerate here. Some of those people include those with whom I shared the SysLab

as an office: Yunhao, Soumya, Florian, Youer, Gloire, Kevin, Kai, Shir, Ethan, Drew,

Josh, Rolph, Daniel, Mae, Andrew, and Saksham, among others. Some of those people

are those who I saw frequently in and around Gates Hall, including Danny, Makis, Ryan

B., Andrew, Richard, Eric, Ryan D., Dietrich, Claire, Yunhe, Spencer, Soham, Jonathan,

Molly, Steffen, Andrew, Isaac, and Tom, among others. And some of those people include

those with whom I shared residences over the years, including Drew, Justin, Daniel, John,

and Sebastian.

I additionally want to acknowledge several friends from the CIS community who

provided a tremendous amount of support during my time in Ithaca. I am forever a

different person thanks to the illuminating discussions with Yunhao, Florian, Soumya,

John, Drew, Ethan, Shir, and Daniel. More treasured than these conversations is the

simple companionship offered by each of you; from Collegetown meals to nights on the

Commons, I am thankful for the time we spent together.

I am also incredibly fortunate to have made lifelong friends in the greater Cornell

community in Max, Leo, Spencer, Dave, Eric, Reed, Sonal, and James. It has been

a gift to enjoy moments with you all, from excessively long boba outings to campus

frolf to Super Bowl watch parties and more. You all contributed to this dissertation in

unquantifiable ways.

My relatively short time in Berkeley was a pleasure primarily due to the kindness of

members the Sky Lab, including Natacha, Audrey, David, Connor, Suyash, Neil, Samya,

Micah, Reggie, Shadaj, and Dixin, among others. Moreover, my transition to living in the

Bay Area for this period was extraordinarily smooth thanks to the support of my friends

Katie, Omar, Eric, Aneesha, Ghenki, Mikey, Pat, and Mitch.

I would be remiss to not acknowledge the ultimate frisbee community, a community

vi

in which I spend a large portion of my time outside of work. Ultimate frisbee has provided

much needed balance in my life between working on technical research problems and

maintaining my physical, social, and emotional health. In particular, I am beyond

indebted to my teammates and players from the Cornell Buds, and my teammates from

the Berkeley Zyzzyva and Oakland Spiders teams that I was a part of during my graduate

school journey.

Lastly, I want to acknowledge the love and support that my family has shown me in

my entire time on this space rock. Thank you Mom, Dad, and Kim!

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . viii
List of Tables . x
List of Figures . xi

1 Introduction 1

2 Background 8
2.1 Large-Scale Internet Application Architecture 8

2.1.1 Fault Tolerance . 9
2.1.2 Performance . 10

2.2 Strong Guarantees . 11
2.2.1 Consistency . 11
2.2.2 Synchronization Primitives . 12

2.3 Generality of API . 13

3 Morty: Scaling Concurrency Control with Re-Execution 15
3.1 Scraping the Barrel: Limits to Extracting Concurrency 18

3.1.1 Sequential Execution . 19
3.1.2 Read Validity . 24

3.2 Transaction Re-Execution . 26
3.2.1 Existing Approaches . 27
3.2.2 Re-Execution . 28

3.3 Morty Design . 30
3.3.1 Implementing Re-Execution 31
3.3.2 Transaction Execution . 35
3.3.3 Handling Failures . 42
3.3.4 Garbage Collection & Truncation 43
3.3.5 Correctness . 45

3.4 Evaluation . 47
3.4.1 OLTP Applications . 50
3.4.2 Scalability . 53
3.4.3 Microbenchmarks . 54

3.5 Related Work . 55
3.6 Conclusion . 56

4 Gryff: Unifying Consensus and Shared Registers 58
4.1 Consensus vs. Shared Registers . 61

4.1.1 State Machines and Consensus 62
4.1.2 Shared Registers and Their Protocols 63

viii

4.1.3 Shared Objects and Their Ordering 63
4.2 Carstamps for Correct Ordering . 66

4.2.1 Precise Ordering for Shared Objects 66
4.2.2 Carstamps . 69

4.3 Gryff Protocol . 70
4.3.1 Background . 70
4.3.2 Read & Write Protocols . 74
4.3.3 Read-Modify-Write Protocol 75

4.4 Proxying Reads . 81
4.5 Evaluation . 83

4.5.1 Baselines and Implementation 84
4.5.2 Experimental Setup . 85
4.5.3 Tail Latency . 86
4.5.4 Read/Write/RMW Latency . 90
4.5.5 Throughput . 91
4.5.6 Tail at Scale . 93

4.6 Gryff-RSC . 95
4.6.1 Regular Sequential Consistency Background 95
4.6.2 Gryff-RSC Design . 96
4.6.3 Gryff-RSC Evaluation . 99

4.7 Related Work . 102
4.8 Conclusion . 104

5 Conclusion 105

A Morty Proofs 106
A.1 System Model . 106
A.2 Proof of Correctness . 110
A.3 Proof of Serialization Windows and Validity Windows 124

A.3.1 Serialization Windows . 124
A.3.2 Validity Windows . 128

B Gryff Proofs 131
B.1 Preliminaries . 131

B.1.1 Model . 131
B.1.2 Shared Objects . 133

B.2 Proof of Linearizability . 134
B.3 Proof of Wait-Freedom . 154
B.4 Read Proxy Correctness . 162

Glossary 164

ix

LIST OF TABLES

3.1 The coordinator aggregates votes and determines a final decision based
on the number and types (Commit, Abandon-Tentative, Abandon-Final)
of votes. 39

3.2 Cross-region RTTs in emulated networks. 49

4.1 Emulated round-trip latencies (in ms). 100

x

LIST OF FIGURES

2.1 Two-tier web application architecture. 9

3.1 Partial executions of two Payment transactions, T1 and T2, in replicated
serializable systems. c1 and c2 are application clients issuing T1 and T2
respectively; s1, s2, and s3 are storage servers. 20

3.2 Payments in replicated MVTSO. 24
3.3 Transaction re-execution. 29
3.4 Payment in traditional (3.4a) & CPS (3.4b) APIs. 32
3.5 State at each replica. 34
3.6 Morty achieves higher goodput at saturation on TPC-C with 100 ware-

houses. 50
3.7 Morty achieves higher throughput at saturation on Retwis with 10M

keys and Zipf parameter 0.9. 52
3.8 Multi-core scalability on Retwis. 53
3.9 Varying contention on Retwis. 55

4.1 Comparison of ordering in consensus and shared register protocols.
Shared register protocols provide an unstable ordering where new writes
can be inserted between writes that have already completed. 64

4.2 Solid arrows are real time ordering constraints. Dashed arrows are
operation semantic constraints. 65

4.3 Labeled numbers represent the following events: 1© p1 issues and
completes w1 with ts = (1,1). 2© p2 issues w2 and gets back ts = (1,1);
the process then picks ts = (2,2) for w2. 3© The primary s4 picks
base state = 〈w1, ts = (1,1)〉. 4© All replicas accept PRE-PREPARE
messages because w1 is the most recent state observed. 5© All replicas
broadcast COMMIT messages to all other replicas. 6© All replicas
apply w2 because ts = (2,2)> ts = (1,1). 7© All replicas apply rmw3
because ts = (2,4) > ts = (2,2). 8© p4 issues and completes ρ4 in 1
round, returning rmw3 with ts = (2,4). 67

4.4 Unified ordering provided by carstamps for writes and rmws. Writes are
unstably ordered while rmws are stably ordered with their base updates. 69

4.5 State at each replica. 74
4.6 Round trip latencies in ms between nodes in emulated geographic regions. 84
4.7 Gryff’s reads always complete in 1 RTT when n = 3. 99th percentile

read latency is between 0ms and 115ms lower than EPaxos and 134ms
lower than MultiPaxos. 85

4.8 Gryff reduces p99 read latency between 1ms and 44ms relative to
EPaxos and 134ms relative to MultiPaxos for varying write percentages.
EPaxos’ p99 write latency is 89ms lower than Gryff’s p99 write latency
regardless of write percentage and conflicts. 87

xi

4.9 Gryff has better p99 read latency for n = 5 because, even though reads
sometimes complete in 2 RTT, enough still complete in 1 RTT that the
p99 latency is determined by 2 RTT in a region (CA) where the nearest
quorum are relatively close (72ms per RTT). EPaxos cannot always
commit reads or writes in 1 RTT, so its latency increases relative to n = 3. 87

4.10 Gryff’s writes take 2 RTT, which is always more than EPaxos when
n = 3. MultiPaxos writes can be faster or slower than Gryff depending
on client location and geographic setup. 87

4.11 Gryff trades off worse write latency for better read and rmw latency
relative to EPaxos when n = 5. 88

4.12 Gryff’s throughput at saturation is within 7.5% of EPaxos and is higher
than MultiPaxos. 92

4.13 Gryff’s throughput at saturation is higher than both EPaxos and Multi-
Paxos when n = 5. 92

4.14 Gryff improves service-level p50 latency when the expected tail-at-scale
request contains many reads. 93

4.15 For n = 5, the difference in service-level p50 latency is larger because
reads in EPaxos suffer from more blocking with more replicas and
clients executing operations. 94

4.16 For moderate- and high-contention workloads, Gryff-RSC offers roughly
a 40% reduction in p99 read latency compared to Gryff. As the conflict
ratio increases, Gryff-RSC’s benefits start at lower write ratios. 100

xii

CHAPTER 1

INTRODUCTION

This dissertation shows that geographically replicated services that provide strong guaran-

tees can meet the performance requirements of large-scale Internet applications without

sacrificing generality in the application programming interface.

Geographic replication is a technique for implementing a fault-tolerant service. It does

so by creating multiple copies of the service and distributing them across geographically

distinct locations. If a copy becomes inaccessible because of failures, the service as a

whole remains accessible via the other copies. Unlike replication within a server rack or

datacenter, geographic replication (geo-replication) is robust to geographically correlated

failures, such as power outages, network partitions, and natural disasters.

Large-scale Internet applications use geo-replicated services to provide an “always

on” experience to end users. Because of the scale of these applications, failures of

individual machines and network links in the underlying services are common. Geo-

replication masks these localized failures so that these services are highly available and

durable. Availability is a measure of how often a service can be accessed to process

requests and durability is a measure of how infrequently a service permanently loses

data. Everyday applications like Netflix (on-demand video streaming) [102], Slack

(communication) [117], and Lyft (taxi hailing) [88] are built on cloud services that are

designed to provide 100−10−9 % durability and offer Service Level Agreements (SLAs)

of 100−10−2 % availability [12]. These services are able to meet these SLAs because

they leverage geo-replication. Moreover, operators of large-scale Internet applications

like Google [24, 35] and Meta [15, 21, 87, 138] rely on private deployments of geo-

replicated services to enable continuous access to their applications.

1

In addition to fault tolerance, developers of large-scale Internet applications prefer

services that provide strong guarantees: guarantees that hide the complexities of con-

currency from developers by restricting the observable behavior of a service to that of

a sequential system. For example, a service that provides strong consistency makes

it appear as if operations execute sequentially, so the developer can reason about the

application’s interactions with the service as if it is single-threaded [3, 28, 35]. Further-

more, strong synchronization primitives such as atomic transactions or consensus prevent

race conditions when accessing shared data, so they enable the safe implementation of

complex application logic [3, 14, 24, 35].

While geographic fault tolerance and strong guarantees are desirable properties, their

combination incurs high performance costs. This is due to fundamental results that

relate the communication delay between nodes in a distributed system to performance

metrics like latency and throughput. For example, the access time in any strongly

consistent system is at least as large as the communication delay between the nodes

in the system [10, 84]. In a geo-replicated setting, this implies that the latency of

accessing a strongly consistent system is on the order of tens to hundreds of milliseconds.

Additionally, strong synchronization primitives in the geo-replicated settings have limited

throughput [23] and high tail latency [22].

These costs place geo-replicated systems with strong guarantees at odds with the

performance requirements of large-scale Internet applications that, in order to support

more users, need their underlying services to provide high throughput access to shared

data. Furthermore, users of these applications expect an interactive and responsive

experience, which according to user experience studies [26], corresponds to worst case

latency on the order of 100 milliseconds. These findings have been validated by operators

of large-scale Internet applications: Akamai reported in 2017 that a 100 millisecond

2

delay in page load time reduced conversion rates by 7% [4]; Google observed in 2006

a 20% drop in traffic when page load times increased by 500 milliseconds [58]; and

Amazon reported a 1% drop in sales for every 100 milliseconds of additional latency [6].

As the scale of Internet applications increased over the first decade of the 2000s,

researchers and practitioners sought to resolve the dilemma between performance and

strong guarantees by weakening guarantees. This line of work led to the proliferation of

NoSQL services [41, 43, 85, 86, 90, 112]. These services only provided weak consistency

guarantees, forcing developers to reason about concurrent operations on the same data.

Furthermore, these services only provided a simple data model (e.g., the key-value store)

that lacked proper synchronization primitives. Though these services could meet the

throughput scalability and low latency requirements of emerging applications, operators

of these applications observed that the lack of strong guarantees led to increased errors

in application correctness and decreased developer productivity. For example, Google

engineers shared from their operational experience that they “believe it is better to have

application programmers deal with performance problems due to overuse of transactions

as bottlenecks arise, rather than always coding around the lack of transactions [35].”

This dissertation is concerned with extending the range of use cases for geo-replicated

systems with strong guarantees by developing new techniques that meet the performance

requirements of a broader set of large-scale Internet

Prior work has shown how to do this by introducing new APIs that sacrifice gener-

ality and expressiveness. For example, it is possible to achieve higher throughput for

transactional storage systems with strong consistency by requiring developers to write

transactions as stored procedures [99, 126] or in domain-specific languages [38]. Further-

more, lower latency coordination services that provide strong consistency can be built by

requiring developers to annotate service calls in application code [62, 80, 110, 125].

3

Instead, this dissertation demonstrates that geographically replicated services that

provide strong guarantees can meet the performance requirements of large-scale Internet

applications without sacrificing generality in the application programming interface.

In particular, we show that there are performance opportunities to seize by rethinking

how to use information that the application provides to underlying services with existing

interfaces. From a practical perspective, this makes the solutions presented in this

dissertation more readily usable in real-world applications because they require few, if

any, changes to existing application code.

The remainder of this dissertation describes two systems, Morty and Gryff, that

provide strong consistency and strong synchronization primitives with improved perfor-

mance by leveraging unused semantic information that is present in existing application

programming interfaces.

Morty is replicated transactional storage system that provides general, interactive

transactions with serializability [106]. Traditionally, these strong and general guarantees

in combination with geo-replication are considered unwieldy for use by large-scale Inter-

net applications. To that extent, we develop the novel notion of serialization windows

and validity windows that precisely characterize how the latency of processing read,

write, and commit operations place an upper bound on the throughput that these systems

can achieve on high contention workloads. However, the situation is not all bleak; we

also demonstrate, through the lens of these windows, that existing approaches to man-

aging contention leave large performance opportunities on the table. Specifically, we

propose a novel concurrency control technique, transaction re-execution, that leverages

the continuation-passing style API of modern applications to precisely align serializa-

tion windows. Morty employs transaction re-execution to achieve up to 1.7x–96x the

throughput of state-of-the-art systems with similar or better latency.

4

Gryff is a replicated coordination service that provides single-object reads, writes,

and read-modify-writes with linearizability [67]. While consensus protocols are capable

of providing this coordination API, they suffer from high tail latency in geo-replicated

settings. On the other hand, shared register protocols can provide simple reads and

writes with low tail latency, but are too computationally weak to implement strong

synchronization primitives such as read-modify-writes [66]. Gryff resolves this dilemma

by unifying a consensus protocol with a shared register protocol. In order to do so, it

leverages a novel ordering mechanism, the consensus-after-register timestamp (carstamp),

that safely totally orders operations processed by the distinct underlying protocols.

Gryff’s hybrid protocol approach requires few, if any, changes to application code

because the coordination service API already distinguishes between the different types

of operations. In our evaluation, we find that Gryff reduces p99 read latency to 56% of

a state-of-the-art consensus protocol, EPaxos, with only modest increases to write and

read-modify-write latency.

In summary, this dissertation makes the following technical contributions:

• We introduce a new framework, comprised of serialization windows and valid-

ity windows, for reasoning about the throughput of serializable systems under

contention.

• We propose a novel transaction re-execution technique that uses the lens of serial-

ization windows to efficiently schedule contending transactions.

• We present the design and implementation of Morty, a transactional storage sys-

tem that leverages transaction re-execution to provide serializability with high

throughput under contention.

• We introduce a novel ordering mechanism, consensus-after-register timestamps,

to correctly order operations executed by distinct consensus and shared register

5

protocols over the same objects.

• We present the design and implementation of Gryff, the first system to safely

combine consensus with shared registers in a unified protocol.

• We present a modification to Gryff (Gryff-RSC) that makes it the first system

to provide regular sequential consistency, a strong consistency condition that is

indistinguishable from linearizability and allows fast reads.

• We show through evaluation that Morty and its re-execution technique improve

throughput on contended transactional workloads relative to baseline systems.

• We show through evaluation that Gryff and Gryff-RSC improve read tail latency

when compared to consensus protocols across a range of coordination service

workloads.

Parts of the work described in this dissertation have been covered in peer-reviewed

publications:

• Matthew Burke, Florian Suri-Payer, Jeffrey Helt, Lorenzo Alvisi, and Natacha

Crooks. Morty: Scaling Concurrency Control with Re-Execution. In ACM SIGOPS

European Conference on Computer Systems (EuroSys), 2023.

• Matthew Burke, Audrey Cheng, and Wyatt Lloyd. Gryff: Unifying Consensus

and Shared Registers. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2020.

• Jeffrey Helt, Matthew Burke, Amit Levy, and Wyatt Lloyd. Regular Sequential Se-

rializability and Regular Sequential Consistency. In ACM Symposium on Operating

System Principles (SOSP), 2021.

The remainder of this dissertation is structured as follows: Chapter 2 provides

detailed background on geo-replicated systems, strong guarantees, and generality in

6

the application programming interface. Chapter 3 presents Morty, our case study on

improving the throughput of transactional storage with replication and strong guarantees.

Chapter 4 presents Gryff, our case study on improving the tail latency of replicated

coordinations services with strong guarantees. Chapter 5 summarizes our findings and

briefly overviews related work that indirectly influenced the work presented in this

dissertation.

7

CHAPTER 2

BACKGROUND

This chapter lays the groundwork for our case studies on Morty and Gryff. Section 2.1

outlines the common architecture that large-scale Internet applications use to scale to a

large number of users. Section 2.2 defines the strong guarantees that simplify large-scale

Internet application development. Finally, Section 2.3 discusses what is generality in the

application programming interface and why it matters for the systems we consider.

2.1 Large-Scale Internet Application Architecture

We consider in this dissertation a two-tier architecture for Internet applications (Fig-

ure 2.1). The front-end tier consists of a set of stateless servers that execute application

logic. The back-end tier consists of a set of stateful services that provide functionality

such as shared storage and coordination. Each service in the back-end tier runs on one

or more stateful servers. The two-tier architecture is common in large-scale Internet

applications because the front-end tier is easily horizontally scaled to support more users

and it separates the deployment of application logic from shared back-end services.

When an end-user interacts with an application, their device connects to a front-end

server in a nearby datacenter. These front-end servers act as clients to services in the

back-end tier. By following the application logic that developers deploy to the front-end

tier, the front-end servers issue requests to storage and coordination services on behalf of

the end-user. The front-end server generates a response for the end-user after receiving

responses to back-end requests.

8

End-Users Front-End Tier Backend Tier

Datacenter Datacenter

Datacenter

WAN Links

Figure 2.1: Two-tier web application architecture.

2.1.1 Fault Tolerance

Large-scale Internet applications require high availability and high durability despite

the prevalence of failures at scale. Availability is the fraction of time during which an

application or service successfully processes requests over a given time period. Durability

is the average annual expected loss of data that was successfully written. Operators of

large-scale Internet applications target availability and durability thresholds such that

users experience, at most, minutes of unavailability (100−10−2 % availability) in a year

and never experience data loss in their lifetimes (100−10−9 % durability) [12, 54].

In order to reach these availability and durability targets, large-scale Internet appli-

cations use geo-replicated back-end services. Geographic replication masks server and

network failures by creating multiple copies of a service and distributing them across

geographically distinct locations, such as separate datacenters (Figure 2.1). In the event

that a server becomes inaccessible or the data it stores becomes corrupted, the other

copies of the service continue to provide access and safely store data.

9

2.1.2 Performance

Throughput. The throughput of a service is the number of requests per unit time that

it processes. The maximum number of concurrent users that an application can support

is directly bounded by the maximum throughput of each back-end service that lies on

the critical path for processing end-user requests. Thus, an important goal in the design

of new back-end services is achieving higher maximum throughput to support a larger

number of application users.

Latency. User-perceived latency is another critical metric for large-scale Internet

applications. It is measured as the amount of time from when a user initiates a request

to when the user observes that the request completes. In the two-tier architecture, there

are several components to user-perceived latency - including the network delay from

the end-user device to the front-end server that processes the request, processing time

at the front-end server, one or more rounds of requests from the front-end server to the

back-end tier, and processing time at the end-user’s device. To provide an interactive

experience to end-users, applications aim to provide user-perceived latency on the order

of 100 milliseconds [26].

This dissertation focuses on the component of user-perceived latency due to front-

end servers interacting with back-end services. In the context of large-scale Internet

applications, both the median and tail latency of such requests influence the typical

user-perceived latency because, in order to process an end-user request, a front-end server

may fan-out into tens or hundreds of requests to back-end services in parallel [40]. Only

once the front-end server has received responses for each of these requests can it compose

the result for the end-user and return a response to the user’s device. This implies that

the median response time for an end-user request is dictated not by the median of the

10

back-end service latency distribution, but by its tail.

2.2 Strong Guarantees

Strong guarantees hide the complexities of concurrency from developers by restricting

the observable behavior of a service to that of a sequential system. We consider two types

of strong guarantees related to operation ordering (§2.2.1) and semantics (§2.2.2).

2.2.1 Consistency

A consistency model is a contract between a service and its clients that specifies the

values that a given set of operations is allowed to return. A strong consistency is one

in which these values are those that could have been returned if the operations were

executed in a total order. Strong consistency is intuitive for developers because it provides

the behavior of a service executing client requests sequentially, as would happen in a

single-threaded application. By relying on this intuition, developers can avoid introducing

into their applications bugs due to unforeseen behaviors caused by concurrently executing

operations [35, 130].

The systems in this dissertation are concerned with implementing two specific strong

consistency models:

• Serializability is a strong consistency model for transactional database sys-

tems [106]. A service that provides serializability ensures that the values observed

by the operations in each transaction are consistent with those that would have

been observed in a sequential execution.

11

• Linearizability is a strong consistency model that is defined to intuitively provide

the illusion that operations take effect instantaneously in their real-time order [67].

Specifically, it guarantees that (a) operations invoked by processes accessing the

object appear to execute in some total order and (b) the total order is consistent with

the real-time order of operations. The real-time guarantee of linearizability makes

it easy for developers to reason about the order of operations in their application

and prevents users from observing ordering anomalies.

In strongly consistent replicated systems, replicas must synchronize with each other

to process each operation [10, 84]. This lower bound makes it all the more important that

strongly consistent replicated systems in a geo-replicated context be efficient with their

communication. Even a single round trip to a remote replica incurs latency on the order

of 10s or 100s of milliseconds, which already exhausts the latency budget of applications

that desire to provide an interactive experience to end-users.

2.2.2 Synchronization Primitives

Applications use strong synchronization primitives to mediate concurrent accesses to

shared data. While simple key-value data models can facilitate a significant portion of

data operations in some large-scale Internet applications [41], developers often still need

richer data models to correctly implement more complex application logic [29, 35, 48]. In

the absence of such functionality in back-end services, developers attempt to implement

synchronization mechanisms at the application-level. These implementations are often

error prone and re-introduce the performance limitations.

Transactions are a type of strong synchronization primitive: they are a grouping

of multiple data operations that atomically succeed or fail. They simplify application

12

development because they remove the need to handle the partial failure of a group of

related data operations. Transactions are general and powerful primitive as they allow

an arbitrary number of data operations to be grouped together; applications also use

lighter-weight primitives to perform synchronization. Single-object transactions (i.e.,

read-modify-write operations) can implement arbitrary synchronization operations over

a single shared object. Weaker primitives, such as shared queues or atomic increment

operations, can also provide some level of synchronization to application developers

without fully using the power of general transactions.

2.3 Generality of API

The crux of systems design is choosing an API that is general enough to apply to a large

number of application use-cases without requiring complex interventions by developers,

and is specific enough to facilitate an efficient underlying implementation. In the design

of replicated services, recent work has shown that restricting the generality of the API

leads to higher performing systems. For example, for transactional storage systems,

restricting the transactional interface from general, interactive transactions to stored

procedures enables designs that can provide serializability and high throughput under

contention [99, 126]. Furthermore, recent work on strongly consistent coordination

services has shown that requiring hand-written annotations on service requests can

improve latency and throughput [62, 80, 110, 125]. While these results are promising,

they have not seen widespread adoption in production systems. Practitioners attribute the

lack of adoption of these techniques to the simple fact that their more complex interfaces

add too much additional burden to application developers [108].

This dissertation argues that geographically replicated services that provide strong

13

guarantees can meet the performance requirements of large-scale Internet applications

without sacrificing generality in the application programming interface. We existentially

demonstrate this thesis through the design and implementation of two systems: Morty (§3)

and Gryff (§4).

14

CHAPTER 3

MORTY: SCALING CONCURRENCY CONTROL WITH RE-EXECUTION

This chapter presents Morty, a novel storage system that leverages transaction re-

execution to increase the throughput of serializable and interactive transactions.

The combination of serializability and interactivity is compelling. Serializability lets

developers think of their transactions as if they are executing sequentially on a centralized

machine, simplifying reasoning about application correctness. Interactivity in turn lets

developers write fully general transaction code that is directly interleaved with application

code, rather than encapsulated in the database or written in a separate domain-specific

language [108].

For scalability, transactional data-stores are usually partitioned such that data and

load can be spread across arbitrarily many machines; for availability, they are replicated,

either within a datacenter, or across continents, to protect against major correlated

failures [35, 123].

How much concurrency does enforcing serializability afford in such systems? The

answer depends on the concurrency control mechanism that a system adopts. Yet none

of the available choices do well under high contention. Poor performance is especially

problematic in geo-replicated settings where high latency between replicas increases the

duration of transactions and the likelihood that they will conflict.

In systems that leverage optimistic concurrency control, such as TAPIR [136], a trans-

action executes without blocking, but before it is allowed to commit, a validation phase

verifies that serializability is not violated. When a conflict is detected, the transaction is

aborted, leading to high abort rates under contention. In contrast, pessimistic systems like

Spanner [35] preemptively prevent conflicting transactions from executing concurrently

15

by guarding data accesses with locks. Under contention, however, deadlocks and lock

thrashing can occur, and latency can significantly increase.

The traditional way to promote progress in the presence of such aborts or deadlocks

has been to use exponential backoff: when a conflict is detected, rather than retrying

straightaway, the aborted transaction waits a small amount of time, which increases

exponentially with successive aborts. Essentially, this amounts to blind guessing how

to space transactions temporally to ensure progress: too conservative a guess, and the

impediment to progress may persist; too liberal, and opportunities for concurrency are

needlessly sacrificed.

To move beyond the guesswork, this chapter proposes to revisit, from first princi-

ples, what in serializability fundamentally limits concurrent processing of conflicting

transactions.

We capture these requirements with the novel notion of serialization windows. Serial-

ization windows are created by transactions that read and modify objects: a transaction

T ’s serialization window for an object x starts at the write of x whose value it observes,

and ends when T ’s own write to x becomes visible. Intuitively, enforcing serializability

requires serialization windows to never overlap.

While this observation places a hard upper bound on the concurrency that can be

achieved, it also suggests a way forward. First, it identifies an ideal execution pattern for

a set of conflicting transactions: rather than rashly attempting to execute concurrently,

they should align their execution so that they complete one right after the other, without

overlaps. Second, it sheds new light on why existing concurrency control mechanisms

perform relatively poorly: to reduce the chances that transactions will abort, exponential

backoff can introduce long idle periods in the ideal execution pattern of consecutive seri-

16

alization windows. In turn, these idle periods significantly limit the system’s utilization:

we find, for instance, that the CPU utilization of TAPIR and Spanner replicas is less than

17% on a high contention workload.

This chapter proposes Morty1, a new serializable and replicated storage system that

harnesses these spare CPU cycles to virtually eliminate idle periods and significantly

improve transactional throughput.

Rather than letting chance determine how serialization windows manifest, Morty

takes fate in its own hands and actively rearranges them to avoid overlaps. Specifically,

Morty replicas monitor the occurrence of conflicting accesses and, when they detect

overlapping serialization windows, trigger transaction re-execution: rather than aborting,

a transaction T , upon learning of the existence of a conflicting write, partially restarts

its execution. This approach effectively nudges serialization windows to be sequential,

thus aligning them optimally. Re-execution is made transparent to applications by using

a continuation passing style API, already battle-tested in production environments in

systems like FaRM [42]; to the best of our knowledge, Morty is the first system to support

transparent re-execution for general interactive transactions.

We implement Morty as a geo-replicated system that supports interactive transactions.

Morty uses as its starting point for concurrency control multi-versioned timestamp

ordering (MVTSO) [17], and extends it to offer efficient and safe transaction re-execution.

To minimize latency across wide-area networks, Morty integrates the replication and

concurrency control layers [121, 122, 136], thus avoiding the redundant coordination

incurred by modular designs [35].

Our results are promising. We find that, on TPC-C, a standard transactional bench-

mark, Morty achieves 7.4x, 4.4x, and 1.7x higher throughput than Spanner, TAPIR, and

1Multi-core Object-store using Re-execution Transactionally.

17

a replicated MVTSO baseline respectively. Morty’s performance gains are compounded

on heavily contended workloads, where it achieves 95x, 52x, and 28x greater throughput

than TAPIR, Spanner, and MVTSO respectively.

In summary, we make the following contributions:

• We define serialization windows to characterize the maximum concurrency allowed

in serializable systems.

• We propose transaction re-execution using a continuation passing style API to

align serialization windows.

• We design and evaluate Morty, a serializable, replicated storage system that uses

re-execution to attain higher throughput on high contention workloads.

The chapter is organized as follows. We introduce the concepts of serialization

windows and validity windows in Section 3.1, outline Morty’s API for re-execution in

Section 3.2, and detail Morty’s transaction processing design in Section 3.3. We evaluate

Morty’s performance in Section 4.5, discuss related work in Section 4.7, and conclude in

Section 4.8.

3.1 Scraping the Barrel: Limits to Extracting Concurrency

Serializability, the gold-standard correctness condition for transactional storage systems,

provides the abstraction of a centralized storage system that executes transactions sequen-

tially and ensures they only read valid data (data from committed transactions). These

properties free developers from reasoning about complex interleavings of operations,

simplifying application development [3, 14, 35, 109].

18

Despite the flexibility that the serializability abstraction affords to the underlying

system in processing data accesses, there nevertheless exists a fundamental limitation:

transactions cannot concurrently perform conflicting data accesses. Concurrency control

mechanisms (CCs) are tasked with preventing such scenarios. How do the design choices

of CCs dictate their performance on high contention workloads? In the rest of this

section, we introduce a formal framework for reasoning about the performance limitations

imposed by the sequential execution (§3.1.1) and read validity (§3.1.2) properties of

serializability. Our generic framework can be applied to any serializable system to

identify specific design choices that limit its concurrency. We later use insights from

this analysis to design a new CC technique that optimizes serializable performance on

contended workloads (§3.2).

Model. Our framework uses Adya’s model [1] of a transactional storage system, which

is expressed in terms of histories consisting of two parts: a partial order of events that

reflect the operations of a set of transactions, and a version order that imposes a total

order on committed object versions. A transaction Ti’s read event ri(xk) denotes that

Ti observes version k of object x written by transaction Tk. Similarly, a transaction Ti’s

write event wi(xi) denotes that Ti creates version i of x. If a transaction Ti commits, it

has a corresponding commit event ci. Every history H is associated with a directed

serialization graph DSG(H), whose nodes are committed transactions and whose edges

denote the conflicts (read-write, write-write, or write-read) between them.

3.1.1 Sequential Execution

While non-conflicting transactions may freely access data, the order of conflicting ac-

cesses from transactions must be consistent with a sequential execution to maintain

19

c1

c2

s1

s3

s2

T1
T2

(a) OCC in TAPIR.

T1
T2

c1

c2

s3

s2

s1

(b) 2PL in Spanner.

Figure 3.1: Partial executions of two Payment transactions, T1 and T2, in replicated
serializable systems. c1 and c2 are application clients issuing T1 and T2 respectively; s1,
s2, and s3 are storage servers.

serializability. We explore this intuition with a simple example.

Motivating Example: TPC-C

TPC-C is a benchmark application that simulates the activity of a business that sells a

product [127]. Within this workload, the Payment transaction represents a customer

payment for a given order. As one of several contention hotspots, it generates a high rate

of conflicting accesses to the warehouse table because it updates a warehouse’s year-

to-date payment total. We examine the concurrent execution of Payment transactions in

two canonical CCs: optimistic concurrency control (OCC) [73] and two-phase locking

(2PL) [17]. These CCs, which are used in a large number of production systems [13, 16,

30, 35, 36, 39, 47, 53, 79, 94, 100, 101, 113, 118, 119, 135], take opposing approaches to

regulating concurrency, and thus provide a strong basis for understanding the fundamental

performance limitations.

OCC Figure 3.1a shows an execution of two conflicting Payment transactions, T1 and

T2, that update the same warehouse row x in a replicated system with OCC. In OCC,

transactions freely read data under the assumption that two transactions will not try to

20

update the same data concurrently. Before a transaction commits, the system validates

this assumption by checking that no other transaction committed a more recent write.

Since T1 reads a value for x before T2 finishes writing its update (in OCC writes are

buffered until commit), T1 observes the same value as T2. This interleaving of the reads

and writes to x is irreconcilable with a sequential ordering of T1 and T2, and the system

aborts T2.

2PL Figure 3.1b shows a similar execution of T1 and T2 in a replicated system that

instead uses 2PL for CC. In replicated 2PL, a transaction acquires a read lock before

reading an object. Similarly, a transaction acquires a write lock before writing to an object

– a process which is typically deferred to commit time. These per-object reader-writer

locks prevent two transactions from reading and modifying the same object concurrently.

In the execution of Figure 3.1b, T1 and T2 both acquire read locks on x before either

acquires a write lock. This would lead to a deadlock when both transactions attempt

to upgrade their read locks to write locks. To avoid such deadlocks, systems typically

employ a deadlock avoidance strategy. For example, the system in the execution aborts

the younger transaction T2 so that T1 is able to upgrade its lock.

Serialization Windows

Transactions in serializable systems must appear to take effect sequentially. As demon-

strated in Figure 3.1, if the reads and writes of transactions to the same object interleave,

this abstraction may be violated, and at least one of the transactions cannot commit.

Logically, when a transaction T ′ reads an object x last written by T , T ′ is choosing

to order itself directly after T in the serializable order (the read from T ′ must appear

to immediately follow T ’s write). No transaction that—through reads and writes to

21

x—would preclude this ordering can commit. In effect, T ′’s read initiates a period of

mutual exclusion: until T ′ has overwritten x, no other transaction can also read and

modify x. We note that such a period of mutual exclusion does not apply to transactions

that only read an object.

Figures 3.1a and 3.1b explicitly depict this time period with the bars labelled T1

and T2 above the timeline. For both executions, the overlap between two such periods

intuitively corresponds to a non-serializable interleaving. We refer to this period as

a serialization window and we formally prove that no two serialization windows can

overlap in a system that provides the abstraction of sequential execution.

Formal Definitions If a transaction Ti reads version k of object x (ri(xk)) and writes

version i of x (wi(xi)), Ti creates a serialization window on x that starts at wk(xk) and ends

at wi(xi). Ti’s serialization window on x starts when its read dependency (the version of x

it read) is written and ends when it writes the next version of x. 2

In Adya’s model, the sequential execution property is formalized as a statement about

the DSG: if DSG(H) is acyclic then a topological sort of the graph is a sequence of

transactions that produces an execution equivalent to the one represented by H. A system

thus provides the abstraction of sequential execution if it only produces histories whose

DSGs are acyclic.

For these definitions, the following Theorem holds:

Theorem 3.1.1. If DSG(H) is acyclic and Ti and Tj are two committed transactions in

H that write object x, then the serialization windows of Ti and Tj on x do not overlap.

Proof Sketch. First, consider the case of xi immediately preceding x j in the version order

2We extend this definition in Appendix A to transactions that only write to x.

22

and Tj reading xk (as in Figure 3.1). If xk 6= xi, then either xi is before xk in the version

order or vice versa. In the former case, x j must precede xk in the version order because xi

and x j are directly next to each other. This implies there is a cycle Tj
ww−−→ Tk

wr−→ Tj. In

the latter case, there is a cycle T`
ww−−→ Tj

rw−→ T` involving the transaction T` that installs

the version x` that immediately follows xk in the version order. Both cases contradict the

hypothesis that DSG(H) is acyclic, so xk must equal xi. This trivially implies that Ti’s

serialization window ends before Tj’s serialization window begins, since they begin and

end respectively at the same point in time (wi(xi)).

If xi does not immediately precede x j, then the same reasoning can be applied

inductively to the serialization windows of the transactions that created the totally ordered

sequence of object versions between xi and x j.

We provide a complete proof in Appendix A. Note that non-overlapping serialization

windows are necessary, but not sufficient, for serializable execution.

Serialization windows offer a general, yet precise characterization of the throughput

limitation that sequential execution imposes. Since serialization windows of committed

transactions for the same object cannot overlap in time, the length of serialization

windows in a system determine an upper bound on the number of serialization windows

of committed transactions that can manifest for the same object in a fixed period of time.

Thus, a system’s throughput for processing transactions that make conflicting accesses to

the same object is bounded by the inverse of the length of its serialization windows. For

example, replicated OCC and 2PL have relatively long serialization windows because

they buffer writes until commit, which occurs after a round of communication to at least

a majority of replicas.

23

T1
T2

c1

c2

s1

s3

s2

Figure 3.2: Payments in replicated MVTSO.

3.1.2 Read Validity

Besides simulating sequential execution, serializable systems must uphold the abstraction

of a failure-free store: they need to ensure that committed transactions only observe the

effects of committed transactions, a property commonly referred to as read validity.

This property is trivially guaranteed by CCs that only expose committed writes to

readers, such as OCC or 2PL. To understand how read validity limits the throughput of

serializable systems, we examine the concurrent execution of TPC-C Payments in multi-

version timestamp ordering (MVTSO) [17, 37, 78, 120, 121, 134], a CC that exposes

both committed and uncommitted writes to readers.

Figure 3.2 shows an execution of T1 and T2 in a replicated implementation3 of

MVTSO. T1 reads the value of x written by a previous transaction T0, and, to guarantee

read validity, waits for T0 to commit before validating. Likewise, T2 reads from (and

forms a dependency on) T1’s write. Due to this dependency, T2 waits for T1 to commit

before validating and committing. If T2 eagerly validates and commits, the system may

violate read validity if T1 subsequently fails to commit.

Read validity, when combined with the sequential execution requirement of serializ-

3A basic extension of MVTSO as described in the literature [17] that uses validation to ensure that a set
of replicas agree on the order of writes with respect to reads.

24

ability, restricts the order in which transactions can commit. This limits how quickly a

chain of dependent transactions can commit. We introduce the notion of validity windows

to quantify this limitation.

Formal Definitions A history H satisfies read validity if for every read ri(xk) from a

committed transaction Ti, Tk is not aborted. In a real implementation, H satisfies read va-

lidity if and only if for every read ri(xk) from a committed transaction Ti, Tk is committed

and Tk commits before Ti [1]. This is typically referred to as recoverability [17].

If a transaction Ti reads version k of object x (ri(xk)) and writes version i of x (wi(xi)),

Ti creates a validity window on x that starts at ck and ends at ci. Ti’s validity window on x

starts when its dependency commits and ends when it commits. 4

Validity windows on the same object cannot overlap in a system that provides both

read validity and sequential execution. We prove the following in Appendix A:

Theorem 3.1.2. If DSG(H) is acyclic, H satisfies read validity, and Ti and Tj are two

committed transactions in H that write object x, then the validity windows of Ti and Tj

do not overlap.

Like serialization windows, validity windows offer a precise characterization of the

throughput limitation that read validity imposes in conjunction with sequential execution.

A system’s throughput for processing transactions that make conflicting accesses to the

same object is bounded by the inverse of the length of its validity windows. Thus, a

system that processes such transactions at the rate of this bound can achieve higher

throughput by reducing the length of its serialization windows and validity windows.

Unlike serialization windows—which can overlap in an execution as long as one of the

4We extend this definition in Appendix A to transactions that only write to x.

25

involved transactions does not commit—validity windows are only defined for committed

transactions, as their end points correspond to their associated transactions’ commit

events. A system can seek to avoid overlapping serialization windows of uncommitted

transactions to reduce wasted work and idle periods, but there is no analogous goal for

validity windows. Instead, the sole performance concern of a serializable CC with respect

to read validity is the length of its validity windows.

3.2 Transaction Re-Execution

To maximize system performance, a serializable CC should ensure that (i) serialization

windows are small and not overlapping; and (ii) validity windows are small. These

constraints are hard to satisfy efficiently for interactive transactions, where the applica-

tion server executes transactions incrementally using a conversational API (e.g., ODBC)

interspersed with application processing. This type of transaction is favored by develop-

ers [108], but it prevents a system from knowing a transaction’s full access set a priori.

Further, asynchrony prevents systems from reliably predicting when outstanding accesses

will complete. In this section, we highlight the limitations of existing approaches to pro-

viding transactions under asynchrony (§3.2.1) before introducing transaction re-execution

to address those shortcomings (§3.2.2).

26

3.2.1 Existing Approaches

Abort & Retry

Existing systems that support interactive transactions immediately process accesses as

they are received from the application; the CC then aborts transactions whose reads

cause their serialization windows to overlap with that of another transaction. Under

high contention, this approach can cause livelock, with transactions repeatedly aborting.

Instead, most applications enforce randomized exponential backoff [93]: clients wait a

randomized, exponentially growing amount of time before restarting an aborted transac-

tion. Doing so eventually minimizes the likelihood that a transaction’s read generates a

serialization window that overlaps with the window of another transaction.

Randomized exponential backoff, however, is a rather large hammer applied to a

problem that instead benefits from precision. Exponentially increasing the expected

times between attempts can introduce artificially long serialization windows where much

of the span of a serialization window is from the application server waiting to issue an

uncontended read. This limits the maximum throughput of a system even when physical

resources are not bottlenecked. For example, in our evaluation of TAPIR (§4.5), the

average CPU utilization of storage servers on a high contention workload at maximum

saturation is only about 17%.

Deterministic Databases

Deterministic systems avoid all non-determinism when scheduling operations by pre-

ordering transactions [51, 71, 126]. Once the transaction’s position in the total order

is durably logged, it is forwarded for execution to the scheduling layer, which then

27

deterministically executes transactions in an order equivalent to the one in which they

are logged. As the ordering is known a priori, transactions never read values that cause

serialization windows to overlap. Consequently, retries from aborts do not occur and

serialization windows are kept relatively short since they do not contain idle periods

between retries. Similarly, as transactions commit in a pipelined fashion before being

executed, validity windows are also small.

These performance benefits come at the cost of limiting the expressivity of the trans-

actional API: transactions must be written as stored procedures, with the transaction’s

entire program logic submitted on invocation and and stored in the database itself. This

tradeoff is unacceptable for most applications [108], as it adds to the developer’s burden

and complicates deploying updates to the application logic.

3.2.2 Re-Execution

In this chapter, we ask: can we develop a mechanism that (i) prevents serialization win-

dows from overlapping while minimizing idle time gaps within them; and (ii) minimizes

validity windows, all while preserving the expressivity of interactive transactions? To

answer these questions, we propose a transaction re-execution mechanism that initially

schedules transactions best effort, but can dynamically and partially restart execution

when overlaps do occur.

In a nutshell, transaction re-execution works as follows. Whenever the serialization

windows of two transactions T and T ′ overlap, transaction re-execution resolves the

overlap by changing the read value of T to T ′’s write, thereby shifting T ’s window for-

ward. There are two benefits to this approach: (1) it prevents windows from overlapping

while ensuring that transactions are processed continuously, without gaps; and (2) it

28

T1

T2

T3

r1(x0) w1(x1)

r2(x0)

r3(x0)

w0(x0)

w3(x3)

r2(x1)

r3(x1) r3(x2)

w2(x2)

Figure 3.3: Transaction re-execution.

shifts windows locally: re-execution occurs at the granularity of an object (not the full

transaction) and thus only requires re-executing operations that access or depend on that

particular object. Consider, for instance, Figure 3.3. Initially, there are three transactions,

T1, T2 and T3, whose serialization windows pairwise overlap. Re-execution first shifts

the reads of T2 and T3 to observe w1(x1); and then the read of T3 once more, after T2

completes its write.

Two core ideas drive the feasibility of re-execution: read unrolling and a priori

ordering. Below, we briefly discuss these two pillars of re-execution.

Read Unrolling. Transaction re-execution shifts reads forward in time by invalidating

the current values read in a given execution and replacing them with others, produced

by newer writes. In doing so, however, the read no longer logically corresponds to the

ongoing application’s thread of execution. The application logic, based on the old value,

may have subsequently issued several dependent operations. To avoid inconsistencies,

transaction re-execution must provide a means for unrolling the effect of prior reads (and

all possible dependencies), as well as the ability to partially restart execution in a way

that is transparent to the application.

29

A Priori Ordering. Deterministic databases leverage pre-defined schedules to stream-

line execution; while interactive transactions cannot be fully scheduled in advance,

determinism can simplify scheduling. By assigning to all transactions a speculative

serialization order a priori, overlapping serialization windows are easily identified at

runtime: pairwise reads and writes to an object x that appear out of the speculative order

induce overlapping serialization windows.

3.3 Morty Design

Morty is a replicated transactional key-value store explicitly designed to minimize the

overlap of serialization windows (§3.1). Morty’s properties and performance rest on

two basic mechanisms. First, transaction re-execution (§3.2), which allows it to realign

serialization windows that would otherwise overlap; second, concurrency control and

replication techniques that minimize the length of serialization windows and validity

windows, especially in geo-replicated settings. The combination of these techniques

allows Morty to achieve higher throughput on high contention workloads than existing

systems (§4.5) without sacrificing either strong consistency (serializability) or generality

(interactive transactions).

System Model. Morty assumes an asynchronous system, where message delivery and

local processing may be delayed for arbitrarily long. Up to f out of n = 2 f +1 Morty

replicas and any number of its clients may fail by crashing, i.e. permanently cease to send

and receive messages. For simplicity, we assume reliable and FIFO message delivery;

these properties may be implemented in an unreliable network using retransmissions and

message sequence numbers.

30

Structure. In the rest of this section we describe how Morty implements the two

pillars of transaction re-execution (§3.3.1). Next we walk through a full execution of a

transaction in Morty (§3.3.2). Finally, we discuss how Morty handles failures (§3.3.3)

and garbage collection (§3.3.4).

3.3.1 Implementing Re-Execution

Unrolling Reads with a Continuation-based API

The first pillar of transaction re-execution is the ability to undo the effects of previously

completed reads, whether by recomputing intermediate transaction state or by retracting

or reissuing operations dependent on those reads.

A simple and general way to rewind the effects of completed reads is to provide

the application’s logic as input to the system; the effects of undoing a read can then be

precisely determined by re-executing that logic with the new read value. To achieve

this capability, prior work has required applications to limit themselves to expressing

transactions either as stored procedures [132], renouncing interactivity, or via a separate

domain-specific language [38], imposing an additional burden on developers [108]. Morty

manages to avoid these drawbacks by adopting a different approach: a continuation

passing style (CPS) API.

Continuation-based API In CPS, the control flow of a program is specified entirely

as function calls. Each function takes a context and continuation argument. The context

stores the program’s current state, and the continuation specifies where the program

continues executing after finishing the current function. Morty’s API mirrors a traditional,

31

bool ProcessPayment(uint w_id, uint amt) {
client.Begin();
auto wh = client.Get("warehouses", w_id);
wh.SetCol("ytd", wh.GetCol("ytd") + amt);
client.Put("warehouses", w_id, wh);
return cli.Commit();

}

(a) Traditional: operations implicitly ordered by program order.

void ProcessPayment(uint w_id, uint amt,
continuation_t cont) {

auto ctx = make_ptr<PaymentCtx>();
client.Begin(ctx);
client.Get(move(ctx), "warehouses", w_id,

[&client, &cont](ptr<PaymentCtx> ctx,
string val){

auto wh = ParseWarehouse(val);
wh.SetCol("ytd", wh.GetCol("ytd") + amt);
client.Put(ctx, "warehouses", w_id, wh);
client.Commit(move(ctx), cont);

});
}

(b) CPS: explicit continuations define control flow dependencies.

Figure 3.4: Payment in traditional (3.4a) & CPS (3.4b) APIs.

imperative API, but adds a context parameter to each database operation; in addition,

calls to GET and COMMIT also include a continuation parameter, which defines where to

return control (i.e., which logical block to execute next) after completing the database

statement.

CPS is widely used for writing asynchronous programs across many languages

(JavaScript, Go, C++, Java, Python) and frameworks (NodeJS, LibEvent [83], Tokio

Async [115]). It is a good match for networked databases, such as Morty, where the

results of GET and COMMIT operations are only available after calls to the network.

We emphasize that networked applications are often already written with the CPS

API, and in such cases, Morty imposes no burden on the application developers to rewrite

32

their applications. For example, Microsoft’s FaRM transactional system [42] uses the

CPS API, and thus, applications written for FaRM could run on Morty with few changes.

Nevertheless, moving traditional imperative code to CPS can be fully automated with

the help of a compiler [8, 72]. While Morty does not currently support this capability,

our experience suggests that the effort involved in hand-coding such transformations is

relatively minor. For example, Figure 3.4 shows a simplified TPC-C Payment transac-

tion written in an imperative C++ transactional API (Figure 3.4a) and in Morty’s CPS

(Figure 3.4b).

It’s all in the context! CPS mostly hides from the application developer the complexity

of supporting re-executions. By simply storing old contexts in the client library, Morty

can automatically rewind the current execution and re-execute a continuation with a

new return value, leaving the application or user none the wiser. No additional effort

is asked of the developer beyond what is required in a system that may abort and retry

transactions.

Pre-Determining an Order with MVTSO

The second pillar of Morty’s transaction re-execution is to execute transactions in a

pre-determined order. To this end, Morty adopts MVTSO as its concurrency control

protocol. Each transaction is assigned a timestamp when it enters the system; the

timestamp determines the transaction’s position in a total order. The read, write, and

commit protocols attempt to execute transactions in this predefined order by ensuring

that the timestamp of the write observed by a read precedes that of the read and follows

that of all other writes visible to the read. However, MVTSO can only approximates

the perfect deterministic ordering of deterministic databases. Nodes’ clocks are only

33

vstore - map from key to a vrecord struct:

reads - set of uncommitted (ver, last reply)

writes - set of uncommitted (ver,val)

prepared reads - set of prepared (ver,exec id,r ver)

prepared writes - set of prepared (ver,exec id)

committed reads - set of committed (ver,r ver)

committed writes - set of committed (ver,val)

decision log - map from ver to Commit/Abort decision

erecord - map from (ver,exec id) to a struct:

vote - validation vote cast by replica

view - view in which replica is prepared to accept finalize decisions

finalize decision - accepted commit decision

finalize view - view in which replica accepted finalize decision

decision - learned Commit/Abandon decision

Figure 3.5: State at each replica.

loosely synchronized, and the system still experiences non-deterministic ordering from

the network and processors. Thus, a transaction’s read may miss the correct write from

another transaction whose assigned timestamp was too small (because of clock skew)

or whose write arrived too late (because of asynchrony). If in some edge cases these

circumstances may force one of the transactions to abort, Morty demonstrates that,

in most cases, re-execution reduces throughput loss by allowing both transactions to

commit.

34

3.3.2 Transaction Execution

In the following, we detail Morty’s transaction execution protocol. Morty encapsulates

the state and metadata of an executing transaction in a transaction execution (or execu-

tion). Since Morty supports transaction re-execution, multiple executions of the same

transaction may exist over the lifespan of a transaction. Thus, the coordinator of a

transaction assigns a unique eid to each execution that it creates. Figure 4.5 summarizes

the state maintained at each replica.

BEGIN(ctx). The coordinator starts a transaction T by assigning it a unique version

ver = (ts, id) based on its loosely synchronized local clock ts and unique coordinator

identifier id. This version defines T ’s expected position in a total order for all transactions.

The initial execution’s eid is 0. The coordinator also initializes data structures that will

store metadata for the transaction execution. For convenience, these are stored directly

in the application ctx so that subsequent transaction operations can easily access the

metadata associated with the application’s current context.

GET(ctx,key,cont). The coordinator creates a mapping between this GET request and

the application continuation cont in order to call the continuation when the GET request

completes. It then sends a Get(ver,key) message to a single replica: in geo-replicated

deployments, this minimizes GET latency, as the coordinator (in the common case) can

contact the closest replica.

Upon receiving a Get, a replica determines the return value by selecting from key’s

vrecord the write with the largest version ver′ smaller than ver. It then sends to the

coordinator a GetReply(ver′,val) message containing the write value val, adds the read

to the vrecord, and records ver′ and val as the most recent write replied for the read.

35

When the coordinator receives a GetReply it adds (key, ver′, val) to the read set of

the execution. Then, the coordinator calls cont(val) to return the value and control to the

application.

PUT(ctx,key,val). The coordinator adds (key,val) to the write set of the execution. It

then asynchronously broadcasts a Put(ver,key,val) message to all replicas and returns

control to the application.

When a replica receives a Put, it adds the write to the vrecord for key. Next, the

replica determines whether any read in the vrecord missed this new write. A read misses

a write if the replica, had it processed the read after the write, would have replied to the

read with the value of that write. A read miss happens when the read’s version is smaller

than ver and one of two conditions is met: (i) the version of the most recent write replied

for the read is smaller than ver; or (ii) the read already observed a write with ver, but

with a different value. The latter case is possible when re-executing an earlier read in the

transaction changes the write value.

The replica sends a new GetReply(ver,val) to the coordinator of any read in a key’s

vrecord that missed the write.

Re-Execution. Upon receiving a GetReply, the coordinator considers re-executing T

only if T ’s current execution includes a read request that would have prompted that

reply. This condition may not be met if the coordinator already had already initiated

re-execution and is now operating on an execution branch that either no longer includes

the request to read, or is yet to invoke it. To make this determination, the coordinator

defines and stores a reads execution history within the application-provided context ctx. It

also maintains a current context for the execution that most recently invoked an operation.

36

Only those replies whose reads execution history is a prefix of the execution history of

the current context trigger re-execution.

To re-execute T ’s read and return the new write value to the application, the co-

ordinator uses the copies of T ’s ctx and cont that it is storing to implement the CPS

asynchronous Get calls; supporting re-execution simply requires retaining these copies,

for each Get of the current execution, until T completes. The coordinator retrieves

the stored ctx and cont that correspond to the read that is to be repeated, and calls the

continuation with the new read value.

COMMIT(ctx, cont). Morty, as in prior work [121, 122, 136], integrates concurrency

control with replication to reduce commit latency. The commit protocol requires up to

three phases. In the Prepare phase, the coordinator requests that all replicas vote on

whether or not the transaction execution is serializable. If all replicas agree, the decision

is durable; the coordinator immediately performs the Decide phase and returns to the

application. Otherwise, an intermediate Finalize phase is necessary to explicitly make a

decision durable before proceeding to the Decide phase.

Abort vs. Abandon. A commit protocol determines one of two possible decisions for

a transaction: Commit or Abort. In Morty, however, the same transaction can trigger

multiple re-executions, some of which may start after the transaction’s commit protocol

has already begun. Thus, Morty refines the commit protocol to operate at the granularity

of individual executions of a transaction. Each transaction execution reaches one of

two decisions: Commit or Abandon; these elemental decisions in turn determine the

transaction’s decision value. For a transaction to commit, at least one of its executions

must commit; for it to abort, all of its executions must be abandoned.

37

Prepare. The coordinator begins the Prepare phase for an execution of transaction T

with (ver,eid) by broadcasting Prepare(ver,eid,read set,write set) to replicas.

When a replica receives a Prepare, it creates an entry in its erecord. Before voting on

whether the execution is serializable, the replica checks that all of T ’s read dependencies

are committed. If any version in read set was written by an aborted transaction, the

replica votes Abandon-Final. Otherwise, if any version in read set is not committed, the

replica waits to learn a decision for the corresponding transactions before continuing to

process this Prepare.

Serializability validation involves four checks:

1. Check that the execution’s reads did not miss any writes (§3.3.2). If a read missed

an uncommitted write, the replica votes Abandon-Tentative; if a read missed a

committed write, the replica votes Abandon-Final.

2. Check that other transactions’ reads did not miss T ’s writes. If a committed

transaction missed a write from T , the replica votes Abandon-Final. Otherwise,

if a tentatively prepared transaction missed a write, the replica votes Abandon-

Tentative.

3. Check for dirty reads: a replica confirms that every ver and val in read set exactly

matches a committed write. If not, the offending read must have read from an

abandoned execution of a transaction. Therefore, the replica votes Abandon-Final.

4. Check that the execution did not read from any truncated transactions, and that the

transaction execution itself is not truncated (§3.3.4). Otherwise, the replica votes

Abandon-Final.

The first two checks are standard in MVTSO; the third ensures that committed executions

38

Decision Skip Finalize? Need Finalize?

Commit 2 f +1 Commit f +1 Commit
Abandon 1 Abandon-Final ≥ 1 Abandon-Tentative

Table 3.1: The coordinator aggregates votes and determines a final decision based on the
number and types (Commit, Abandon-Tentative, Abandon-Final) of votes.

only read valid data; finally, the fourth ensures that the execution is validated against

committed transactions that have been garbage collected.

If the execution passes all validation checks, the replica prepares its reads and writes

and votes to Commit. In all cases, the replica sends a PrepareReply(vote) message to the

coordinator. If the replica determines that the execution missed a write, it additionally

sends a GetReply containing the write.

Since at most f replicas are faulty, the coordinator waits to receive at least f + 1

PrepareReplies. It then determines (i) the decision for the current execution (and, if

appropriate, for the corresponding transaction), and (ii) whether or not the decision

is durable. Table 3.1 summarizes how the coordinator aggregates replica votes. An

execution of T (and, as a result, T itself) commits only if at least f +1 replica vote to

commit: this guarantees that no two conflicting executions can both commit, and thus the

set of committed transactions is serializable. A decision is considered durable if it can be

reconstructed from the information stored at any set of f +1 replicas. If this is not the

case, an untimely failure of T ’s coordinator may lead a recovery coordinator (§3.3.3) to

a different decision from that of T . To avoid this scenario, the coordinator performs an

additional Finalize phase.

Finalize. The Finalize phase uses consensus to ensure that replicas agree on the decision

for the execution despite coordinator failures. It resembles single-decree Paxos [75] in

39

that the decision for the transaction execution is treated as a write-once register whose

value, once determined, will remain unchanged [81]. This is implemented via replicas

accepting a finalize decision proposed by coordinators for a view. Specifically, the

coordinator broadcasts a Finalize(ver, eid, view, decision) message to all replicas. Upon

receiving it, a replica checks in the erecord for (ver,eid) whether its view view′ is the

same as view. If so, the replica records decision as its finalize decision and sends back a

FinalizeReply(view′) message. The coordinator waits to receive f +1 such replies. If they

are for the view sent by the coordinator, the decision is durable. Otherwise, a recovery

coordinator is concurrently attempting to Finalize a decision for the execution and the

coordinator itself must perform recovery (§3.3.3).

Decide. The Decide phase confirms for replicas that the decision for execution eid of

T (and, if warranted, for T itself) is durable. It also indicates that state associated with T

can be safely garbage collected. We discuss garbage collection later (§3.3.4); for now,

we focus on the other actions that a replica takes upon learning a durable decision for

(T,eid).

To start this phase, the coordinator broadcasts a Decide(ver, eid, decision, abort?)

message to all replicas. Although decision applies to eid, if it is Commit, then the

decision’s scope extends to T as well. Instead, a decision that is Abandon applies only

to the current execution. However, if the coordinator determines that this is T ’s only

outstanding execution, it sets the abort? to True to indicate its decision that T must Abort.

When a replica receives a Decide with a Commit decision, it logs the Commit decision

in the erecord for (ver,eid) and adds (ver,Commit) to the decision log. It also adds the

read set and write set of the execution to committed reads and committed writes of

the appropriate vstore entries. This metadata is used for validating future conflicting

40

transactions and is retained until it can be safely garbage collected.

If the Decide includes a decision to Abandon the execution, but not one to Abort,

the replica logs the Abandon decision in the erecord for (ver, eid) and erases all

prepared reads and prepared writes associated with (ver, eid) in the vstore, while re-

taining all reads and writes associated with ver. This allows subsequent executions of T

to continue executing or committing. If Decide additionally indicates that T must abort,

the replica adds (ver,Abort) to the decision log and generates new GetReplies for all

reads that observed T ’s writes.

Lastly, if the Decide implies a Commit or Abort decision for T (i.e., not just an

Abandon decision for the current execution), the replica checks whether suspended

Prepares that depend on T may now move forward.

Commit & Re-Execution. A re-execution for T may be triggered after the commit

protocol for T ’s current execution has already begun. In fact, for geo-replicated deploy-

ments, it is during the commit protocol that re-executions are most likely triggered, since

it is the first phase that requires a message exchange with at least f +1 replicas.

To avoid committing multiple executions from the same transaction, a coordinator

abandons all previous executions before attempting to commit its current re-execution.

To abandon an execution (ver, eid) that has reached the commit protocol, a coordinator

broadcasts Finalize(ver, eid, 0, Abandon) messages to all replicas. In the absence of

contending recovery coordinators (§3.3.3) , f +1 replicas accept the Abandon decision

in view 0, making the decision durable. This message exchange also unprepares any

prepared reads and writes from (ver, eid) – clearing the way for the coordinator’s re-

execution to proceed through the commit protocol. If the coordinator’s Abandon proposal

fails to be accepted by f +1 replicas—because of a concurrent recovery coordinator—the

41

coordinator recovers that decision and proceeds accordingly.

3.3.3 Handling Failures

Morty tolerates up to f failures among its 2 f + 1 replicas. However, the failure of a

coordinator poses a potential liveness issue: a transaction that stalls in the middle of its

commit protocol may prevent conflicting transactions from committing. Furthermore,

transactions that read from a stalled transaction must wait until a decision is reached.

Inspired by recent work [121, 122, 136], Morty’s coordinator recovery protocol empowers

any node in the system to recover a durable decision for a failed coordinator’s transaction.

Recovery Protocol. The recovery protocol, like the Finalize phase (§3.3.2), uses con-

sensus to ensure that a single decision is reached for a transaction execution. Unlike

coordinators performing the Finalize phase, a recovery coordinator for an execution

eid of a transaction with version ver must enact a view change to a unique view′ larger

than any previous view by broadcasting a PaxosPrepare(ver, eid, view′) message to all

replicas. When a replica receives a PaxosPrepare, it checks in the execution’s erecord

entry whether view′ is larger than its current view view, in which it previously promised

to not accept decisions in smaller views. If so, the replica updates view to view′. It then

sends a PaxosPrepareReply(view, decision, finalize view, finalize decision, vote) to the

recovery coordinator.

To propose a durable decision, the recovery coordinator must receive f +1 replies

from replicas agreeing to change to view′. The actual decision depends on the contents

of the replies. If any reply already contains a learned decision, the recovery coordinator

simply performs the Decide phase and terminates. Otherwise, it performs the Finalize

42

phase using view′ and either (i) the finalize decision from among all replies with the

highest finalize view, or (ii) if no finalize decision exists, a new decision based on the

Prepare phase rules (Table 3.1). The Finalize and subsequent Decide phase proceed as in

normal transaction execution.

3.3.4 Garbage Collection & Truncation

To be practical, Morty replica state must not grow asymptotically faster than the number of

objects stored in the system. This is ensured by a series of garbage collection procedures

and a related truncation procedure.

Decide Garbage Collection Part of the vstore is garbage collected when a Commit

or Abort decision for an execution (T,exec id) is learned. The uncommitted reads

with version ver(T) are no longer needed for re-executing T , since T has a durable

decision. Similarly, the uncommitted writes with version ver(T) are either visible to

other transactions as part of committed writes (in the case of Commit) or should no

longer be visible to any transaction (in the case of Abort). Furthermore, regardless of

the Decide decision, the prepared reads and prepared writes with ver(T) and matching

exec id may be garbage collected.

Truncation. Garbage collection of the erecord is more complicated as this state is used

to ensure that at most one durable decision is reached for each transaction execution.

Morty safely truncates the erecord with a truncation protocol, initiated by a truncation

coordinator, which attempts to establish a durable truncation ver that summarizes all

committed state from transactions with smaller versions. Once a safe truncation ver is

determined, replicas stop responding to requests for transactions with smaller versions.

43

The truncation protocol is comprised of the following steps:

1. When the system starts, it establishes truncation versions based on the loosely

synchronized clocks of the replicas. These versions are spaced by a configurable

amount of time to control how frequently truncation occurs.

2. A replica times out when a configurable amount of time has passed since the

most recent truncation version truncation ver. At this time, it stops processing

transactions with versions smaller than truncation ver (e.g., by responding Trun-

cated to all related messages). In addition, it sends to a pre-established truncation

coordinator a Truncate(truncation ver,erecord) message containing a snapshot of

its current erecord for transactions with versions smaller than truncation ver.

3. When the truncation coordinator receives f + 1 Truncates for truncation ver, it

merges the erecords using the existing voting and coordinator decision procedures.

The merging process must maintain the invariant: if a decision could have been

reached for a transaction T in one of the constituent erecords, then that decision

is preserved in the merged erecord. Then the truncation coordinator proposes a

consistent merged erecord for this truncation version by broadcasting a Propose-

Merge(truncation ver, truncation view,merged erecord) message to all replicas.

4. Upon receiving a ProposeMerge, a replica checks whether its truncation view

is the same as truncation view. If so, the replica records truncation view as

truncation accept view and merged erecord as truncation accept erecord. In ei-

ther case, it sends a ProposeMergeReply(truncation view) to the truncation coordi-

nator.

5. When the truncation coordinator receives f + 1 ProposeMergeReplies with the

same truncation view, the truncation decision is durable and the coordinator in-

forms all replicas of the consistent durable erecord by broadcasting a Truncation-

44

Finished(truncation ver,merged erecord) message.

6. Upon receiving a TruncationFinished, a replica applies the merged erecord

to its own erecord, overwriting any existing metadata for transactions from

merged erecord. At this point, it also raises its watermark truncation ver to allow

truncated metadata to be garbage collected. Additionally, as part of serializability

validation, it thenceforth rejects any transaction executions with versions smaller

than truncation ver.

7. If the truncation coordinator receives a ProposeMergeReply with a different

truncation view, it attempts a view change to a higher view by broadcasting Trun-

cationPaxosPrepare. Once f +1 replicas agree to change to the higher view, the

coordinator repeats steps 3–5.

Truncated Garbage Collection. Periodically, state in the erecord and vstore associ-

ated with a transaction T whose version ver(T) is smaller than truncated ver may be

deleted. Specifically, the entire struct associated with any execution of T may be deleted

from erecord. In addition, any committed reads and committed writes from T in vstore

may be deleted, as the truncation check during validation ensures that transactions that

would need to be checked against these deleted reads and writes are not allowed to

commit.

3.3.5 Correctness

Using Adya’s model of a transactional storage system, the following Theorem holds:

Theorem 3.3.1. Morty only produces serializable histories.

45

Proof Sketch. Consider a history H produced by Morty. The proof that H is serializable

consists of two parts: (i) showing that DSG(H) is acyclic and (ii) showing that committed

transactions in H only read valid data.

The proof of (i) reduces to showing that the directions of the edges of DSG(H) are

consistent with the version order of transactions, which is a total order. Consider a

write-write edge whose direction is determined by the object version order�. We define

� to be consistent with the version order of transactions, so the edge direction is trivially

consistent with the version order. Similarly, consider a write-read edge: Morty only

returns values for reads such that the version of the write value is smaller than the version

of the reading transaction, so the edge direction is always consistent with the version

order of transactions.

Proving the consistency of a read-write edge Ti
rw−→ Tj —where Ti reads some object

version xk and Tj installs the next version after xk— requires reasoning about the order in

which the replicas of the group that stores x perform the validation checks for Ti and Tj.

Regardless of whether or not Ti and Tj commit on the fast path, slow path, recovery path,

or truncation path, they each must pass the validation check at more than f +1 replicas.

This implies that at least one replica validates both Ti and Tj. If the replica validates

Ti first, then Tj can only validate successfully if ver(Ti) < ver(Tj). Otherwise, if the

replica validates Tj first, then Ti can only validate successfully if ver(Ti)< ver(Tj). The

truncation check during validation ensures that this invariant holds even after committed

data is truncated.

The proof of (ii) relies on the dirty read check of the validation check and the fact

that transaction coordinators only attempt to commit a single execution of a transaction

that is produced by the application logic. The former ensures that committed transaction

only read from transactions which have been committed and the latter ensures that the

46

only transactions which are committed are those that correspond to a single transaction

invocation by the application.

The full proof of Theorem 3.3.1 is in Appendix A.

3.4 Evaluation

Our evaluation answers the following questions:

• How do Morty’s throughput and latency compare to state-of-the-art systems on

high-contention OLTP workloads? (§3.4.1)

• To what extent do additional CPU resources help Morty (and the baselines) scale

throughput? (§3.4.2)

• How do varying levels of contention affect Morty’s throughput (relative to the

baselines)? (§3.4.3)

Our code and experiment scripts are open source [98].

Baselines. We quantify Morty’s performance against three baselines: (i) TAPIR [136],

a state-of-the-art serializable storage system with interactive transactions that uses OCC;

(ii) Spanner [35], Google’s distributed, strictly serializable database that uses 2PL [17] for

CC and wound-wait [114] for deadlock prevention; and (iii) a replicated implementation

of MVTSO inspired by recent work [121, 122] that re-uses Morty’s replication and

execution logic, but does not employ re-execution. We implement Morty, Spanner, and

MVTSO in TAPIR’s codebase to minimize implementation differences and provide a

fair basis for the performance implications of each system’s design choices. All systems

47

use TCP for communication, libevent for asynchronous I/O, and libprotobuf for

serialization. Replicas in Morty and MVTSO are multi-threaded; not so in TAPIR and

Spanner, as we do not modify their single-threaded replication libraries. To compensate,

when measuring system capacity, we configure TAPIR and Spanner with additional

replica groups to match the number of cores used by Morty and MVTSO.

Our Spanner implementation is faithful to its documented design, except that we reuse

the implementation of view-stamped replication [103] in TAPIR’s codebase instead of

implementing Multi-Paxos [75]. Notably, we implement several features of Spanner that

provide a performance advantage over Morty, as these features are integral to attaining

practical performance with Spanner. To support Spanner’s non-blocking read-only

transactions, we emulate TrueTime with an error of 10ms, the p99.9 value observed in

practice [35]. Finally, to better support transactions that read and modify the same key,

we implement Spanner’s GetForUpdate. Although this feature is not in the original

description of Spanner’s protocol [35], it has since been added [31].

Setup. We run experiments on CloudLab [44] using c220g5 machines in the Wiscon-

sin cluster. Each machine has two 10-core Intel Xeon CPUs at 2.20 GHz, 192GB of

memory, and one Dual-port Intel X520-DA2 10Gb. All experiments use n = 3 replicas

per replica group, tolerating f = 1 replica failures, and use up to six machines for clients,

which run as single-threaded applications and send requests to storage in closed loops.

Morty and MVTSO use one replica group, while TAPIR and Spanner use 20. Each client

is logically co-located with some replica (simulating a local datacenter) and each replica

is loaded with the same number of co-located clients. Clients use local replicas for reads,

except in Spanner, where clients read from group leaders.

48

RTT us-east-1 us-west-1 us-west-2 eu-west-1

us-east-1 0 62ms 68ms 68ms
us-west-1 62ms 0 22ms 138ms

Table 3.2: Cross-region RTTs in emulated networks.

Measurement. We run all experiments for 90 seconds and exclude measurements from

the first and last 15 seconds. We report latency as the time between when the client first

begins a transaction and when it is notified that the transaction is committed, including

retries after aborts. To avoid livelock, clients perform a random exponential backoff (up

to 2.5 s) before retrying. We report goodput as the number of committed transactions

across all clients over the measurement period.

Network Setup. We use the Linux traffic control (tc) utility to emulate wide-area

latencies and evaluate the systems across three different network setups. In each case, we

replicate the RTTs observed in AWS (Table 3.2):

1. The regional setup (REG) simulates replicas located in different availability zones

of the same region with 10ms inter-replica latency.

2. The continental setup (CON) uses measurements from US-based Amazon Web

Services [7] regions (us-east-1, us-west-1, us-west-2) to emulate latencies

between replicas in different regions.

3. The global setup (GLO) emulates distributing replicas across the US and Eu-

rope and using measurements from AWS regions us-east-1, us-west-1, and

eu-west-1.

49

Transaction Characteristics Mix

New-Order Medium Read-Write 44%
Payment Short Read-Write 44%
Delivery Short Read-Write 4%
Order-Status Short Read-Only 4%
Stock-Level Long Read-Only 4%

(a) Transaction mix in TPC-C workload.

Transaction Reads Writes Mix

Add-User 1 2 5%
Follow/Unfollow 2 2 15%
Post-Tweet 3 5 30%
Load-Timeline [1,10] 0 50%

(b) Transaction mix in Retwis workload.

 0

 30

 60

 90

 120

 150

 180

0 2k 4k 5k 7k 9k 11k 13k

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

(a) REG.

 0

 85

 170

 255

 340

 425

 510

 0 700 1400 2100 2800 3500 4200
M

e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

Morty MVTSO TAPIR Spanner

(b) CON.

 0

 150

 300

 450

 600

 750

 900

 0 475 950 1425 1900 2375 2850

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

(c) GLO.

Figure 3.6: Morty achieves higher goodput at saturation on TPC-C with 100 warehouses.

3.4.1 OLTP Applications

We evaluate our system against two popular OLTP workloads: (i) TPC-C [127] and (ii)

the Retwis-based benchmark [136].

TPC-C

TPC-C is an OLTP workload that simulates an e-commerce service [127]. We run

experiments with 100 warehouses, resulting in an initial database size of 8GB; we use the

transaction mix of Table 3.3a, When running with multiple replica groups, we partition all

tables, except for items, by warehouse id. We replicate the read-only items table

on each group. We materialize secondary indices with two additional tables that support

lookups of orders by customer and of orders with outstanding deliveries [37, 120].

Figure 3.6 shows goodput and latency for Morty and the baselines as load increases

with more clients. In the REG setup (Figure 3.6a), Morty reaches a maximum goodput

50

of 11.8k txn/s while MVTSO, TAPIR, and Spanner reach only 6.8k, 2.7k, and 1.6k txn/s,

respectively.

Morty’s higher goodput stems from it re-executing transactions to avoid overlapping

serialization windows instead of aborting and retrying. At maximum goodput, Morty’s

commit rate is over 99%, so very few transaction’s serialization windows are artificially

elongated by backoff. We measure that Morty performs about 2.9 partial re-executions

per transaction on average. Conversely, aborts and retries from overlapping serialization

windows in the baselines increase the amount of time between successive writes to

contended keys, reducing the number of transactions that can commit in a fixed time

period. MVTSO’s serialization windows are shorter than TAPIR’s because it exposes

uncommitted writes; TAPIR’s serialization windows are shorter than Spanner’s because

reads do not need to be processed by a leader replica. Spanner’s serialization windows

are so long, relative to the other systems, that its latency is an order of magnitude higher.

We consequently only show the first three data points in Figure 3.6a. Its latency at low

load is about 151ms, and its maximum throughput is about 1.7k txn/s.

Similar performance trends occur in the CON and GLO setups. Under all three

network configurations, Morty achieves approximately 1.7x and 4.4x the goodput of

MVTSO and TAPIR, respectively, with similar latency at low to moderate load. Spanner’s

serialization windows lengthen with the round-trip latencies between datacenters, so

Morty’s relative advantage increases from 8x to 18x in CON and GLO, respectively. (We

omit Spanner’s curves in Figures 3.6b and 3.6c to allow easier comparison of the other

three systems.)

51

 0

 20

 40

 60

 80

 100

 120

10 100 1k 10k

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

(a) REG.

 0

 100

 200

 300

 400

 500

 600

10 100 1k 10k

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

Morty MVTSO TAPIR Spanner

(b) CON.

 0

 180

 360

 540

 720

 900

 1080

 10 100 1000

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

(c) GLO.

Figure 3.7: Morty achieves higher throughput at saturation on Retwis with 10M keys and
Zipf parameter 0.9.

Retwis

Retwis emulates a social network workload with short read-write and read-only trans-

actions and configurable contention. Table 3.3b shows the transaction types and mix.

We configure the database to contain 10M key-value pairs (8B keys and 8B values).

Experiments with multiple replica groups use a static hash function to evenly partition

keys. Transactions access keys according to a Zipfian distribution with parameter θ = 0.9,

modeling a high contention access pattern.

Figure 3.7 shows goodput and latency measurements for Morty and the baselines.

As with TPC-C, the performance trends for the systems remain similar across all three

network setups: Morty achieves approximately 28x, 52x, and 96x the maximum goodput

of MVTSO, Spanner, and TAPIR, respectively (note that x-axes are in log scale).

Spanner’s fairs better than with TPC-C because of Retwis’s shorter read-write trans-

actions and more frequent read-only transactions, which do not acquire locks. The former

reduce the number of round trips between clients and group leaders (and thus keeps

serialization windows short), and the latter significantly reduce contention.

For REG, (Figure 3.7a), Morty achieves a maximum goodput of 35.3k txn/s compared

to 1.5k, 0.7k, and 0.4k txn/s for MVTSO, Spanner, and TAPIR. Once again, Morty’s

ability to re-execute and shift serialization windows allows it to avoid aborting most

52

0

20k

40k

60k

80k

100k

 0 2 4 6 8 10 12 14 16 18 20

G
o
o
d

p
u
t

(c
o
m

m
it

te
d

 t
x
n
/s

)

Number of Cores (per replica)

Morty
MVTSO

TAPIR
TAPIR (no distributed txns)

Spanner

(a) All systems scale with additional cores at
low contention.

8k

16k

24k

32k

40k

 0 2 4 6 8 10 12 14 16 18 20G
o
o
d

p
u
t

(c
o
m

m
it

te
d

 t
x
n
/s

)

Number of Cores (per replica)

(b) Morty effectively utilizes additional cores,
whereas MVTSO, TAPIR, and Spanner are con-
tention bottlenecked.

Figure 3.8: Multi-core scalability on Retwis.

transactions, unlike the baselines.

The much larger difference between their peak goodputs and Morty’s in Retwis over

TPC-C is due to Retwis’ higher contention rate. With the Zipfian parameter θ set at 0.9,

the probability that two Post-Tweet transactions in Retwis both modify the hottest key

is at least 2.5%, while two Payment transactions modifying the same row in TPC-C

conflict with a probability of 1% with 100 warehouses.

3.4.2 Scalability

To quantify how effectively Morty and the baselines use additional resources to scale

goodput, we evaluate their performance on Retwis in the REG setup with an increasing

number of server CPUs.

Figure 3.8 shows the maximum goodput of each system as a function of the number

of CPU cores on both a uniform (θ = 0) and Zipfian (θ = 0.9) distribution. Recall that

for TAPIR additional cores translate to additional replica groups.

For the uniform Retwis workload (Figure 3.8a), most transactions do not conflict and

53

additional cores help all systems scale goodput. The codepaths in Morty and MVTSO

for execution are nearly identical for non-conflicting transactions, since there are no

re-executions. TAPIR and Spanner can also scale goodput despite their single-threaded

replication by adding more replica groups; when doing so, there is additional overhead

that depends on how frequently transactions span replica groups. For reference, we run

TAPIR on a modified uniform workload with no distributed transactions (the best case

scenario) and observe similar results: TAPIR can scale with additional cores on a uniform

workload.

In contrast, on the heavily-contended Zipfian Retwis workload, only Morty is able to

leverage the additional cores to scale its maximum goodput (Figure 3.8b), from 7.8k txn/s

with a single core up to 35.3k txn/s with 20 cores. While Morty leverages additional

CPUs to send new GetReplies and re-execute, MVTSO, Spanner, and TAPIR remain

contention bottlenecked, at 1.5k, 0.7 and 0.4k txn/s, respectively. We emphasize that

TAPIR and Spanner’s shortcomings here are not due to poorer relative CPU utilization

per transaction: on the Zipfian workload, nearly every transaction accesses only the hot

replica group. We measure that TAPIR and Spanner replicas saturate at most 17% of a

single CPU during these experiments because their overlapping serialization windows

cause frequent aborts and long exponential backoff periods.

3.4.3 Microbenchmarks

To better understand the influence that contention has on the performance of these four

systems, we measure their maximum goodput and commit rate (an indirect indicator of

how often serialization windows overlap) on the Retwis workload for increasing Zipfian

parameter θ on the REG network. Figure 3.9 shows the results. As contention grows, so

54

10

100

1k

10k

100k

 0 0.2 0.4 0.6 0.8 1 1.2G
o
o
d

p
u
t

(c
o
m

m
it

te
d

 t
x
n
/s

)

Zipf Coefficient

Morty MVTSO TAPIR Spanner

(a) Morty’s edge over the baselines grows with
more contention.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

C
o
m

m
it

 R
a
te

Zipf Coefficient

(b) Morty’s commit rate remains near 100%.

Figure 3.9: Varying contention on Retwis.

does the gap in peak goodput between Morty and the baselines (Figure 3.9a). Though

goodput falls when contention on hot keys increases, Morty’s near perfect commit rate

even under extremely high contention suggests that Morty introduces no unnecessary

idle time. As θ grows, instead, transactions in MVTSO, TAPIR, and Spanner abort more

often, causing backoffs, longer serialization windows, and falling peak goodput.

3.5 Related Work

Transaction Re-Execution. Re-execution has been explored by a handful of previous

systems, albeit in a more limited fashion. Both TheDB [132] and MV3C [38] make visible

only committed values, and thus only trigger re-execution during commit. This increases

the length of serialization windows in these systems, both increasing the likelihood of

overlap and reducing maximally achievable throughput. In contrast, Morty optimistically

makes write values visible as early as possible, shortening serialization windows, and

allowing replicas to trigger eager re-execution. Morty’s commit and recovery protocols

additionally guarantee safe re-execution in a replicated setting; neither TheDB nor MV3C

tolerate failures.

55

Integrated Distributed Commit. To minimize commit latency and avoid redundant

coordination, Morty follows recent work [121, 122, 136] in integrating replication, con-

currency control, and atomic commit. However, none of these integrated systems supports

transaction re-execution. Both TAPIR [136] and Meerkat [122] (unlike Morty) expose

only committed writes, resulting in long serialization windows; TAPIR incurs addition-

ally commit latency by using a modular inconsistent replication protocol. Basil [121]

instead is Byzantine-fault tolerant and consequently requires signatures and a higher

replication degree for safety, resulting in lower relative throughput. Like Morty, Basil is

based on MVTSO, but must delay write visibility until prepare time to tolerate Byzantine

clients.

Expressivity versus Performance. A wide array of existing systems trade off a re-

stricted transaction model for improved performance. Sinfonia [2] introduces mini-

transactions that require read and write values to be pre-defined, but minimize latency by

piggybacking transaction execution alongside distributed commit. Janus [99] re-orders

transactions at commit time to avoid aborts, but does so by requiring transactions to

be stored procedures, which poses deployment challenges. Calvin [126] also orders

transactions before executing them, which requires knowing the read/write sets ahead of

time. Carousel [133] instead introduces the 2-round fixed-set interactive (2FI) model that

requires key-sets to be known, but allows write values to depend on reads across shards;

this allows the distributed commit and consensus phases to overlap, reducing latency.

3.6 Conclusion

Traditional approaches for implementing serializable and interactive transactions fair

poorly under high contention. This chapter introduces the notion of serialization and

56

validity windows to characterize the limitation that serializable systems face, especially

in geo-distributed deployments, in concurrently processing conflicting read-write trans-

actions. Using these windows as a guide, we design a serializable, replicated storage

system, Morty, that employs transaction re-execution to efficiently sequence contending

windows and significantly improve throughput.

57

CHAPTER 4

GRYFF: UNIFYING CONSENSUS AND SHARED REGISTERS

Large-scale web applications rely on replication to provide fault-tolerant storage.

Increasingly, developers are turning to linearizable [67] storage systems because they

reduce the complexity of implementing correct applications [3, 28, 35]. Recent sys-

tems from both academia [57, 70, 82, 105, 107, 124] and industry [14, 25, 32, 35, 50]

demonstrate this trend.

Traditionally, linearizable storage systems for geo-replicated settings are built using

state machine replication via consensus [68, 75, 76, 77, 91, 95, 103, 104]. These proto-

cols are safe under the asynchronous network conditions that are common in wide-area

networks. Furthermore, they provide the abstraction of a shared command log, which

allows for the implementation of arbitrary deterministic state machines. Strong synchro-

nization primitives, such as read-modify-write operations (rmws), can thus be used in

applications built on top of these systems, further easing the programming burden on

developers.

Linearizability for geo-replicated storage, however, comes with a tradeoff between

strong guarantees and low latency. At least one communication delay between replicas

is necessary to maintain a legal total order of operations [84], and in the wide-area, this

communication incurs a considerable latency cost even in the best case. The tradeoff is

starker for tail latency, where adverse conditions such as network delays, slow or failed

replicas, and concurrent operations further delay responses to clients.

Tail latency is of particular importance for large-scale web applications, where end-

user requests for high-level application objects fan-out into hundreds of sub-requests

to storage services [40]. For example, when a user loads a page in a social networking

58

service, an application server typically needs to invoke and wait for the completion of

dozens of requests to replicas before returning the page to the client [3]. Only once the

client receives the page can it begin loading additional assets and rendering the page.

Thus, the median latency experienced by the end-user depends on the maximum of tens

or hundreds of operations, which is dictated by the tail of the latency distribution.

Consensus protocols demonstrate the tradeoff between strong guarantees and low tail

latency. Fundamentally, no protocol can solve consensus and guarantee termination in an

asynchronous system with failures [52]. In practice, this impossibility result manifests as

performance inefficiencies, such as serializing operations through a designated leader or

delaying concurrent operations. In geo-replicated settings at scale, these inefficiencies

impact tail latency.

In contrast, shared register protocols can implement linearizable shared registers,

which support simple reads and writes, and guarantee termination in asynchronous

systems with failures [11]. This translates to favorable tail latency for real protocols:

shared register protocols are typically leaderless and often do not delay reads or writes,

even if there are concurrent operations. The reads and writes provided by shared registers

are the dominant types of operations in large-scale web applications [20]. Yet, shared

registers are fundamentally too weak to directly implement strong synchronization

primitives like rmws [66]. To resolve this tradeoff, the solution is to combine the strong

synchronization provided by consensus with the favorable read/write tail latency of

shared registers in a single protocol.

The idea of unifying consensus and shared registers is not new [19]. However, the

only previous attempt of which we are aware is incorrect because it does not safely handle

certain interleavings of operations. Our key insight is that protocol-level mechanisms

for enforcing the interaction between rmws and reads/writes are difficult to reason about,

59

which can lead to subtle safety violations. Instead, we argue the interaction be enforced at

a deeper level, in the ordering mechanism itself, to simplify reasoning about correctness.

We introduce consensus-after-register timestamps, or carstamps, a novel ordering

mechanism for distributed storage to leverage this insight. Carstamps allow writes and

rmws to concurrently modify the same state without serializing through a leader or

incurring additional round trips. Reads use carstamps to determine consistent values

without interposing on concurrent updates.

Gryff is our system that implements this ordering mechanism to achieve unification.1

It is the first such system to be proven correct, implemented, and empirically evaluated.

Gryff combines a multi-writer variant [89] of the ABD [11] protocol for reads and writes

with EPaxos [95] for rmws. In addition to the challenges associated with unifying these

protocols, we introduce an optimization to further rein in tail latency by reducing the

frequency of reads taking multiple wide-area round trips.

We implement Gryff in the same framework as EPaxos [95] and MultiPaxos [75]

and evaluate its performance in a geo-replicated setting. Our evaluation shows that

Gryff reduces the tradeoff between linearizability and low tail latency for workloads

representative of large-scale web applications [21, 34, 35]. For moderate contention

workloads, Gryff reduces p99 read latency to ∼56% of EPaxos, but has ∼2x higher

write latency. This tradeoff allows Gryff to reduce service-level p50 latency to ∼60% of

EPaxos for large-scale web applications whose requests fan-out into many storage-level

requests.

In summary, the contributions of this chapter include:

1A gryffin is a mythological hybrid creature that combines the power of a lion with the speed of an
eagle.

60

• A novel ordering mechanism, carstamps, that enables efficient unification of consensus

with shared registers. (§4.2)

• The Gryff design that combines a shared register protocol with EPaxos to provide

reads, writes, and rmws. (§4.3, §4.4)

• The implementation and evaluation of Gryff, which demonstrates its latency improve-

ments. (§4.5)

4.1 Consensus vs. Shared Registers

This section covers preliminaries and then compares and contrasts consensus and shared

register protocols. It looks at the interfaces they support, the ordering constraints they

impose, and the ordering mechanisms they use.

Model and Preliminaries. We study systems comprised of a set P of m processes that

communicate with each other over point-to-point message channels. Processes may fail

according to the crash failure model: a failed process ceases executing instructions and

its failure is not detectable by other processes. The system is asynchronous such that

there is no upper bound on the time it takes for a message to be delivered and there is no

bound on the relative speeds at which processes execute instructions.

Linearizability is a correctness condition for a concurrent object that requires (a)

operations invoked by processes accessing the object appear to execute in some total order

that is consistent with the semantics of the object (i.e., that is legal) and (b) the total order

is consistent with the order that operations happened in real time [67]. Linearizability is

a local property, meaning it holds for a collection of objects if and only if it holds for

each individual object.

61

For the remainder of this text, we consider linearizable replication of a single object

by omitting object identifiers; it is straightforward to compose instances of such a system

to obtain a linearizable multi-object system.

4.1.1 State Machines and Consensus

State machine replication is the canonical approach to implementing fault-tolerant ser-

vices [116]. It provides a fault-tolerant state machine that exposes the following interface:

• COMMAND(c(·)): atomically applies a deterministic computation c(·) to the state

machine and returns any outputs

Each command can include zero or more arguments, read local state, perform deter-

ministic computation, and produce output. The state machine approach applies these

commands one by one starting from the same initial state to move replicas through

identical states. Thus, if some replicas fail, the remaining replicas still have the state and

can continue to provide the service.

Applying commands in the same order on all replicas requires an ordering mechanism

that is stable, i.e., a replica knows when a command’s position is fixed and it will never

receive an earlier command [116]. In asynchronous systems where processes can fail,

consensus protocols [68, 75, 76, 77, 91, 95, 103, 104] are used to agree on this stable

ordering.

Figure 4.1a shows the stable ordering provided by consensus protocols for state

machine replication. Commands are assigned positions in a log and a command becomes

stable once there are no empty slots preceding its own in the log.

62

4.1.2 Shared Registers and Their Protocols

A shared register has the following interface:

• READ(): returns the value of the register

• WRITE(v): updates the value of the register to v

Shared registers provide a simple interface with read and write operations. They are less

general than state machines as they provably cannot be used to implement consensus [66].

Shared register protocols replicate shared registers across multiple processes for fault

tolerance [11, 49, 89].

Shared register protocols provide a linearizable ordering of operations. That ordering

does not have to be stable, however, because each write operation fully defines the state

of the object. Thus, a replica can safely apply a write w4 even if it does not know about

earlier writes. If an earlier write w3 ever does arrive, the replica simply ignores that write

because it already has the resulting state from applying w3 and then w4. Figure 4.1b

shows shared register ordering where there is a total order of all writes (denoted by <)

without stability.

4.1.3 Shared Objects and Their Ordering

A shared object exposes the following interface:

• READ(): returns the value of the object

• WRITE(v): updates the value of the object to v

• RMW(f (·)): atomically reads the value v, updates the value to f (v), and returns v

63

op1 op2 op3 op4

(a) Ordering in consensus protocols. Operations op1, op2, and op3 are stable, but op4 is not.

w1 < w2 < w3 < w4

(b) Ordering in shared register protocols. No writes are stable.

Figure 4.1: Comparison of ordering in consensus and shared register protocols. Shared
register protocols provide an unstable ordering where new writes can be inserted between
writes that have already completed.

The abstraction of a shared object captures an intuitive programming model that is used

in real-world systems [27, 33, 50, 90, 111, 112]. Most operations read or write data,

but rmws support stronger primitives to synchronize concurrent accesses to data. For

example, a conditional write can be implemented with a rmw by using a function f (·)

that returns the new value to be written only if some condition is met.

Shared objects and state machines are equivalent in that an instance of one can be

used to implement the other [66]. However, the difference is that shared objects expose a

more restrictive interface for directly reading and writing state, as do shared registers.

These simpler operations can be implemented more efficiently because their semantics

impose fewer ordering constraints.

Yet, neither the stable ordering of state machine replication nor the unstable total

ordering of shared register protocols is a good fit for shared objects. A stable order, on

the one hand, over constrains how reads and writes are ordered and results in less efficient

protocols. On the other hand, an unstable total order under constrains how rmws are

ordered and results in an incorrect protocol.

Figure 4.2 demonstrates these different constraints. Consider the execution in Fig-

64

(a) w2 and w3 may be
arbitrarily ordered.

(b) if rmw reads w1, it must be be-
fore w2.

Figure 4.2: Solid arrows are real time ordering constraints. Dashed arrows are operation
semantic constraints.

ure 4.2a where two processes, p2 and p3, write concurrently. Linearizability stipulates

that w2 and w3 be ordered after w1 because they are invoked after w1 completes in real

time. However, there is no stipulation for how w2 and w3 are ordered with respect to

each other because the result of a write does not depend on preceding operations. Both

w1→ w2→ w3 and w1→ w3→ w2 are valid.

Now consider the execution in Figure 4.2b involving a rmw. Process p2 writes while

p3 concurrently executes a rmw. The base update of a rmw is the operation that writes

the value that the rmw reads. Assume that w1 is the base update of rmw. Then, not only

does rmw need to be ordered after w1, but no other write may be ordered between w1

and rmw. This additional constraint ensures legality because the semantics of a rmw

requires that it must appear to atomically read and update the object based on the value

read. Thus, only w1→ rmw→ w2 is a valid order.

65

4.2 Carstamps for Correct Ordering

Consensus-after-register timestamps, or carstamps, precisely capture the ordering con-

straints of shared objects. They provide the necessary stable order for rmws and the more

efficient unstable order for reads and writes. This section describes the requirements of a

precise ordering mechanism for shared objects and then describes carstamps.

4.2.1 Precise Ordering for Shared Objects

An ordering mechanism is an injective function g : X → Y from a set X of writes and

rmws to a totally ordered set (Y,<Y). A mechanism g produces a total order <g on X :

for all x1,x2 ∈ X , x1 <g x2 if and only if g(x1)<Y g(x2).

Typically, replication protocols augment an ordering mechanism with protocol-level

logic to enforce real time and legality constraints on the total order given by the ordering

mechanism to provide linearizability. While the logic for enforcing real time constraints

is often straightforward, legality constraints can be more complex.

Protocol-level Legality. For example, consider the Active Quorum Systems (AQS)

protocol [18, 19]. AQS is the only prior protocol of which we are aware that attempts

to combine consensus and shared registers and it does so with an unstable ordering

mechanism. This allows for executions where a rmw rmw with base update u is ordered

such that there exists a y ∈ Y with g(u) <Y y <Y g(rmw). This can result in an illegal

total order when a write w is concurrent with rmw because w may be assigned g(w) = y.

AQS contains no logic at the protocol-level to prevent this subtle scenario.

More specifically, in Figure 4.3, we demonstrate an execution of AQS that exhibits

66

p1 p2 p3 p4r1 r2 r3 r4*

1

2

3
4

5

6

7

8

p1

p2

p3

w1(x=2)

rmw3(x=x*x; x=2*2=4)

𝜌4(x=4)p4

w2(x=3)

1

2

3 4 5

6

7

8

Figure 4.3: Labeled numbers represent the following events: 1© p1 issues and completes
w1 with ts = (1,1). 2© p2 issues w2 and gets back ts = (1,1); the process then picks
ts = (2,2) for w2. 3© The primary s4 picks base state = 〈w1, ts = (1,1)〉. 4© All replicas
accept PRE-PREPARE messages because w1 is the most recent state observed. 5© All
replicas broadcast COMMIT messages to all other replicas. 6© All replicas apply w2
because ts = (2,2)> ts = (1,1). 7© All replicas apply rmw3 because ts = (2,4)> ts =
(2,2). 8© p4 issues and completes ρ4 in 1 round, returning rmw3 with ts = (2,4).

non-linearizable behavior. Here, process p1 first issues and completes w1 with ts = (1,1)

that is seen by all replicas (Figure 4.3.1). After this write has completed, process p2

begins w2 and sees w1 with ts= (1,1), so it chooses ts= (2,2) for w2 (Figure 4.3.2). This

write then pauses, and process p3 issues rmw3 to primary s4. The primary gathers state

67

from all replicas and picks base state = 〈w1, ts = (1,1)〉 (Figure 4.3.3). The primary

then generates an updated state vl based on w1 and sends PRE-PREPARE messages

to all replicas. These messages are accepted by all replicas because w1 is the most

recent state they have observed (Figure 4.3.4). All replicas then broadcast PREPARE

messages to all other replicas, and the messages are received and accepted. All replicas

then broadcast COMMIT messages (Figure 4.3.5) and rmw3 pauses. Process p2 now

finishes w2 by sending out a second round of messages with ts = (2,2), and all replicas

accept and apply this write (Figure 4.3.6). Shortly after, replicas receive COMMIT

messages from all other replicas for rmw3, forming a commit certificate. All replicas

generate tsl = succ(ts = (1,1),s4) = (2,4) and apply rmw3 (Figure 4.3.7). Process p4

now issues a read ρ4, and the read completes in one round, returning ts = (2,4) from

rmw3 (Figure 4.3.8).

There is no legal total order for this execution because rmw3 must follow w1 with no

writes in between because rmw3 picks base state = 〈w1, ts = (1,1)〉. Thus, rmw3 must

be ordered before w2. We also must have ρ4 ordered after both rmw3 and w2 because

it begins in real time after both operations have finished. The read ρ4 sees rmw3, so

rmw3 must be ordered after w2. Thus, there is no legal total order of operations and

linearizability is not satisfied.

Ordering-level Legality. Our key insight is that the legality constraints of lineariz-

ability can be encoded in the ordering mechanism itself. An ordering mechanism that

does this must ensure that for all rmw ∈ X such that u is the base update of rmw,

g(u)<Y g(rmw) and g(u) is a cover of g(rmw). This means that there is no y ∈ Y such

that g(u) <Y y <Y g(rmw). With such an ordering mechanism, there is no need for

protocol-level logic to prevent other writes in X from being assigned an illegal position

in the total order between g(u) and g(rmw).

68

w1 < w2 < w3 < w4

rmw1 rmw3 rmw6 rmw7

rmw2 rmw4

rmw5

rmw8

Figure 4.4: Unified ordering provided by carstamps for writes and rmws. Writes are
unstably ordered while rmws are stably ordered with their base updates.

4.2.2 Carstamps

Our solution which leverages this insight is called carstamps. A carstamp is a triple

cs = (ts, id,rmwc) with three fields: a logical timestamp ts, a process identifier id, and

a rmw counter rmwc. The logical timestamp and process identifier can be used by a

write protocol to form an unstable order of writes. A rmw rmw with base update u

whose carstamp is csu is assigned a carstamp csrmw = (csu.ts,csu.id,csu.rmwc+1). The

fields encode ordering constraints between operations via a lexicographical comparison

such that cs1 < cs2 if and only if cs1.ts < cs2.ts or cs1.ts = cs2.ts and cs1.id < cs2.id or

cs1.ts = cs2.ts and cs1.id = cs2.id and cs1.rmwc < cs2.rmwc.

By incrementing the lowest order field of the carstamp, each carstamp assigned to a

base update of a rmw is guaranteed to cover its rmw. This stable ordering of rmws with

their base updates is visualized in Figure 4.4. Writes are assigned to carstamps in the

first row as part of an increasing unstable order. RMWs are assigned to carstamps in the

column to which their base update belongs immediately below their base update.

Consider the example from Figure 4.2b and assume that w1 is assigned carstamp

69

csw1 = (1,1,0) by p1. Then, since rmw reads w1, it will be assigned carstamp csrmw =

(1,1,1). Based on the lexicographical ordering of carstamps, there does not exist a

carstamp cs such that csw1 < cs < csrmw, so w2 cannot be arbitrarily re-ordered between

w1 and rmw.

4.3 Gryff Protocol

Gryff unifies shared registers with consensus using carstamps. It implements a lineariz-

able shared object (§4.1) that tolerates the failure of up to f out of n = 2 f +1 replicas.

We divide its description into three components. First, we provide additional background

including the shared register protocol and consensus protocol upon which its read, write,

and rmw protocols are built (§4.3.1). Second, we describe how Gryff adapts these proto-

cols with carstamps (§4.3.2,§4.3.3). Third, we describe an optimization to the base Gryff

protocol that improves read latency in geo-replicated settings (§4.4).

In addition, in Appendix B we prove Gryff implements a shared object with lineariz-

ability. Appendix B also proves read/write wait-freedom—every read or write invoked by

a correct process eventually completes—and rmw wait-freedom with partial synchrony—

if there is a point in time after which the system is synchronous, every rmw invoked by a

correct process eventually completes.

4.3.1 Background

Section 4.1 provides background on our model, linearizability, and state machines and

shared registers in general. This subsection adds useful definitions and then describes

the two specific protocols that Gryff adapts, a multi-writer variant [89] of ABD [11] and

70

EPaxos [95].

Definitions. A subset of processes R⊆ P are replicas that store the value of the object.

We assume reliable message delivery, which can be implemented on top of unreliable

message channels via retransmission and deduplication.

Replicas are often deployed across a wide-area network such that inter-replica mes-

sage delivery latency is on the order of tens of milliseconds. This is commonly done

so that replica or network failures correlated by geographic region do not immediately

cause the system to become unavailable. We say that a process p is co-located with a

replica r if the message delivery latency between p and r is much less than the minimum

inter-replica latency. Client processes running applications are typically co-located with

a single replica, for example, within the same datacenter.

A quorum system Q ⊆P(R) over R is a set of subsets of R with the quorum

intersection property: for all Q1,Q2 ∈Q, Q1∩Q2 6= /0. We use quorum both to mean a

set of replicas in a particular quorum system and the size of such a set. Gryff can use any

quorum system, but for liveness with up to f replica failures, we assume the use of the

majority quorum system Qmaj such that ∀Q ∈Qmaj. |Q|= f +1.

A coordinator is a process that executes a read, write, or rmw protocol when it receives

such an operation from an application. In shared register protocols, the coordinators are

typically the client processes on which the application is running. In consensus protocols,

the coordinators are typically one of the replicas to which client processes forward their

requests. We assume all processes possess a unique identifier that can be used when

coordinating an operation to distinguish the coordinator from other processes.

71

Multi-Writer ABD. The multi-writer variant [89] of ABD [11] is a shared register

protocol that requires two phases for both reads and writes. To provide a linearizable order

of reads and writes, it associates a tag t = (ts, id) with each write where ts is a logical

timestamp and id is the identifier of the coordinator. Writes are ordered lexicographically

by their tags. Each replica stores a value v and an associated tag t.

Reads and writes have two phases. A read begins with the coordinator reading the

current tag and value from a quorum. Once it receives these, it determines the value that

will be returned by the read by choosing the value associated with the maximum tag from

the tags returned in the quorum. Then, the coordinator propagates this maximum tag

and value to a quorum and waits for acknowledgments. We say that a replica applies a

value v′ and tag t ′ when it overwrites its v and t with v′ and t ′ if t ′ > t. After a replica

receives the propagated tag and value, it applies them and sends an acknowledgment to

the coordinator.

A coordinator for a write follows a similar two-phase protocol, except instead of

propagating the maximum tag tmax and associated value received in the first phase, it

generates a new tag t = (tmax.ts+1, id) to associate with the value to be written where id

is the identifier of the coordinator. In the second phase, the coordinator propagates this

new tag and value to a quorum and waits for acknowledgments.

EPaxos EPaxos [95] is a consensus protocol that provides optimal commit latency in

the wide-area. It has three phases in failure-free executions: PreAccept, Accept, and

Commit. If a command commits on the fast path, the coordinator returns to the client

after the PreAccept phase and skips the Accept phase. Otherwise, the command commits

on the slow path after the Accept phase. Commands that do not read state complete at

the beginning of the Commit phase; commands that do read state complete after a single

72

replica, typically the coordinator, executes the command to obtain the returned state.

The purpose of the PreAccept and Accept phases is to establish the dependencies for a

command, or the set of commands that must be executed before the current command.

The purpose of the Commit phase is for the coordinator to notify the other replicas of the

agreed-upon dependencies.

PreAccept phase. The coordinator of a command constructs the preliminary de-

pendency set consisting of all other commands of which the coordinator is aware that

interfere (i.e., access the same state machine state) with it. It sends the command and

its dependencies to a fast quorum of replicas. When replicas receive the proposed de-

pendencies, they update them with any interfering commands of which they are aware

that are not already in the set and respond to the coordinator with the possibly updated

dependencies. If the leader receives a fast quorum of responses that all contain the same

dependencies, it proceeds to the Commit phase.

Accept phase. Otherwise, the coordinator continues to the Accept phase where it

builds the final dependencies for the command by taking the union of all the dependencies

that it received in the PreAccept phase. It sends these to a quorum and waits for a

quorum of acknowledgments before committing. Regardless of whether the command is

committed after the first or second phase, once it is committed, a quorum store the same

dependency set for the command.

Execution. Dependency sets for distinct commands define a dependency graph over

all interfering commands. The EPaxos execution algorithm, separate from the commit

protocol, executes all commands in the deterministic order specified by the graph. Cycles

may exist in the graph, in which case a total order is determined by a secondary attribute

called an approximate sequence number. We refer the reader to the EPaxos paper for

more details [95].

73

v - value of shared object

cs - carstamp of shared object

prev - value and carstamp generated by the previously executed rmw

i - next unused instance number

cmds - two-dimensional array of instances indexed by replica id and instance
number each containing:

cmd - command to be executed

deps - instances whose commands must be executed before this one

seq - approximate sequence number of command used to break cycles in
dependency graph

base - possible base update for rmw

status - status of instance

Figure 4.5: State at each replica.

4.3.2 Read & Write Protocols

The read and write protocols are based on multi-writer ABD. Figure 4.5 summarizes the

state that is maintained at each replica. Algorithms 1 and 2 show the pseudocode for the

coordinators and replicas. The key difference from multi-writer ABD is that replicas

maintain a carstamp associated with the current value of the shared object instead of a

tag so that rmws are properly ordered with respect to reads and writes.

Reads. We make the same observation as Georgiou et al. [56] that the second phase

in the read protocol of multi-writer ABD is redundant when a quorum already store the

value and associated carstamp chosen in the first phase. In such cases, the coordinator

may immediately complete the read (Line 6 of Algorithm 1). Otherwise, it continues as

normal to the second phase in order to propagate the observed value and carstamp to a

quorum.

74

Algorithm 1: Read and write coordinator protocols.
1 procedure Coordinator::READ() at p ∈ P
2 send Read1 to all r ∈ R
3 wait to receive Read1Reply(vr,csr) from all r ∈ Q ∈Q
4 csmax←maxr∈Q csr
5 v← vr : csr = csmax
6 if ∀r ∈ Q : csr = csmax then
7 return v

8 send Read2(v,csmax) to all r ∈ R
9 wait to receive Read2Reply from all r ∈ Q′ ∈Q

10 return v

11 procedure Coordinator::WRITE(v) at p ∈ P
12 send Write1 to all r ∈ R
13 wait to receive Write1Reply(csr) from all r ∈ Q ∈Q
14 csmax←maxr∈Q csr
15 cs← (csmax.ts+1, id,0)
16 send Write2(v,cs) to all r ∈ R
17 wait to receive Write2Reply from all r ∈ Q′ ∈Q

Writes. When generating a carstamp after the first phase of a write, the coordinator

chooses the ts and id fields as in multi-writer ABD. The rmwc field is reset to 0 (Line 15

of Algorithm 1). While not strictly necessary, this curbs the growth of the rmwc field in

practical implementations.

4.3.3 Read-Modify-Write Protocol

Gryff’s rmw protocol uses EPaxos to stably order rmws as commands in the dependency

graph. Figure 4.5 summarizes the replica state. Algorithms 3 and 4 show the pseudocode

for a rmw coordinator and replica message handling. Algorithms 5 and 6 show the

modifications to the basic EPaxos recovery protocol. The highlighted portions of the

pseudocode show the changes from canonical EPaxos. We denote by Icmd the set of

commands of which the local replica is aware that interfere with cmd.

75

Algorithm 2: Read and write replica protocols.
1 when replica r ∈ R receives a message m from p ∈ P do
2 case m = Read1 do
3 send Read1Reply(v,cs) to p

4 case m = Read2(v′,cs′) do
5 APPLY(v′,cs′)
6 send Read2Reply to p

7 case m = Write1 do
8 send Write1Reply(cs) to p

9 case m = Write2(v′,cs′) do
10 APPLY(v′,cs′)
11 send Write2Reply to p

12 procedure Replica::APPLY(v′,cs′)
13 if cs′ > cs then
14 cs← cs′

15 v← v′

We make three high-level modifications to canonical EPaxos in order to unify its

stable ordering with the unstable ordering of Gryff’s read and write protocols.

1. A base update attribute, base, is decided by the replicas during the same process that

establishes the dependencies and the approximate sequence number for a rmw.

2. A rmw completes after a quorum execute it.

3. When a rmw executes, it chooses its base update from between its base attribute and

the result of the previously executed rmw prev. The result of the executed rmw is

applied to the value and carstamp of the executing replica.

The first change adapts EPaxos to work with the unstable order of writes by fixing the

write upon which it will operate. The second change adapts it to work with reads that

bypass its execution protocol and directly read state. The third change ensures that

concurrent rmws that choose the same initial base update are stably ordered using the

76

Algorithm 3: RMW coordinator protocol.
1 procedure Coordinator::RMW(f (·)) at c ∈ R

PreAccept Phase:
2 i← i+1
3 cmd← f (·)
4 seq← 1+max({cmds[j][k].seq|(j,k) ∈ Icmd}∪{0})
5 deps← Icmd
6 base← (v,cs)
7 cmds[id][i]← (cmd,seq,deps,base,pre-accepted)
8 send PreAccept(cmd,seq,deps,base, id, i) to all r ∈ F \{c} where F ∈F
9 wait to receive PreAcceptOK(seq′r,deps′r,base′r) from all r ∈ F \{c}

10 if ∀r1,r2 ∈ F \{c} : seq′r1
= seq′r2

∧deps′r1
= deps′r2

∧ base′r1
= base′r2

then
11 deps,seq,base← deps′r,seq′r,base′r: r ∈ F \{c}
12 goto Commit Phase

Accept Phase:
13 deps←∪r∈Fdepsr
14 seq←maxr∈F seqr
15 base← baser : ∀r′ ∈ F.baser.cs≥ baser′ .cs
16 cmds[id][i]← (cmd,seq,deps,base,accepted)
17 send Accept(cmd,seq,deps,base, id, i) to all r ∈ Q\{c} where Q ∈Q
18 wait to receive AcceptOK from all r ∈ Q\{c}

Commit Phase:
19 cmds[id][i]← (cmd,seq,deps,base,committed)
20 send Commit(cmd,seq,deps,base, id, i) to all r ∈ R\{c}
21 wait to receive Executed(v) from all r ∈ Q′ ∈Q
22 return v

ordering and execution protocols of EPaxos. We next discuss each of these changes in

more detail.

Base Attribute. The base attribute associated with a rmw represents a possible base

update on which the rmw will execute. Initially, the coordinator sets this to what it

believes are the current value and carstamp of the shared object (Line 6 of Algorithm 3).

When a replica receives a PreAccept message, it merges what it believes is the correct base

update with the base update proposed by the coordinator (Line 5 of Algorithm 4). The

fast path condition remains essentially unchanged: the coordinator commits the command

77

Algorithm 4: RMW replica protocol.
1 when replica r ∈ R receives a message m from c ∈ R do
2 case m = PreAccept(cmd,seq,deps,base, idc, i) do
3 seq′←max({seq}∪{1+ cmds[j][k].seq|(j,k) ∈ Icmd}
4 deps′← deps∪ Icmd
5 base′← if cs > base.cs then (v,cs) else base
6 cmds[idc][i]← (cmd,seq′,deps′,base′,pre-accepted)
7 send PreAcceptOK(seq′,deps′,base′) to c

8 case m = Accept(cmd,seq,deps,base, idc, i) do
9 cmds[idc][i]← (cmd,seq′,deps′,base′,accepted)

10 send AcceptOK to c

11 case m = Commit(cmd,seq,deps,base, idc, i) do
12 cmds[idc][i]← (cmd,seq′,deps′,base′,committed)

13 procedure Replica::EXECUTE(j,k)
14 base← cmds[j][k].base
15 if cmds[j][k].base.cs < prev.cs then
16 base← prev

17 v′← cmds[j][k].cmd(base.v)
18 cs′← (base.cs.ts,base.cs.id,base.cs.rmwc+1)
19 prev← (v′,cs′)
20 APPLY(v′,cs′)
21 send Executed(base.v) to replica j

if it receives PreAcceptOK responses from a fast quorum indicating that all replicas in

the quorum agree on the attributes for the command. Otherwise, the coordinator merges

all attributes it has received in the PreAccept phase and sends out the final attributes in

the Accept phase.

Quorum Execute. In canonical EPaxos, a rmw completes after a single replica exe-

cutes it because reads are executed through the same consensus protocol. Since Gryff’s

read protocol circumvents consensus and reads the state of the shared object directly

from a quorum, a rmw must be executed at a quorum so that it is visible to reads that

come after it in real time. This guarantees the rmw will be visible to future reads by the

quorum intersection property.

78

Algorithm 5: Recovery coordinator protocol for rmws.
1 when replica r ∈ R suspects replica c ∈ R failed while committing instance j do
2 ballot← (epoch,(b+1), idr)
3 send Prepare(ballot, idc, j) to all r ∈ R
4 wait to receive PrepareOK(cmdr,seqr,depsr,baser,statusr,ballotr) from all

r ∈ Q ∈Q
5 R←{(cmdr,seqr,depsr,baser,statusr) | ∀r′ ∈ Q : ballotr ≥ ballotr′}
6 if (cmd,seq,deps,base,committed) ∈R then
7 run Commit Phase for (cmd,seq,deps,base) at (idc, j)

8 else if (cmd,seq,deps,base,accepted) ∈R then
9 run Accept Phase for (cmd,seq,deps,base) at (idc, j)

10 else if ∃S⊆R : (cmdc,seqc,depsc,basec,statusc) /∈ S)∧ (|S| ≥ bn
2c)∧

(∀reply1,reply2 ∈ S.reply1 = reply2∧ reply1.status = pre-accepted) then
11 run Accept Phase for (cmdr,seqr,depsr,baser) ∈ S at (idc, j)

12 else if (cmd,seq,deps,base,pre-accepted) ∈R then
13 run PreAccept Phase for cmd at (idc, j), avoid fast path

14 else
15 run PreAccept Phase for no-op at (idc, j), avoid fast path

Algorithm 6: Recovery replica protocol for rmws.
1 when replica r ∈ R receives a message m from x ∈ R do
2 case m = Prepare(ballot, j,k) do
3 if ballot > cmds[j][k].ballot then
4 cmds[j][k].ballot = ballot
5 send PrepareOK(cmds[j][k]) to x

6 else
7 send NACK to x

Execution. The algorithm for determining the execution order of commands is un-

changed from canonical EPaxos. The EXECUTE procedure in Algorithm 4 is called when

a rmw rmw in the dependency graph committed at position (i, j) in the cmds array is

ready to be executed.

In the procedure, the final base update for rmw is chosen to be the value and carstamp

pair with the larger carstamp between the result prev of the previously executed rmw and

79

the base attribute of rmw (Line 15 of Algorithm 4). The prev variable is the most recent

state of the shared object produced by the execution of a rmw whereas the base attribute

is the most recent state of the shared object that the coordinator observed after rmw was

invoked. In the absence of concurrent updates, these states are equivalent, so it is safe for

the rmw to choose the state as the base update.

However, when rmws are concurrent, prev may be more recent than the base attribute

of rmw because concurrent rmws were ordered and executed before rmw. In such cases,

rmw must remain consistent with the stable order of rmws provided by EPaxos by

executing on the most recent state.

The resulting value and carstamp of rmw are decided by executing the modify function

f (·) on the value of the base update and incrementing the rmwc of the carstamp of the

chosen base update. The replica finishes by applying the new value and carstamp and

notifying the coordinator that the rmw has been executed.

Recovery. In addition to the replica state in Figure 4.5, each replica also maintains

epoch, the current epoch used in generating ballot numbers, and b, the highest ballot

number seen in the current epoch. Each instance in the cmds array also contains a ballot

number that is only used during recovery. Note that the only change Gryff makes is

that the base attribute is recovered along with the deps and seq attributes. To support

optimized EPaxos, similar changes must be made to the optimized recovery protocol. We

refer the reader to the optimized recovery protocol description in the EPaxos technical

report [96] and our implementation of Gryff [60] for more details.

80

Algorithm 7: The modified read coordinator protocol and Read1 message
handler for using the read proxy optimization.
1 procedure Coordinator::READ(v,cs) at p ∈ P
2 send Read1(v,cs) to all r ∈ R
3 wait to receive Read1Reply(vr,csr) from all r ∈ Q ∈Q
4 for r ∈ Q do
5 APPLY(vr,csr)

6 csmax←maxr∈Q csr
7 v← vr : csr = csmax
8 if ∀r ∈ Q : csr = csmax then
9 return v

10 send Read2(v,csmax) to all r ∈ R
11 wait to receive Read2Reply from all r ∈ Q′ ∈Q
12 return v

13 when replica r ∈ R receives a message m from p ∈ P do
14 case m = Read1(v′,cs′) do
15 APPLY(v′,cs′)
16 send Read1Reply(v,cs) to p

4.4 Proxying Reads

The base Gryff read protocol, as described in the previous section, provides reads with

single round-trip time latency from the coordinator to the nearest quorum including itself

(1 RTT) when there are no concurrent updates. Otherwise, reads have at most 2 RTT

latency. We discuss how read latency can be further improved in deployments across

wide-area networks.

Because the round-trip time to the replica that is co-located with a client process

is negligible relative to the inter-replica latency, replicas can coordinate reads for their

co-located clients and utilize their local state in the read coordinator protocol to terminate

after 1 RTT more often. When using this optimization, we say that the coordinating

replica is a proxy for the client process’s read.

81

Algorithm 7 summarizes the read proxy changes to base Gryff.

Propagating Extra Data in Read Phase 1. The proxy includes in the Read1 messages

its current value v and carstamp cs. Upon receiving a Read1 message with this additional

information, a replica applies the value and carstamp before returning its current value

and carstamp. This has the effect of ensuring every replica that receives the Read1

messages will have a carstamp (and associated value) at least as large as the carstamp at

the proxy when the read was invoked.

When this is the most recent carstamp for the shared object, the read is guaranteed to

terminate after 1 RTT. This is because every Read1Reply that the coordinator receives

will contain this most recent carstamp and associated value.

Updating the Proxy’s Data. The proxy also applies the values and carstamps that it

receives in Read1Reply messages as it receives them and before it makes the decision of

whether or not to complete the read after the first phase. If every reply contains the same

carstamp, then the read completes after 1 RTT even if the carstamp at the proxy when the

read was invoked is smaller than the carstamp contained in every reply.

Given our assumption that each quorum contains f +1 replicas, these two modifica-

tions ensure that reads coordinated by a proxy r only take 2 RTT during normal operation

when there is a concurrent update that arrives at the f nearest replicas to r in an order

that interleaves with the Read1 messages from r.

Appendix B contains a brief argument for why the read proxy optimization maintains

the correctness of base Gryff.

82

Always Fast Reads When n = 3. This optimization increases the likelihood that a

read completes in 1 RTT because the proxy replica is privy to more information—i.e.,

the number of replicas that contain the same value and carstamp—than a client process.

Moreover, it allows Gryff to always provide 1 RTT reads when n = 3 since the proxy and

any single other replica comprise a quorum. This optimization is, in some sense, the dual

of the optimization that EPaxos [95] uses to always provide 1 RTT writes when n = 3. In

both cases, the coordinator and the other replica in the quorum adopt each other’s state

so that the quorum always has the same state at the end of the first phase.

4.5 Evaluation

Gryff unifies consensus with shared registers to avoid the overhead of consensus for reads

and writes. To quantify the benefits and drawbacks of this approach for storing data in

geo-replicated, large-scale web applications, we ask:

• Do Gryff’s shared register read and write protocols reduce read tail latency relative to

the state-of-the-art? (§4.5.3)

• How do the read/write/rmw latency and throughput of Gryff compare to state-of-the-art

protocols? (§4.5.4,§4.5.5)

• Does Gryff improve the median service-level latency for large scale web applications?

(§4.5.6)

We find that, for workloads with moderate contention, Gryff reduces p99 read latency

to ∼56% of EPaxos, but has ∼2x higher write latency. This tradeoff allows Gryff to

reduce service-level p50 latency to ∼60% of EPaxos for large-scale web applications

83

CA VA IR OR JP
CA 0.2
VA 72.0 0.2
IR 151.0 88.0 0.2

OR 59.0 93.0 145.0 0.2
JP 113.0 162.0 220.0 121.0 0.2

Figure 4.6: Round trip latencies in ms between nodes in emulated geographic regions.

whose requests fan-out into many storage-level requests. Gryff and EPaxos each achieve

a slightly higher maximum throughput than MultiPaxos due to their leaderless structure.

4.5.1 Baselines and Implementation

We evaluate Gryff against MultiPaxos and EPaxos. MultiPaxos [75], VR [103], Raft [104]

and other protocols with leader-based architectures are used in commercial systems to

provide linearizable replicated storage [32, 35, 50, 105]. While leader-based protocols

have drawbacks in geo-replicated settings, their extensive use in real systems provides a

practical measuring stick. EPaxos [95] is the state-of-the-art for geo-replicated storage.

We implemented Gryff in Go using the framework of EPaxos to facilitate apples-to-

apples comparisons between protocols. Our implementation is a multi-object storage

system that uses the protocols as described in this chapter with the addition of object iden-

tifiers to messages and state. Our code and experiment scripts are available online [60].

We use the existing implementation of MultiPaxos in the framework for our experiments.

All of our experiments use the thrifty optimization for EPaxos, MultiPaxos, and Gryff.

We use the read proxy optimization for Gryff.

84

 0
 0.2
 0.4
 0.6
 0.8

 1

 60 120 180 240

Fr
ac

tio
n

of
 R

ea
ds

Latency (ms)

Gry�
EPaxos

MultiPaxos
 0

 0.2
 0.4
 0.6
 0.8

 1

 60 120 180 240
Fr

ac
ti

on
 o

f
Re

ad
s

Latency (ms)

Gry�
EPaxos

MultiPaxos

 0

 0.9

 0.99

 0.999

 0.9999

 60 120 180 240

Fr
a
ct

io
n
 o

f
R

e
a
d
s

Latency (ms)

(a) 2% conflicts.

 0
 0.2
 0.4
 0.6
 0.8

 1

 60 120 180 240

Fr
ac

tio
n

of
 R

ea
ds

Latency (ms)

Gry�
EPaxos

MultiPaxos
 0

 0.2
 0.4
 0.6
 0.8

 1

 60 120 180 240

Fr
ac

ti
on

 o
f

Re
ad

s

Latency (ms)

Gry�
EPaxos

MultiPaxos

 0

 0.9

 0.99

 0.999

 0.9999

 60 120 180 240

Fr
a
ct

io
n
 o

f
R

e
a
d
s

Latency (ms)

(b) 10% conflicts.

 0
 0.2
 0.4
 0.6
 0.8

 1

 60 120 180 240

Fr
ac

tio
n

of
 R

ea
ds

Latency (ms)

Gry�
EPaxos

MultiPaxos
 0

 0.2
 0.4
 0.6
 0.8

 1

 60 120 180 240

Fr
ac

ti
on

 o
f

Re
ad

s

Latency (ms)

Gry�
EPaxos

MultiPaxos

 0

 0.9

 0.99

 0.999

 0.9999

 60 120 180 240

Fr
a
ct

io
n
 o

f
R

e
a
d
s

Latency (ms)

(c) 25% conflicts.

Figure 4.7: Gryff’s reads always complete in 1 RTT when n = 3. 99th percentile read
latency is between 0ms and 115ms lower than EPaxos and 134ms lower than MultiPaxos.

4.5.2 Experimental Setup

Testbed. We run our experiments on the Emulab testbed [131] using pc3000 nodes.

These node types have 1 Dual-Core 3GHz CPU, 2GB RAM, and 1Gbps links to all other

nodes. For three replica latency experiments, we emulate replicas in California (CA),

Virginia (VA), and Ireland (IR). In five replica latency experiments, we add replicas in

Oregon (OR) and Japan (JP). In all experiments, we place the MultiPaxos leader in CA.

We emulate wide-area network latencies using Linux’s Traffic Control (tc) to add

delays to outgoing packets on all nodes. Table 4.6 shows the configured round-trip times

between nodes in different regions. We choose these numbers because they are the typical

round-trip times between the corresponding Amazon EC2 availability regions.

Clients. For all experiments, we use 16 clients co-located with each replica. This

number of clients provides enough load on the evaluated protocols to observe the effects

of concurrent operations from many clients, but only moderately saturates the system.

We avoid full saturation in order to isolate the protocol mechanisms that affect tail latency

from hardware and software limitations at various levels in our stack. Clients perform

85

operations in a closed loop.

Measurement. Each experiment is run for 180 seconds and we exclude results from

the first 15 seconds and last 15 seconds to avoid artifacts from start-up and cool-down.

The latency for an individual operation is measured as the time between when a client

invokes the operation and when it is notified of the operation’s completion.

Conflicting Operations. When two operations target the same object in a storage

system, we say the operations conflict. We use conflict percentage as a parameter in our

workloads to control the percentage of operations from each client that target the same

key. Workloads are highly skewed if and only if their conflict percentage is high.

4.5.3 Tail Latency

Gryff is designed to reduce the latency cost of linearizability for large scale web appli-

cations. Tail latency is of particular importance for these applications because end-user

requests for high-level application objects typically fan-out into hundreds of sub-requests

to storage services [3, 40]. The object can only be returned to the end-user once all

of these sub-requests complete, so the median latency experienced by the end-user is

dictated by the tail of the latency distribution for operations to these storage services.

Varying Conflict Percentage

To understand the read tail latency of Gryff and the baselines, we use a variant of the

YCSB-B [34] workload that contains 94.5% reads, 4.5% writes, and 1.0% rmws. We ex-

amine a read-heavy distribution of operations because most large-scale web applications

86

 60

 120

 180

 240

 300

 0.09 0.29 0.49 0.69 0.89p
9
9
 R

e
a
d
 L

a
te

n
cy

 (
m

s)

Write Ratio

Gryff EPaxos MultiPaxos

(a) Read operations.

 60

 120

 180

 240

 300

 0.09 0.29 0.49 0.69 0.89p
9
9
 W

ri
te

 L
a
te

n
cy

 (
m

s)

Write Ratio

Gryff EPaxos MultiPaxos

(b) Write operations.

Figure 4.8: Gryff reduces p99 read latency between 1ms and 44ms relative to EPaxos
and 134ms relative to MultiPaxos for varying write percentages. EPaxos’ p99 write
latency is 89ms lower than Gryff’s p99 write latency regardless of write percentage and
conflicts.

 60

 180

 300

 420

 0.1 0.3 0.5 0.7 0.9p
9
9
 R

e
a
d
 L

a
te

n
cy

 (
m

s)

Write Ratio

Gryff EPaxos MultiPaxos

(a) Read operations.

 60

 180

 300

 420

 0.1 0.3 0.5 0.7 0.9p
9
9
 W

ri
te

 L
a
te

n
cy

 (
m

s)

Write Ratio

Gryff EPaxos MultiPaxos

(b) Write operations.

Figure 4.9: Gryff has better p99 read latency for n = 5 because, even though reads
sometimes complete in 2 RTT, enough still complete in 1 RTT that the p99 latency is
determined by 2 RTT in a region (CA) where the nearest quorum are relatively close
(72ms per RTT). EPaxos cannot always commit reads or writes in 1 RTT, so its latency
increases relative to n = 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 120 180 240 300

Fr
a
ct

io
n
 o

f
R

e
a
d
s

Latency (ms)

Gryff
EPaxos

MultiPaxos

(a) Reads.

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 120 180 240 300

Fr
a
ct

io
n
 o

f
W

ri
te

s

Latency (ms)

Gryff
EPaxos

MultiPaxos

(b) Writes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 120 180 240 300

Fr
a
ct

io
n
 o

f
R

M
W

s

Latency (ms)

Gryff
EPaxos

MultiPaxos

(c) RMWs.

Figure 4.10: Gryff’s writes take 2 RTT, which is always more than EPaxos when n = 3.
MultiPaxos writes can be faster or slower than Gryff depending on client location and
geographic setup.

are read-heavy. For example, more than 99.7% of operations are reads in Google’s adver-

tising backend, F1 [35], 99.8% of operations in Facebook’s TAO system are reads [21],

87

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 180 300 420 540

Fr
a
ct

io
n
 o

f
R

e
a
d
s

Latency (ms)

Gryff
EPaxos

MultiPaxos

(a) Reads.

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 180 300 420 540

Fr
a
ct

io
n
 o

f
W

ri
te

s

Latency (ms)

Gryff
EPaxos

MultiPaxos

(b) Writes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 180 300 420 540

Fr
a
ct

io
n
 o

f
R

M
W

s

Latency (ms)

Gryff
EPaxos

MultiPaxos

(c) RMWs.

Figure 4.11: Gryff trades off worse write latency for better read and rmw latency relative
to EPaxos when n = 5.

and 3 out of 5 of YCSB’s core workloads contain over 95% reads [34].

Figure 4.7a shows the results for three different conflict percentages with n = 3. In

each sub-figure, a log-scale CDF up to p99.99 is shown below the normal-scale CDF.

1 RTT Reads for Gryff. For n = 3 replicas, Gryff always completes reads in 1 RTT

due to the read proxy optimization (§4.4). Figure 4.7 shows that clients in each region

receive responses to their read requests after 1 RTT to the nearest quorum regardless

of conflict percentage. Clients in CA are closest to the replicas in CA and VA and vice

versa for clients in VA. This results in 66% of the reads completing in the round-trip time

between CA and VA (72ms). Clients in IR are closest to the replicas in IR and VA, so

33% of the reads complete in the round-trip time between IR and VA (88ms).

Execution Dependencies Delay EPaxos. EPaxos always commits in 1 RTT for n = 3.

However, a read cannot complete until a replica executes it and a replica can only execute

it after receiving and executing its dependencies. This increases latency when a locally

committed read has dependencies on operations that have not yet arrived at the local

replica from other replicas. As shown in Figure 4.7a, these delays do not affect the p99

read latency of EPaxos when there are few conflicts. However, the log-scale CDF shows

that a small number of reads are, in fact, delayed.

88

MultiPaxos has Client-dependent Stable Latency. The MultiPaxos leader can al-

ways commit and execute operations in 1 RTT to the nearest quorum. However, clients

must also incur a 1 RTT delay to the leader. For clients co-located with the leader (in CA),

this delay is negligible, so the latency experienced by these clients with MultiPaxos is less

than or equal to the latency experienced with the other protocols. This is demonstrated in

the 33rd percentile latencies in Figure 4.7. For clients not co-located with the leader, the

latency is roughly 2 RTT.

Gryff improves 99th percentile read latency between 0ms and 115ms relative to

EPaxos for low and high conflict percentages and 134ms relative to MultiPaxos.

Varying Write Percentage

While Gryff’s read tail latency is low for read-heavy workloads, we also quantify the

tail latency under balanced and write-heavy workloads. To do so, we fix the conflict

percentage at 2% and measure the 99th percentile latency of read and write operations for

workloads containing 1% rmws and varying ratios of reads and writes. We vary the write

percentage from 9.5% to 89.5% and the read percentage from 89.5% to 9.5%. Figure 4.8

shows the results for n = 3 replicas.

Gryff and MultiPaxos Unaffected. The write percentage does not affect Gryff’s write

latency because its write protocol arbitrarily orders concurrent writes. Similarly, Multi-

Paxos commits writes through the same path regardless of conflicting operations.

EPaxos Reads Slowdown. With increasing write percentage, the chance that a read

obtains a dependency increases even with a fixed conflict percentage (Figure 4.8a). Unlike

reads, writes do not need to be executed before they complete, so they still complete

89

as soon as they are committed. This only takes 1 RTT in EPaxos when n = 3. EPaxos

dominates Gryff and MultiPaxos for p99 write latency.

Five Replica Varying Write Ratio. We run the same workload with n = 5 and show

the results in Figure 4.9. Gryff can no longer always complete reads in 1 RTT, but due

to the low conflict percentage it still achieves a p99 read latency of 1 RTT regardless of

write percentage. EPaxos can no longer always commit in 1 RTT. This especially impacts

EPaxos’ p99 write latency, which becomes approximately the same as Gryff (290ms).

4.5.4 Read/Write/RMW Latency

We also quantify the latency distributions of write and rmws in Gryff relative to that of

the baselines. For these experiments, we use a variant of the YCSB-A workload with

49.5% reads, 49.5% writes, and 1.0% rmws with 25% conflicts. The balance between

reads and writes allows us to observe the effects that interleavings of operations with

different semantics have on the performance of the evaluated protocols. Similarly, the

high conflict percentage reveals performance when concurrent operations to the same

object interleave.

Figure 4.10 shows the cumulative distribution functions of the latencies for each

operation type for n = 3 replicas. Figure 4.11 shows the same for n = 5.

1 RTT Reads for Gryff. For n > 3, Gryff often completes reads in 1 RTT, but some-

times takes 2 RTT. Figure 4.11a demonstrates this behavior as the tail surpasses the 1

RTT latency for any region.

90

EPaxos Writes are Fast, Reads are Slower. EPaxos dominates Gryff and MultiPaxos

for write latency because it always commits in a single round trip for n = 3 (Figure 4.10b)

and often commits in a single round trip for n = 5 (Figure 4.11b). As discussed in

Section 4.5.3, reads cannot complete until they are executed, so when there are more

replicas and more concurrent writes, EPaxos’ read latency increases due to the increased

likelihood that reads acquire dependencies on updates from other regions.

2 RTT Writes for Gryff. Writes in Gryff takes 2 RTT to complete. Figure 4.10b

demonstrates the gap between EPaxos and Gryff for n = 3. When n > 3 replicas (Fig-

ure 4.11b), EPaxos still typically completes writes faster than Gryff because it only takes

2 RTT when conflicting concurrent operations arrive at replicas in the intersections of

their fast quorums in different orders.

Less Blocking for RMWs in Gryff. Gryff achieves 2 RTT rmws when there are no

conflicts and 3 RTT when there are. While Gryff must still block the execution of rmws

until all dependencies have been received and executed, Gryff experiences significantly

less blocking than EPaxos. This is because EPaxos needs to have dependencies on writes,

but Gryff’s rmw protocol does not.

EPaxos dominates Gryff for write latency. For n = 3, the p50 write latency of Gryff

is 72ms higher and the p99 write latency is 89ms higher than EPaxos.

4.5.5 Throughput

We measure median latency at varying levels of load in a local-area cluster. Again, we

use the variant of YCSB-A with 49.5% reads, 49.5% writes, and 1.0% rmws with 25%

91

 0

 2

 4

 6

 0 4000 8000 12000

p
5
0
 L

a
te

n
cy

 (
m

s)

Throughput (ops/s)

Gryff EPaxos MultiPaxos

Figure 4.12: Gryff’s throughput at saturation is within 7.5% of EPaxos and is higher than
MultiPaxos.

 0

 4

 8

 12

 16

 0 4000 8000 12000

p
5
0
 L

a
te

n
cy

 (
m

s)

Throughput (ops/s)

Gryff EPaxos MultiPaxos

Figure 4.13: Gryff’s throughput at saturation is higher than both EPaxos and MultiPaxos
when n = 5.

conflicts. Figure 4.12 shows the results for n = 3. We find that Gryff’s throughput at

saturation is about 11,600 ops/s, within 7.5% of EPaxos. This is also about 1,200 ops/s

higher than the maximum throughput of MultiPaxos. Like EPaxos, Gryff does not require

a single replica to be involved in the execution of every operation, so it achieves better

92

 60

 90

 120

 150

 180

 0 30 60 90

p
5
0
 L

a
te

n
cy

 (
m

s)

of Subrequests

Gryff EPaxos MultiPaxos

Figure 4.14: Gryff improves service-level p50 latency when the expected tail-at-scale
request contains many reads.

scalability and load-balancing than leader-based protocols.

Gryff Scales Better. We run the same workload with n = 5 and show the results in

Figure 4.13. Gryff’s maximum throughput is higher than EPaxos because EPaxos can no

longer always commit on the fast path. Each operation that commits on the slow path on

EPaxos requires an additional quorum of messages and replies, which causes the system

to more quickly saturate.

4.5.6 Tail at Scale

Our primary experiments show that Gryff improves read latency relative to our baselines.

However, p50 write and p50 rmw latency are lower in EPaxos for n = 3. For other

parts of the distributions and for MultiPaxos, the latency tradeoff is not comparable. To

understand how these tradeoffs with EPaxos and MultiPaxos affect the performance of

large-scale web applications whose structure resembles the common structure discussed

93

 60

 180

 300

 420

 0 30 60 90

p
5
0
 L

a
te

n
cy

 (
m

s)

of Subrequests

Gryff EPaxos MultiPaxos

Figure 4.15: For n = 5, the difference in service-level p50 latency is larger because reads
in EPaxos suffer from more blocking with more replicas and clients executing operations.

in Section 4.5.3, we ran experiments that emulate end-user requests.

We emulate the request pattern of an application preparing a high-level object for an

end-user. The object is composed of m sub-requests to the storage system that are drawn

from a fixed distribution of reads, writes, and rmws. For example, in order to display

a profile page in a social network, dozens of requests to the storage systems that store

profile information must be initiated simultaneously [21]. The latency of one of these

tail at scale requests is the maximum latency of all of its sub-requests. Thus, the median

latency of tail at scale requests depends on the tail latency of the sub-requests.

The large-scale web applications whose workloads we emulate are typically read-

heavy (§4.5.3). Moreover, they are often highly skewed. Facebook engineers report that

a small set of objects account for a large fraction of total read and write operations in the

social graph [3]. This experiment uses a 99%/0.9%/0.1% read/write/rmw workload with

25% conflicts. We vary the number of sub-requests m from 1 to 105 in increments of 15.

Figure 4.14 summarizes the results.

94

Fast Reads Improve Median End-to-end Latency. Gryff’s median latency is lower

than that of EPaxos and MultiPaxos when fewer than half of the tail at scale requests are

expected to contain a write or rmw operation. Compared to EPaxos’ p50 latency, Gryff’s

is up to 57ms lower for n = 3.

Five Replica Tail-at-scale. We run the same workload with n = 5 and show the results

in Figure 4.15. All protocols follow trends similar to the n = 3 case. However, Gryff

cannot always complete reads in 1 RTT, so the longer tail of the read latency distribution

causes the median latency of these tail at scale requests to increase at a smaller number

of sub-requests. Similarly, EPaxos can no longer always commit in 1 RTT, so its tail

latency is 2 RTTs plus the delay from blocking for dependencies.

4.6 Gryff-RSC

We introduce Gryff-RSC, which provides regular sequential consistency (RSC) and

reduces the tail latency from two round trips to a quorum of replicas to one round trip.

This section gives background on RSC, an overview of Gryff-RSC’s design, and evaluates

performance relative to Gryff. The proof that Gryff-RSC [64] guarantees RSC is in the

associated technical report [65].

4.6.1 Regular Sequential Consistency Background

Linearizability [67] simplifies application development because it makes concurrent

operations appear as if they were executed sequentially. Furthermore, linearizability

prevents end-users from observing orderings of events that are not consistent with real-

95

time. The strong guarantees of linearizability, however, come with a performance tradeoff:

no linearizable shared register protocol can guarantee that every read terminates in a

single round trip [45].

Regular sequential consistency [64] is a strong consistency model that eases the

tradeoff between strong guarantees and read latency. Intuitively, regular sequential

consistency guarantees (a) that operations appear to execute in a total order that respects

causality [74] and (b) that reads return a value at least as recent as the most recently

completed, conflicting write. Because causally unrelated reads do not need to be ordered

consistently with their real-time order, RSC shared register protocols can circumvent the

impossibility result that lower bounds the latency of reads under linearizability.

RSC and linearizability are invariant-equivalent: an application the behaves correctly

using a linearizable service will remain correct when using an RSC service. Therefore,

RSC imposes no additional burden on application developers relative to linearizability.

Though RSC allows end-users to observe anomalous orderings of reads with respect to

real-time, prior work suggests this is rare in practice (e.g., at most six anomalies per

million operations [87]).

4.6.2 Gryff-RSC Design

Relaxing the consistency model from linearizability to regular sequential consistency

allows us to further optimize Gryff’s read protocol. The Write Phase of the read protocol

is only necessary to ensure that subsequent reads observe the same or newer values as

previously completed reads, which is required for linearizability. Regular sequential

consistency only requires this to be the case when the reads are causally related.

96

Algorithm 8: Gryff-RSC Client
1: state c← unique client ID
2: state d←⊥ . Dependency
3: procedure CLIENT::READ(k)
4: send Read(k,d) to all s ∈ S
5: wait receive ReadReply(vs,css) from all s ∈ Q ∈Q
6: cs←maxs∈Q css
7: v← vs : css = cs if ∃s ∈ Q : css 6= cs then
8: d← (k,v,cs)
9: return v

10: procedure CLIENT::WRITE(k,v)
11: send Write1(k,d) to all s ∈ S
12: wait receive Write1Reply(css) from all s ∈ Q ∈Q
13: d←⊥
14: cs←maxs∈Q css
15: send Write2(k,v,(π0(cs)+1,c)) to all s ∈ S
16: wait receive Write2Reply from all s ∈ Q′ ∈Q

17: procedure CLIENT::RMW(k, f (·))
18: send RMW(k, f (·),d) to one s ∈ S
19: wait receive RMWReply from s
20: d←⊥

Algorithm 9: Gryff-RSC Server Read/Write
state V ← [⊥, . . . ,⊥] . Values
state CS← [(0,0,0), . . . ,(0,0,0)] . Carstamps procedure
Server::READRECV(c,k,d)

if d 6=⊥ then
APPLY(d.k,d.v,d.cs)

send ReadReply(V [k],CS[k]) to c
procedure Server::WRITE1RECV(c,k,d)

if d 6=⊥ then
APPLY(d.k,d.v,d.cs)

send Write1Reply(CS[k]) to c
procedure Server::WRITE2RECV(c,k,v,cs)

APPLY(k,v,cs)
send Write2Reply to c

procedure Server::APPLY(k,v,cs)
if cs > CS[k] then

V [k]← v
CS[k]← cs

97

Algorithm 10: Gryff-RSC Server RMW
state s← unique server ID
state prev← [(⊥,(0,0,0)), . . .] . Result of previous rmw for key
state i← 0 . Next unused instance number
state cmds← [[⊥, . . .], . . .] . Instances:

cmd - command to be executed
deps - commands that must be executed before this one
seq - sequence #, breaks cycles in dependency graph
base - possible base update for rmw
status - status of instance

procedure SERVER::RMWRECV(c,k, f (·),d)
i← i+1 . PreAccept Phase
cmd← (k, f (·))
seq← 1+max({cmds[j][`].seq|(j, `) ∈ Icmd}∪{0})
deps← Icmd
base← (V [k],CS[k])
cmds[s][i]← (cmd,seq,deps,base,pre-accepted)
send PreAccept(cmd,seq,deps,base,s, i,d) to all s′ ∈ F \{s} where F ∈F
wait to receive PreAcceptOK(seq′s′ ,deps′s′,base′s′) from all s′ ∈ F \{s}
. . . . Rest of RMW coordinate unchanged

procedure SERVER::PREACCEPTRECV(cmd,seq,deps,base,s′, i,d) if d 6=⊥ then
APPLY(d.k,d.v,d.cs)

seq′←max({seq}∪{1+ cmds[j][`].seq|(j, `) ∈ Icmd}
deps′← deps∪ Icmd if cs > base.cs then

base′← (V [cmd.k],CS[cmd.k]) else
base′← textitbase

cmds[s′][i]← (cmd,seq′,deps′,base′,pre-accepted)
send PreAcceptOK(seq′,deps′,base′) to s′;

. . . . Other message handlers unchanged

To take advantage of this weaker requirement, Gryff-RSC always omits the Write

Phase for reads and instead tracks a small amount of causal metadata to ensure that

causally related reads are ordered properly. Algorithms 8, 9, and 10 show how this

metadata is tracked. It is a single tuple d maintained by each client process. The tuple is

comprised of the key d.k, carstamp d.cs, and value d.v of the most recent read that the

process completed that has not yet been propagated to a quorum.

The metadata is populated with the carstamp and value of a read when the read

98

completes at the client and it does not have enough information to know that the observed

value already exists on a quorum. When the client next executes an operation op, it

piggybacks d in the Read Phase of op. For reads and writes, the client directly performs

the Read Phase, so d is directly attached to Read1 and Write1 messages respectively. For

rmws, the client forwards d to the server that coordinates the operation and the server

attachs d to PreAccept messages.

Server receiving the Read Phase messages first update their key-value stores with the

information contained in d, overwriting their local carstamp and value for d.k if d.cs is

larger than their current carstamp. Then the servers process the Read Phase messages as

normal in Gryff. The client clears d as soon as it receives confirmation that it has been

propagated to a quorum, either at the end of the Read Phase for reads and writes or when

it receives notification that the operation is complete for rmws.

In Algorithm 10, we omit the coordination of a rmw beyond the PreAccept phase,

the rest of the processing of PreAccept messages, the processing of Accept and Commit

messages, the recovery procedure, and the execution procedure because these parts of

the protocol remain unchanged from Gryff.

4.6.3 Gryff-RSC Evaluation

Our evaluation of Gryff-RSC aims to answer two questions: Does Gryff-RSC offer better

tail read latency on important workloads (§4.6.3), and what are the performance costs of

Gryff-RSC’s protocol (§4.6.3)?

We implement Gryff-RSC in Go using the same framework as Gryff, and our code

and experiment scripts are available online [61]. We keep all of Gryff’s optimizations

99

CA VA IR OR JP
CA 0.2
VA 72.0 0.2
IR 151.0 88.0 0.2
OR 59.0 93.0 145.0 0.2
JP 113.0 162.0 220.0 121.0 0.2

Table 4.1: Emulated round-trip latencies (in ms).

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Write Ratio

p9
9

R
ea

d
La

te
nc

y
(m

s)

Gryff−RSC Gryff

(a) 2% conflicts.

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Write Ratio

p9
9

R
ea

d
La

te
nc

y
(m

s)

Gryff−RSC Gryff

(b) 10% conflicts.

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Write Ratio

p9
9

R
ea

d
La

te
nc

y
(m

s)

Gryff−RSC Gryff

(c) 25% conflicts.

Figure 4.16: For moderate- and high-contention workloads, Gryff-RSC offers roughly
a 40% reduction in p99 read latency compared to Gryff. As the conflict ratio increases,
Gryff-RSC’s benefits start at lower write ratios.

enabled. All experiments run on CloudLab [44] m510 machines—each with 8 physical

cores, 64 GB RAM, and a 10 Gbit NIC—and use an emulated wide-area environment.

We use five replicas, one in each emulated geographic region, because with Gryff’s

optimizations, reads already always finish in one round trip with three replicas. An equal

fraction of the clients are in each region. Table 4.1 shows the emulated round-trip times.

We generate load with 16 closed-loop clients. With this number, servers are moder-

ately loaded. Each client executes the YCSB workload [34], which includes just reads

and writes. We vary the rate of conflicts and the read-write ratio.

Gryff-RSC Reduces Read Tail Latency

Figure 4.16 compares Gryff and Gryff-RSC’s p99 read latency across a range of con-

flict percentages and read-write ratios. We omit similar plots for writes because write

100

performance is identical in the two systems.

With few conflicts (Figure 4.16a), nearly all of Gryff’s reads complete in one round,

so Gryff-RSC cannot offer an improvement. p99 latency for both systems is 145 ms.

As Figures 4.16b and 4.16c show, however, as the rate of conflicts increases, more of

Gryff’s reads must take its slow path, incurring two wide-area round trips. This increases

Gryff’s p99 latency by 61% (from 145 ms to 234 ms). On the other hand, Gryff-RSC’s

reads only require one round trip, so p99 latency remains at 145 ms. At lower write

ratios, the magnitude of Gryff-RSC’s improvement over Gryff increases with the rate of

conflicts.

Further, because reads always finish in one round, Gryff-RSC offers even larger

latency improvements farther out on the tail (not shown). For instance, with 10%

conflicts and a 0.3 write ratio, Gryff-RSC reduces p99.9 latency by 49% (from 290 ms to

147 ms).

Gryff-RSC Imposes Negligible Overhead

We also quantify the performance overhead of Gryff-RSC’s piggybacking mechanism,

but we omit the plots due to space constraints. We compare Gryff and Gryff-RSC’s

throughput and median latency as we increase the number of clients. For these experi-

ments, we disable wide-area emulation. With a 10% conflict ratio, we run two workloads:

50% reads-50% writes and 95% reads-5% writes (matching YCSB-A and YCSB-B [34]).

In both cases, Gryff-RSC’s throughput and latency are within 1% of Gryff’s, suggesting

the overhead from Gryff-RSC’s protocol changes are negligible.

101

4.7 Related Work

We review related work in geo-replicated storage systems and combining consensus with

shared registers.

EPaxos. EPaxos [95] is the state-of-the-art for linearizable replication in geo-replicated

settings. Our evaluation shows that EPaxos dominates Gryff for blind write latency. On

the other hand, Gryff dominates EPaxos for read latency and its rmw latency ranges from

higher to lower as the contention in the workload increases. This tradeoff is possible

because Gryff only uses consensus for operations that require it.

Read Leases. Read leases allow clients to read replicated state from leaseholders by

requiring updates to the replicated state be acknowledged by the leaseholders before

completing [59, 97]. While this enables reads that need only communicate with a single

replica, it sacrifices write availability when a leaseholder fails until the lease expires.

Furthermore, to implement read leases safely, clocks at each process must have bounded

skew, which is not satisfied by current commodity clocks [55]. Given these difficult

availability and safety tradeoffs, we do not consider read leases in the context of Gryff

or the baseline systems, but we believe they can be adapted to Gryff’s write and rmw

protocols.

Other Linearizable Protocols. Paxos [75], VR [103], Fast Paxos [77], Generalized

Paxos [76], Mencius [91], Raft [104], Flexible Paxos [68], CAESAR [9], and SD

Paxos [137] are consensus protocols that are used to implement linearizable replicated

storage systems by ensuring the Agreement property for state machine replication [116].

Other systems, such as Sinfonia [2] and Zookeeper [69], use similarly expensive coordi-

102

nation protocols (2PC and atomic broadcast respectively) to provide strong consistency.

CURP [107], Chain Replication [128], and other primary-backup protocols [5] achieve

good performance when failures are detectable. Gryff guarantees linearizability in sys-

tems with undetectable failures for reads, writes, and rmws and only incurs expensive

coordination overhead when needed.

ABD [11] provides linearizable reads and writes with guaranteed termination in

asynchronous settings. Subsequent work has established the conditions under which lin-

earizable shared register protocols can provide fast—i.e., complete in 1 RTT—reads [45]

or writes [49]. Gryff maintains the performance benefits of these protocols for reads and

writes and incorporates rmws for when application developers need stronger synchro-

nization primitives.

Weaker Semantics for Lower Latency. Other geo-replicated systems eschew strong

consistency for weaker consistency models that support lower latency operations.

PNUTS [33] provides per-timeline sequential consistency, OCCULT [92], COPS [85],

and GentleRain [43] provide causal consistency. ABD-Reg [129] provides regularity.

Moreover, some systems provide hybrid consistency: Pileus [125], Gemini [80], and

ICG [63] allow some operations to be strongly consistent and other operations to be

weakly consistent. Gryff provides linearizability to free developers from reasoning about

complex consistency models.

Consensus and Shared Registers. Active Quorum Systems (AQS) [18, 19], to our

knowledge, was the first attempt to combine consensus with shared registers. We found

that AQS allows for non-linearizable executions because its ordering mechanism is

unstable for rmws (§4.2). In contrast, Gryff uses carstamps to stably order rmws with

their base updates while allowing for efficient reads and writes with an unstable order. In

103

addition, Gryff is implemented and empirically evaluated.

Cassandra [90] provides reads and writes with tunable consistency and implements

a compare-and-swap for applications that occasionally need stronger synchronization.

Unlike Gryff, Cassandra’s reads and writes are not linearizable by default and its compare-

and-swap is not consistent when operating on data also accessed via reads and writes.

4.8 Conclusion

Gryff unifies consensus and shared registers with carstamps. This reduces latency by

avoiding the cost of consensus for the common case of reads and writes. Our evaluation

shows that the reduction in latency for individual operations reduces the median service-

level latency to ∼60% of EPaxos for large-scale web applications.

104

CHAPTER 5

CONCLUSION

This dissertation argues that geo-replicated services that provide strong guarantees

can meet the high throughput and low latency requirements of large-scale Internet

applications without sacrificing generality in the API. To do so, we propose that services

more effectively leverage semantic information already present in existing, general APIs.

We demonstrate this approach in the design of two systems, Morty and Gryff. Morty

is a replicated transactional storage system that provides serializable transactions with

high throughput under contention in geo-replicated settings. Morty achieves higher

throughput than existing systems by leveraging a continuation passing style API to

implement transaction re-execution. The continuation passing style API is already

commonly used in networked services such as replicated storage systems.Gryff is a

replicated coordination service that provides linearizability with low read tail latency in

geo-replicated settings. Gryff achieves lower read tail latency than existing systems by

processing simple reads and writes with a shared register protocol instead of a consensus

protocol. Because the coordination service API already differentiates between reads and

writes and stronger synchronization operations like read-modify-writes, developers can

leverage Gryff’s more efficient design to provide better experiences to end-users without

significantly rewriting their applications.

105

APPENDIX A

MORTY PROOFS

A.1 System Model

We use Adya’s system model and terminology to write our proofs. We reproduce much

of the text from Adya’s thesis [1] for convenience.

A transaction is a particular execution of a program that interacts with the objects in

the database through read and write operations. When a transaction writes an object x, it

creates a new version of x. A transaction Ti can modify an object multiple times; its first

update of object x is denoted by xi,1, the second by xi,2 and so on. Version xi denotes the

final modification of x performed by Ti. That is, xi ≡ xi,n where n = max{ j|xi, j exists }.

Transactions interact with the database only in terms of objects; the system maps each

operation on an object to a specific version of that object. We use ri(x j,m) (wi(xi,m)) to

denote the execution of a read (write) operation on a specific version of an object x.

Formally, a transaction Ti is both a set of operations Ti ⊆ {ri(x j),wi(xi,m)|x is an

object }∪{ci,ai} and a total order on this set which corresponds to the order in which

its operations were registered by the database. A transaction Ti may not be a complete

execution of a program. However, if ci ∈ Ti, then ai /∈ Ti and vice versa. Moreover, if Ti

commits (aborts), ci (ai) must be the last operation of the transaction.

The database state refers to the versions of objects that have been created by commit-

ted and uncommitted transactions. The committed state of the database reflects only the

modifications of committed transactions. When transactions Ti commits, each version

xi created by Ti becomes a part of the committed state and we say that Ti installs xi. If

Ti aborts, xi does not become part of the committed state. Thus, the system needs to

106

prevent modifications made by uncommitted and aborted transactions from affecting the

committed database state.

Conceptually, the committed state comes into existence as a result of running a special

initialization transaction, Tinit. Transaction Tinit creates all objects that will ever exist in

the database; at this point, each object x has an initial version, xinit, called the unborn

version. When an application transaction inserts an object x (e.g., inserts a tuple in a

relation), we model it as the creation of a visible version for x. When a transaction Ti

deletes an object x (e.g., by deleting a tuple from some relation), we model it as the

creation of a special dead version, i.e., in this case, xi (also called xdead) is a dead version.

Thus, object versions can be of three kinds: unborn, visible, and dead.

A history H over a set of transactions consists of two parts: a partial order of events

E that reflects the operations of those transactions, and a version order,�, that is a total

order on committed object versions.

The partial order of events E in a history obeys the following constraints:

• It preserves the order of all events within a transaction including the commit and

abort events.

• If an event r j(xi,m) exists in E, it is preceded by wi(xi,m) in E, i.e., a transaction Tj

cannot read version xi of object x before it has been produced by Ti.

• If an event wi(xi,m) is followed by ri(x j) without an intervening event wi(xi,n) in E,

x j must be xi,m. This condition ensures that if a transaction modifies object x and

later reads x, it will observe its last update to x.

The second part of a history H is the version order,�, that specifies a total order on

object versions created by committed transaction in H; there is no constraint on versions

107

due to uncommitted or aborted transactions. We refer to versions due to committed

transactions in H as committed versions and impose two constraints on H’s version order

for different kinds of committed versions:

• the version order of each object X contains exactly one initial version, xinit, and at

most one dead version, xdead.

• xinit is x’s first version in its version order and xdead is its last version (if it exists);

all visible versions are placed between xinit and xdead.

• if r j(xi) occurs in a history, then xi is a visible version.

We define three kinds of direct conflicts that capture conflicts of two different com-

mitted transactions on the same object: read-dependency, anti-dependency, and write-

dependency. The first type, read dependency, specifies write-read conflicts; a transaction

Tj depends on Ti if it reads Ti’s updates. Anti-dependencies capture read-write conflicts;

Tj anti-depends on Ti if it overwrites an object that Ti has read. Write-dependencies

capture write-write conflicts; Tj write-depends on Ti if it overwrites an object that Ti has

also modified.

Definition A.1.1. A transaction Tj directly read-depends on transaction Ti if Ti installs

some object version xi and Tj reads xi (denoted by Ti
wr−→ Tj).

Definition A.1.2. A transaction Tj directly anti-depends on transaction Ti if Ti reads

some object version xk and Tj installs x’s next version (after xk) in the version order

(denoted by Ti
rw−→ Tj). Note that the transaction that wrote the later version directly

anti-depends on the transaction that read the earlier version.

Definition A.1.3. A transaction Tj directly write-depends on transaction Ti if Ti installs

a version xi and Tj installs x’s next version (after xi) in the version order (denoted by

Ti
ww−−→ Tj).

108

Definition A.1.4. We define the direct serialization graph arising from a history H,

denoted DSG(H) as follows. Each node in DSG(H) corresponds to a committed trans-

action in H and directed edges correspond to different types of direct conflicts. There is a

read/write/anti-dependency edge from transaction Ti if Tj directly read/write/anti-depends

on Ti.

There can be at most one edge of a particular kind from node Ti to Tj since the edges

do not record the objects that gave rise to the conflict.

Definition A.1.5. A history H exhibits phenomenon G1a (aborted reads) if it contains an

aborted transaction Ti and a committed transaction Tj such that Tj has read some object

modified by Ti.

Definition A.1.6. A history H exhibits phenomenon G1b (intermediate reads) if it con-

tains a committed transaction Tj that has read a version of object x written by transaction

Ti that was not Ti’s final modification of x.

Definition A.1.7. A history H exhibits phenomenon G1c (circular information flow) if

DSG(H) contains a directed cycle consisting entirely of dependency edges.

Definition A.1.8. A history H exhibits phenomenon G2 (anti-dependency cycles) if

DSG(H) contains a directed cycle having one or more anti-dependency edges.

Definition A.1.9. A history H is serializable if it does not exhibit G1a, G1b, G1c, and

G2.

Definition A.1.10. A history H is serializable it it does not exhibit aborted reads and

intermediate reads and if DSG(H) is acyclic.

109

A.2 Proof of Correctness

We prove the correctness of Morty using Adya’s system model and terminology [1].

Definition A.2.1. A transaction Ti commits if some coordinator reaches a Commit

decision for Ti.

Definition A.2.2. An Original Slow Path or Recovery coordinator c of transaction Ti

decides in view v with decision d if at least f +1 servers accept c’s proposal of d in v.

Lemma A.2.1. If a coordinator c1 of transaction Ti decides in view v1 with decision d1,

then for every coordinator c2 of transaction Ti that decides in view v2 with decision d2

such that v2 ≥ v1, d2 = d1.

Proof.

1. Let c1 be a coordinator of transaction Ti that decides in view v1 with decision d1.

2. Let c2 be a coordinator of Ti that decides in view v2 with decision d2 such that v2 > v1.

3. Q.E.D.

Let v′1 = v1, ...,v′n = v2 be the sequence of n ≥ 2 views between v1 and v2 in which

at least one coordinator decides. For each view v′i in the sequence, we define c′i as

the coordinator thhst decided decision d′i in v′i. Since v′n > v′1, c′n must be a recovery

coordinator.

The inductive hypothesis is that d1 = d′n.

The base case is when n = 2. By the definition of “decide in view”, f + 1 servers

accepted c′1’s proposal of d′1 in v′1. This means at least one server that c′2 receives a

PaxosPrepareReply from must return c′1’s proposal. Moreover, this must correspond

to the highest view v′1 of any views received in the replies. This and the recovery

procedure imply that c′2 proposes d′1 as d′2.

110

Now we prove the inductive hypothesis using only the fact that d1 = d′n−1. By the

definition of “decide in view”, f +1 servers accepted c′n−1’s proposal of d′n−1 in v′n−1.

This means at least one server that c′n receives a PaxosPrepareReply from must return

c′n−1’s proposal. Moreover, this must correspond to the highest view v′n−1 of any views

received in the replies. This and the recovery procedure imply that c′n proposes d′n−1

as d′n.

�

Lemma A.2.2. If a coordinator c1 reaches a decision d1 ∈ {Commit,Abandon} for

transaction Ti, for every other coordinator c2 6= c1 that reaches decision d2 for Ti,

d2 = d1.

Proof.

1. Let c1 be a coordinator that reaches a decision d1 for Ti.

2. Let c2 6= c1 be a coordinator that reaches a decision d2 for Ti.

3. CASE: c1 decides on the Original Fast Path and c2 decides on the Recovery Path;

d1 = Commit.

3.1. c1 receives 2 f +1 PrepareReply messages from servers voting Commit for Ti.

By the assumption of 3 that c1 decides on the Original Fast Path.

3.2. Let v2 be the view in which c2 decides.

3.3. Every recovery coordinator that reaches a decision decides Commit.

3.3.1. Let c be a recovery coordinator that decides d in view v.

3.3.2. c receives f +1 PaxosPrepareReply messages from servers agreeing to not

accept proposals in views smaller than v.

3.3.3. Let v0 be the smallest view in which a recovery coordinator decides.

3.3.4. CASE: v = v0.

111

3.3.4.1. No PaxosPrepareReply contains a finalize decision.

3.3.4.1.1. SUFFICES ASSUME: At least one PaxosPrepareReply contains a

finalize decision.

PROVE: False.

3.3.4.1.2. Let v′ be the view in which the recovery coordinator c′ proposed

finalize decision.

3.3.4.1.3. The server that sent the PaxosPrepareReply with finalize decision

accepted finalize decision in v′ before promising to not accept pro-

posals in views smaller than v.

3.3.4.1.4. v′ < v.

3.3.4.1.5. Q.E.D.

By 3.3.4.1.4, 3.3.3, and 3.3.4.

3.3.4.2. CASE: At least one PaxosPrepareReply contains a decision.

3.3.4.2.1. Let s be the server that sent the reply containing decision to c.

3.3.4.2.2. s learned the decision from c1.

3.3.4.2.2.1. SUFFICES ASSUME: s learned of the decision from a coordina-

tor c′ 6= c1.

PROVE: False

3.3.4.2.2.2. c′ is a recovery coordinator.

c′ is not the original coordinator by assumption. If c′ is truncation coordi-

nator, then Ti is part of the truncated epoch, which implies that s would

not respond to PaxosPrepare for Ti.

3.3.4.2.2.3. c′ decided in view v′.

3.3.4.2.2.4. v′ < v.

c′ sends learned decision implies f +1 accepted decision in v′. By 3.3.2,

112

at least one server s′ accepted decision in v′ and agreed to not accept

proposals in views smaller than v. This implies that v′ < v.

3.3.4.2.2.5. Q.E.D.

By 3.3.3, 3.3.4, and 3.3.4.2.2.4.

3.3.4.2.3. decision = Commit.

By 3.3.4.2.2 and the assumption of 3 that d1 = Commit.

3.3.4.2.4. Q.E.D.

By 3.3.4.2.3 and the Recovery Decision procedure, d = Commit.

3.3.4.3. CASE: All PaxosPrepareReply messages only contain votes.

3.3.4.3.1. Every server that sent a PaxosPrepareReply previously sent a Pre-

pareReply with Commit vote to c1.

By 3.1.

3.3.4.3.2. All f +1 votes are Commit.

By the fact that a server never changes its vote until the vote is truncated.

However, a server would not respond to a PaxosPrepare for Ti if it has

truncated Ti.

3.3.4.3.3. Q.E.D.

By the Recovery Decision procedure and 3.3.4.3.2.

3.3.4.4. Q.E.D.

By 3.3.4.1, steps 3.3.4.2 and 3.3.4.3 are exhaustive.

3.3.5. CASE: 1. v > v0.

2. The decision d′ for all v′ < v is Commit.

By 3.3.1, the assumption of the case, and Lemma A.2.1.

113

3.3.6. Q.E.D.

By 3.3.4, 3.3.5, and mathematical induction.

3.4. d2 = Commit.

By 3.3 and the assumption of 3 that c2 is a recovery coordinator.

3.5. Q.E.D.

By 3.4 and the assumption of 3 that d1 = Commit, d2 = d1.

4. CASE: c1 decides on the Original Fast Path and c2 decides on the Recovery Path;

d1 = Abandon.

4.1. c1 receives a PrepareReply message with an Abandon-Final vote for Ti.

By the assumption of 4 that c1 decides on the Original Fast Path.

4.2. Let v2 be the view in which c2 decides.

4.3. Every recovery coordinator that reaches a decision decides Abandon.

4.3.1. Let c be a recovery coordinator that decides d in view v.

4.3.2. c receives f +1 PaxosPrepareReply messages from servers agreeing to not

accept proposals in views smaller than v.

4.3.3. Let v0 be the smallest view in which a recovery coordinator decides.

4.3.4. CASE: v = v0.

4.3.4.1. No PaxosPrepareReply contains a finalize decision.

4.3.4.1.1. SUFFICES ASSUME: At least one PaxosPrepareReply contains a

finalize decision.

PROVE: False.

4.3.4.1.2. Let v′ be the view in which the recovery coordinator c′ proposed

finalize decision.

114

4.3.4.1.3. The server that sent the PaxosPrepareReply with finalize decision

accepted finalize decision in v′ before promising to not accept pro-

posals in views smaller than v.

4.3.4.1.4. v′ < v.

4.3.4.1.5. Q.E.D.

By 4.3.4.1.4, 4.3.3, and 4.3.4.

4.3.4.2. CASE: At least one PaxosPrepareReply contains a decision.

4.3.4.2.1. Let s be the server that sent the reply containing decision to c.

4.3.4.2.2. s learned the decision from c1.

4.3.4.2.2.1. SUFFICES ASSUME: s learned of the decision from a coordina-

tor c′ 6= c1.

PROVE: False

4.3.4.2.2.2. c′ is a recovery coordinator.

c′ is not the original coordinator by assumption. If c′ is truncation coordi-

nator, then Ti is part of the truncated epoch, which implies that s would

not respond to PaxosPrepare for Ti.

4.3.4.2.2.3. c′ decided in view v′.

4.3.4.2.2.4. v′ < v.

c′ sends learned decision implies f +1 accepted decision in v′. By 4.3.2,

at least one server s′ accepted decision in v′ and agreed to not accept

proposals in views smaller than v. This implies that v′ < v.

4.3.4.2.2.5. Q.E.D.

By 4.3.3, 4.3.4, and 4.3.4.2.2.4.

4.3.4.2.3. decision = Abandon.

115

By 4.3.4.2.2 and the assumption of 4 that d1 = Abandon.

4.3.4.2.4. Q.E.D.

By 4.3.4.2.3 and the Recovery Decision procedure, d = Abandon.

4.3.4.3. CASE: All PaxosPrepareReply messages only contain votes.

4.3.4.3.1. There are ≤ f votes for Commit.

By 4.1 and the fact that a server only votes Abandon-Final for a transaction

Ti if the Abandon decision is already durable in that no set of f +1 servers

can vote to commit Ti.

4.3.4.3.2. Q.E.D.

By the Recovery Decision procedure and 4.3.4.3.1.

4.3.4.4. Q.E.D.

By 4.3.4.1, steps 4.3.4.2 and 4.3.4.3 are exhaustive.

4.3.5. CASE: 1. v > v0.

2. The decision d′ for all v′ < v is Commit.

By 4.3.1, the assumption of the case, and Lemma A.2.1.

4.3.6. Q.E.D.

By 4.3.4, 4.3.5, and mathematical induction.

4.4. d2 = Abandon.

By 4.3 and the assumption of 4 that c2 is a recovery coordinator.

4.5. Q.E.D.

By 4.4 and the assumption of 4 that d1 = Abandon, d2 = d1.

5. CASE: c1 decides on the Original Slow Path and c2 decides on the Recovery Path.

116

5.1. Let v1 be the view in which c1 decides d1.

By the hypothesis that c1 decides on the Original Slow Path.

5.2. Let v2 be the view in which c2 decides d2.

By the hypothesis that c2 decides on the Recovery Path.

5.3. CASE: v2 > v1.

By 5.2, 5.3, and Lemma A.2.1, d2 = d1.

5.4. CASE: v1 > v2.

By 5.2, 5.3, and Lemma A.2.1, d1 = d2.

5.5. Q.E.D.

Steps 5.3 and 5.4 are exhaustive.

6. CASE: c1 decides on the Recovery Path and c2 decides on the Recovery Path.

6.1. Let v1 be the view in which c1 decides d1.

By the hypothesis that c1 decides on the Recovery Path.

6.2. Let v2 be the view in which c2 decides d2.

By the hypothesis that c2 decides on the Recovery Path.

6.3. CASE: v2 > v1.

By 6.2, 6.3, and Lemma A.2.1, d2 = d1.

6.4. CASE: v1 > v2.

By 6.2, 6.3, and Lemma A.2.1, d1 = d2.

6.5. Q.E.D.

Steps 6.3 and 6.4 are exhaustive.

117

7. CASE: c1 decides on the Original Fast Path, the Original Slow Path, the Recovery

Path, or the Truncation Path and c2 decides on the Truncation Path

The truncation procedure maintains the invariant that: if a decision could have been

reached for a transaction T in one of the constituent erecords, then that decision is

preserved in the merged erecord.

8. Q.E.D.

Steps 3, 4, 5, 6, and 7 are exhaustive.

�

Definition A.2.3. A transaction Ti permanently conflict rejects at server s j if after Ti

validates successfully at s j any transaction Tj is rejected if:

• Ti reads xk and Tj writes x and ver(Tk)< ver(Tj)< ver(Ti), or

• Ti writes x and Tj reads xk and ver(Tk)< ver(Ti)< ver(Tj).

Lemma A.2.3. If a transaction Ti commits, Ti permanently conflict rejects at m≥ f +1

servers.

Proof.

1. Let Ti be a transaction that commits.

2. Let Tj be a transaction that validates at server s such that:

• Ti reads xk and Tj writes x and ver(Tk)< ver(Tj)< ver(Ti), or

• Ti writes x and Tj reads xk and ver(Tk)< ver(Ti)< ver(Tj).

3. If Ti is prepared at a server s when Tj validates at s, s rejects Tj.

By the Validation algorithm’s prepared reads and writes check.

118

4. If Ti is committed at a server s when Tj validates at s, s rejects Tj.

By the Validation algorithm’s committed reads and writes check.

5. If Ti has been truncated at a server s when Tj validates at s, s rejects Tj.

By the Validation algorithm’s truncation check.

6. m≥ f +1 servers validate Ti successfully and prepare Ti.

Every Commit path requires that Ti be successfully validated at f +1 servers. When a

server successfully validates a transaction, it always immediately adds it to its prepared

set.

7. Let s be one of the m servers that validate Ti successfully and prepare Ti.

8. s only unprepares Ti when it receives a durable decision (either through the original

coordinator, recovery coordinator, or truncation coordinator).

Since Ti commits, Lemma A.2.2 implies that no coordinator could have reached a

durable Abandon decision for Ti. This implies that s can only receive a durable commit

decision. If s receives such a decision, it removes Ti from its prepared set and add Ti to

its committed set.

9. s only uncommits Ti when it truncates Ti.

The only place in the Algorithm where a server removes a transaction from its com-

mitted set is when truncating.

10. Q.E.D.

PROOF: By 3, 4, 5, 6, and 7.

�

119

Lemma A.2.4. If H is a history produced by Morty, DSG(H) is acyclic.

Proof.

1. Let ≺ be a total order on the transactions in H: Ti ≺ Tj ⇐⇒ ver(Ti)< ver(Tj).

2. Let the version order� for H be: xi� x j ⇐⇒ Ti ≺ Tj.

3. If the edge Ti→ Tj is in DSG(H), then Ti ≺ Tj.

3.1. CASE: Ti
ww−−→ Tj.

3.1.1. Ti installs a version xi and Tj installs x’s next version x j in the version order.

PROOF: By the hypothesis that the edge Ti
ww−−→ Tj exists in DSG(H) and Defini-

tion A.1.3.

3.1.2. xi� x j.

PROOF: By 3.1.1.

3.1.3. Q.E.D.

PROOF: By 3.1.2 and 2.

3.2. CASE: Ti
wr−→ Tj.

3.2.1. Ti installs a version xi and Tj reads xi.

PROOF: By the hypothesis that the edge Ti
wr−→ Tj exists in DSG(H) and Defini-

tion A.1.1.

3.2.2. ver(Ti)< ver(Tj).

PROOF: By 3.2.1 and that Morty servers, for a read r`(x) from transaction T`, only

return object versions xk written by transaction Tk such that ver(Tk)< ver(T`).

3.2.3. Q.E.D.

PROOF: By 3.2.2 and 1.

120

3.3. CASE: Ti
rw−→ Tj.

3.3.1. Ti reads some object version xk and Tj installs the version x j after xk in the

version order.

PROOF: By the hypothesis that the edge Ti
rw−→ Tj exists in DSG(H) and Defini-

tion A.1.2.

3.3.2. mi ≥ f +1 servers permanently prepare Ti.

PROOF: By the hypothesis that Ti is committed and Lemma A.2.3.

3.3.3. m j ≥ f +1 servers permanently prepare Tj.

PROOF: By the hypothesis that Tj is committed and Lemma A.2.3.

3.3.4. There exists a server s that permanently conflict rejects both Ti and Tj.

PROOF: By 3.3.2, 3.3.3, and that there are only n = 2 f +1 that store object x.

3.3.5. s permanently conflict rejects Ti and Tj sequentially, either preparing Ti first

or Tj first.

PROOF: By 3.3.4 and the multi-threaded locking that ensures accesses to an

object’s metadata are sequential at a server,

3.3.6. CASE: Ti permanently conflict rejects at s first.

3.3.6.1. After Ti validates successfully at s, s rejects any transaction T` that writes

x such that ver(Tk)< ver(T`)< ver(Ti).

PROOF: By Definition A.2.3 and 3.3.1.

3.3.6.2. s does not reject Tj.

PROOF: By 3.3.4.

3.3.6.3. ver(Tj)< ver(Tk) or ver(Ti)< ver(Tj).

PROOF: By 3.3.6.1 and 3.3.6.2.

121

3.3.6.4. ver(Tk)< ver(Tj).

PROOF: By 3.3.1, 1, and 2.

3.3.6.5. ver(Ti)< ver(Tj).

PROOF: By 3.3.6.3, and 3.3.6.4.

3.3.6.6. Q.E.D.

PROOF: By 3.3.6.5 and 1.

3.3.7. CASE: Tj permanently conflict rejects at s first.

3.3.7.1. After Tj validates successfully at s, s rejects any transaction T` that reads

xk such that ver(Tk)< ver(Tj)< ver(T`).

PROOF: By Definition A.2.3 and 3.3.1.

3.3.7.2. s does not reject Ti.

PROOF: By 3.3.4.

3.3.7.3. ver(Tj)< ver(Tk) or ver(Ti)< ver(Tj).

PROOF: By 3.3.7.1 and 3.3.7.2.

3.3.7.4. ver(Tk)< ver(Tj).

PROOF: By 3.3.1, 1, and 2.

3.3.7.5. ver(Ti)< ver(Tj).

PROOF: By 3.3.7.3, and 3.3.7.4.

3.3.7.6. Q.E.D.

PROOF: By 3.3.7.5 and 1.

3.3.8. Q.E.D.

PROOF: By 3.3.5, 3.3.6, and 3.3.7.

122

3.4. Q.E.D.

PROOF: By 3.1, 3.2, and 3.3.

4. SUFFICES ASSUME: There exists a cycle in DSG(H).

PROVE: False.

PROOF: By the assumption of 4, 3, and 1.

5. Q.E.D.

PROOF: By 4.

�

Lemma A.2.5. If H is a history produced by Morty, H does not exhibit aborted reads.

Proof.

Let Tj be a committed transaction in H such that Tj has read some object modified by Ti.

Since Tj is committed, it must have passed the validation check on at least one server.

The dirty read check of the validation check implies that each read of Tj is of a write

from a committed transaction. This implies that Ti is also committed in H.

�

Lemma A.2.6. If H is a history produced by Morty, H does not exhibit intermediate

reads.

Proof.

Let Tj be a committed transaction in H such that Tj has read a version of object x written

by transaction Ti. Since Tj is committed, it must have passed the validation check on at

123

least one server. The dirty read check of the validation check implies that each read of Tj

is of a final write from a committed transaction.

�

Theorem A.2.1. Morty only produces serializable histories.

Proof.

1. Let H be a history produced by Morty.

2. Q.E.D.

PROOF: By 1, Definition A.1.10, Lemma A.2.5, Lemma A.2.6, and Lemma A.2.4.

�

A.3 Proof of Serialization Windows and Validity Windows

We prove that serialization windows and validity windows must be non-overlapping using

Adya’s system model and terminology [1].

A.3.1 Serialization Windows

Definition A.3.1. A transaction Ti that writes to object x creates a serialization

window on x represented by the interval [ai,bi]. If Ti reads xk before it writes x,

ai = min(wk(xk),b j) where b j is right endpoint of the serialization window on x for

the transaction Tj that writes the version x j that immediately follows xi in the version

order�; otherwise ai = bi. bi = min(wi(xi),b j)

124

Note that the definition of a serialization window is a well-formed interval (i.e.,

ai ≤ bi) since ai is defined to be at most as large as bi.

A transaction which only reads x does not create a serialization window on x as

reading is not a conflicting operation in isolation.

First we prove that the definition of a serialization window is a valid interval.

Lemma A.3.1. If [ai,bi] is the serialization window of a transaction Ti in H, then ai ≤ bi.

Proof. There are two cases:

• ri(xk)<H wi(xi). By the definition of ai, ai = min(wk(xk),b j) and by the definition

of bi, bi = min(wi(xi),b j). By the definition of H, wk(xk) <H ri(xk), so by the

assumption of the case, wk(xk)<H wi(xi). Combined with the definitions of ai and

bi, this implies that ai ≤ bi.

• wi(xi)<H ri(xk) or ri(xk) /∈ Ti. By the definition of ai, ai ≤ bi.

�

Next, we prove that in a history with an acyclic DSG, a transaction that reads and

writes an object must read from the version that immediately precedes its version in the

version order.

Lemma A.3.2. If DSG(H) is acyclic, Ti is a transaction that writes version xi of object

x, and Tj is a transaction that reads version xk and writes version x j of object x, and x j

immediately follows xi in the version order� of H, then xk = xi.

Proof. Assume for a contradiction that this is not the case, i.e., that xk 6= xi. There are

two sub-cases depending on the version order of xk and xi.

125

Case xi� xk: Since x j immediately follows xi in the version order, xk must come after

x j in�. This implies that there is a sequence of ww−−→ edges from Tj to Tk in DSG(H). In

addition, there exists a Tk
wr−→ Tj edge in DSG(H) because Tj reads xk from Tk. These

imply that there is a cycle in DSG(H). However, there are no cycles in DSG(H) by

assumption. Thus, there is a contradiction.

Case xk � xi: Let T` be the transaction that installs the version x` that immediately

follows xk in the version order. By the assumption of the case and the assumption that x j

immediately follows xi in�, there is a sequence Tk
ww−−→ T`

ww−−→ ...
ww−−→ Tj of ww−−→ edges

in DSG(H). In addition, there exists a Tj
rw−→ T` edge in DSG(H) because Tj reads xk

from Tk and T` installs the version x` immediately after xk. These imply that there is a

cycle in DSG(H). However, there are no cycles in DSG(H) by assumption. Thus, there

is a contradiction.

In either case, the assumption that xk 6= xi implies a contradiction, so xk = xi. �

This allows us to prove more generally that the order of serialization windows must

match the version order in a history with an acyclic DSG.

Lemma A.3.3. If DSG(H) is acyclic, Ti and Tj are transactions that write object x with

serialization windows [ai,bi] and [a j,b j], and xi� x j, then bi ≤ a j.

Proof. Let x1 = xi, ...,xn = x j be the sequence of n ≥ 2 versions between xi and x j in

�. For each transaction T` that creates a version in this sequence, if T` reads x, then we

define xk` as the version of x that T` reads.

The inductive hypothesis is that b1 ≤ an.

126

The base case is when n = 2. There are no versions between xi and x j in the sequence

(T1 = Ti, T2 = Tj). There are two sub-cases:

1. T2 reads x before writing x. Since T2 reads x, a2 =min(wk2(xk2),b2). Lemma A.3.2

implies that xk2 = x1. Therefore, a2 = min(w1(x1),b2). Since the definition of b1

is also min(w1(x1),b2), b1 ≤ a2.

2. T2 does not read x before writing x. Since T2 does not read x, a2 = b2. The

definition of b1 = min(w1(x1),b2) and the definition of a2, imply that b1 ≤ a2.

Now we prove the inductive hypothesis using only the fact that b1 ≤ an−1. There are

two-sub-cases:

1. Tn reads x before writing x. Since Tn reads x, an =min(wkn(xkn),bn). Lemma A.3.2

implies that xkn = xn−1. Therefore, an = min(wn−1(xn−1),bn). Since the definition

of bn−1 is also min(wn−1(xn−1),bn), bn−1 ≤ an. This, the fact that an−1 ≤ bn−1,

and the fact that b1 ≤ an−1 imply that b1 ≤ an.

2. Tn does not read x before writing x. Since Tn does not read x, an = bn. The definition

of bn−1 = min(wn−1(xn−1),bn) and the definition of an imply that bn−1 ≤ an. This,

the fact that an−1 ≤ bn−1, and the fact that b1 ≤ an−1 imply that b1 ≤ an.

�

Finally, these lemmas give the result that serialization windows cannot overlap in a

history with an acyclic DSG.

Theorem A.3.1. If DSG(H) is acyclic and Ti and Tj are two transactions in H that write

object x, then the serialization windows of Ti and Tj do not overlap.

127

Proof. Lemma A.3.1 implies that for Ti’s serialization window [ai,bi] to not overlap

with Tj’s serialization window [a j,b j], it must be the case that either bi ≤ a j or b j ≤ ai.

The version order� is a total order, so either xi� x j or x j � xi. In the former case,

Lemma A.3.3 implies that bi ≤ a j. In the latter case, Lemma A.3.3 implies that b j ≤

ai. �

A.3.2 Validity Windows

Definition A.3.2. A transaction Ti that writes to object x creates a validity window on x

represented by the interval [ai,bi]. If Ti reads version xk before it writes x, ai =min(ck,b j)

where b j is the right endpoint of the validity window on x for the transaction Tj that

writes the version x j that immediately follows xi in the version order�; otherwise ai = bi.

bi = min(ci,b j).

First we prove that the definition of a validity window is a valid interval. This requires

that the history is recoverable.

Lemma A.3.4. If H is a recoverable history and [ai,bi] is the validity window of a

transaction Ti in H, then ai ≤ bi.

Proof. By the assumption that H is recoverable, ck <H ci. There are three sub-cases:

• ck ≤ ci ≤ b j. By the definitions of ai and bi, ai = ck and bi = ci. By the assumption

of the case, ai ≤ bi.

• ck ≤ b j ≤ ci. By the definitions of ai and bi, ai = ck and bi = b j. By the assumption

of the case, ai ≤ bi.

128

• b j ≤ ck ≤ ci. By the definitions of ai and bi, ai = b j and bi = b j. This implies

ai ≤ bi.

�

This allow us to prove that the order of validity windows must match the version

order in a recoverable history with an acyclic DSG.

Lemma A.3.5. If DSG(H) is acyclic, H is a recoverable history, Ti and Tj are trans-

actions that write object x with validity windows [ai,bi] and [a j,b j], and xi� x j, then

bi ≤ a j.

Proof. Let x1 = xi, ...,xn = x j be the sequence of n ≥ 2 versions between xi and x j in

�. For each transaction T` that creates a version in this sequence, if T` reads x, then we

define xk` as the version of x that T` reads. Let Tn+1 be the transaction that writes xn+1,

the next version after xn according to�.

The inductive hypothesis is that b1 ≤ an.

The base case is when n = 2. There are no versions between xi and x j in the sequence

(T1 = Ti, T2 = Tj).

1. T2 reads x before writing x. Since T2 reads x, a2 = min(ck2 ,b3). Lemma A.3.2

implies that xk2 = x1, so ck2 = c1. The definition of b1 = min(c1,b2) and the

definition of b2 = min(c2,b3), so b1 = min(c1,c2,b3). Since this is a minimum

over a superset of the elements in the definition of a2, this implies that b1 ≤ a2.

2. T2 does not read x before writing x. Since T2 does not read x, a2 = b2. This equality

and the definition of b1 = min(c1,b2) imply that b1 ≤ a2.

129

Now we prove the inductive hypothesis using only the fact that b1 ≤ an−1. First, we

show that bn−1 ≤ an. There are two sub-cases:

1. Tn reads x before writing x. Since Tn reads x, an = min(ckn,bn+1). Lemma A.3.2

implies that xkn = xn−1, so ckn = cn−1. The definition of bn−1 = min(cn−1,bn) and

the definition of bn = min(cn,bn+1), so bn−1 = min(cn−1,cn,bn+1). Since this is

a minimum over a superset of the elements in the definition of an, this implies that

bn−1 ≤ an.

2. Tn does not read x before writing x. Since Tn does not read x, an = bn. This equality

and the definition of bn−1 = min(cn−1,bn) imply that bn−1 ≤ an.

Finally, Lemma A.3.4 implies that an−1 ≤ bn−1. The facts that b1 ≤ an−1, an−1 ≤ bn−1,

and bn−1 ≤ an imply that b1 ≤ an. �

Finally, these lemmas give the result that validity windows cannot overlap in a

recoverable history with an acyclic DSG.

Theorem A.3.2. If DSG(H) is acyclic, H is a recoverable history, and Ti and Tj are two

transactions in H that write to x, then the validity windows of Ti and Tj do not overlap.

Proof. Lemma A.3.4 implies that for Ti’s validity window [ai,bi] to not overlap with Tj’s

validity window [a j,b j], it must be the case that either bi ≤ a j or b j ≤ ai. The version

order� is a total order, so either xi� x j or x j� xi. In the former case, Lemma A.3.5

implies that bi ≤ a j. In the latter case, Lemma A.3.5 implies that b j ≤ ai. �

130

APPENDIX B

GRYFF PROOFS

B.1 Preliminaries

We introduce the system model (§B.1.1) and define a shared object (§B.1.2).

B.1.1 Model

The system is comprised of a set P of processes {p1, ..., pm}. A subset R⊆ P of processes

are replicas {r1, ...,rn}. Processes communicate with each other over point-to-point

message channels. We assume reliable message delivery. This abstraction can be

implemented on top of unreliable message channels that guarantee eventual delivery via

retransmission and deduplication.

Processes may fail according to the crash failure model: a failed process ceases

executing instructions and its failure is not detectable by other processes. The system

is asynchronous such that there is no upper bound on the time it takes for a message

to be delivered and there is no bound on relative speeds at which processes execute

instructions.

Processes are state machines that deterministically transition between states when

an event occurs. A process interacts with its environment via a set of objects O. The

process may receive an operation op for an object via an invocation event inv(op). The

process indicates the result of the operation by generating a response event resp(op).

Internal events are the modification of local state at a process, the sending or receipt of a

131

message, and the failure of process. We denote the process associated with an event e by

process(e).

An execution is an infinite sequence of events generated when the processes run

a distributed algorithm. A partial execution is a finite prefix of some execution. A

process is correct in an execution if there are infinite number of events associated with

it. Otherwise, the process is faulty. Given a set of processes P and an execution e, we

denote the set of correct processes in P by alive(e,P), and the set of faulty processes in

P by faulty(e,P).

We borrow histories and related definitions from Herlihy and Wing [67]. A history

h of an execution e is an infinite sequence of operation invocation and response events

in the same order as they appear in e. A history may also be defined with respect to a

partial execution e′; such a history is a finite sequence. A subhistory of a history h is a

subsequence of the events of h.

We denote by ops(h) the set of all operations whose invocations appear in h. An

invocation is pending in a history if no matching response follows the invocation. If h is

a history, complete(h) is the maximal subsequence of h consisting only of invocations

and matching responses. A history h is complete if it contains no pending invocations.

A history h is sequential if (1) the first event of h is an invocation and (2) each

invocation, except possibly the last, is immediately followed by a matching response and

each response is immediately followed by an invocation.

A process subhistory, h|i, of a history h is the subsequence of all events in h which

occurred at pi. An object subhistory h/o is similarly defined for an object o ∈ O. Two

histories h and h′ are equivalent if ∀1≤ i≤ m.h|i = h′|i. A history h is well-formed if

∀1≤ i≤ m.h|i is sequential. We assume all histories are well-formed.

132

A set S of histories is prefix-closed if, whenever h is in S, every prefix of h is also in

S. A single-object history is one in which all events are associated with the same object.

A sequential specification for an object o ∈ O is a prefix-closed set of single-object

sequential histories for o. A sequential history h is legal if ∀o ∈ O.h/o belongs to the

sequential specification for o.

A history induces an irreflexive partial order on ops(h), denoted <h, as op1 <h op2

if and only if resp(op1)< inv(op2) in h.

A quorum system Q ⊆P(R) over R is a set of subsets of R with the quorum

intersection property: for all Q1,Q2 ∈Q, Q1∩Q2 6= /0. We use quorum both to mean a

set of replicas in a particular quorum system and the size of such a set.

B.1.2 Shared Objects

A shared object is a data type that supports the following operations:

• READ(): returns the value of the object

• WRITE(v): updates the value of the object to v

• RMW(f (·)): atomically reads the value v of the object, updates the value to f (v),

and returns v

We use reads(h), writes(h), and rmws(h) to denote the set of all operations that are

reads, writes, and rmws in ops(h) respectively. We use updates(h) =writes(h)∪rmws(h)

to denote the set of operations which update the state of a shared object in ops(h). We

use observes(h) = reads(h)∪ rmws(h) to denote the set of operations which observe the

state of a shared object in ops(h).

133

Definition B.1.1. (Shared Object Specification) A sequential object subhistory h/o be-

longs to the sequential specification of a shared object if for each op ∈ observes(h/o)

such that resp(op) ∈ h/o, resp(op) contains the value of the latest preceding operation

u ∈ updates(h/o) or if there is no preceding update, then resp(op) contains the initial

value of o.

B.2 Proof of Linearizability

More Definitions. A consistency condition is specified by a particular set of schedules.

Linearizability [67] is a strong consistency condition that reduces the complexity of

building correct applications.

Definition B.2.1 (Linearizability). A complete history h satisfies linearizability if there

exists a legal total order τ of ops(h) such that ∀op1,op2 ∈ ops(h).op1 <h op2 =⇒

op1 <τ op2.

Given a particular consistency condition, we are interested in whether a system

enforces the condition for all possible partial executions.

Definition B.2.2. The system provides consistency condition C if, for every partial

execution e of the system, the history h of e can be extended to some history h′ such that

complete(h′) is in C.

Unless otherwise noted, the rest of this section considers a complete history h pro-

duced by the distributed algorithm specified in Algorithms 1, 2, 3, 4, 5, and 6.

The coordinator of a read or write is the invoking process. For rmws, the coordinator

is the replica that notifies the invoking process its rmws has been executed. We assume

that each u ∈ updates(h) writes a unique value.

134

Definition B.2.3. A complete operation op ∈ observes(h) observes an update u ∈

updates(h) if the value returned in resp(op) was written by u.

Definition B.2.4. The carstamp csop assigned to a complete operation op ∈ ops(h) is:

• If op ∈ writes(h), csop is the carstamp determined on Line 15 of Algorithm 1.

• If op ∈ rmws(h), csop is the carstamp determined by Property B.2.4.

• If op∈ reads(h), csop is the carstamp csu assigned to the update u that op observes.

Structure. We abstract the implementation details of the rmw protocol into four suffi-

cient properties. The proofs of the subsequent lemmas and theorem assume that the rmw

protocol provides these properties. At the end of this subsection, we prove that Gryff’s

rmw protocol does exactly this.

Property B.2.1. (Freshness) Every complete rmw∈ rmws(h) is assigned a carstamp such

that ∀Q ∈Q.csrmw > minr∈Q csr where csr is the carstamp at r when rmw is invoked.

Property B.2.2. (Propagation) For every complete rmw ∈ rmws(h) there exists a Q ∈Q

such that ∀r ∈ Q.csr ≥ csrmw where csr is the carstamp at r when rmw completes.

Property B.2.3. (Uniqueness) For all complete rmw1,rmw2 ∈ rmws(h), csrmw1 6= csrmw2 .

Property B.2.4. (Assignment) Every complete rmw ∈ rmws(h) is assigned the carstamp

csrmw = (csu.ts,csu.id,csu.rmwc+1) where u is the update that rmw observes.

The linearizability proof follows a linear structure. We first prove that the carstamps

assigned to each operation respect the real time order of h in Lemmas B.2.1-B.2.5. These

proofs leverage the quorum intersection property. Then, we prove that a partial order

on operations induced by their carstamps respects both the real time order of h and

135

the legality condition for shared objects in Lemmas B.2.6-B.2.10. Finally, we connect

these lemmas in Theorem B.2.1 to show that a total order of this partial order satisfies

linearizability.

Lemma B.2.1. After a replica r ∈ R executes the APPLY function with tuple (v,cs) and

before it executes any other instruction, csr ≥ cs where csr is the carstamp at r.

Proof. By the condition on Line 13 of Algorithm 2. �

Lemma B.2.2. ∀r ∈ R,csr monotonically increases where csr is the carstamp at r.

Proof.

1. csr is only modified via the APPLY function.

PROOF: By the fact that, out of all of the replica pseudocode in Algorithms 2, 3, 4, 5,

and 6, the APPLY function in Algorithm 2 is the only place that csr is assigned a value.

2. Q.E.D.

PROOF: By Lemma B.2.1 and 1.

�

Lemma B.2.3. If an operation op ∈ ops(h) is complete, then after resp(op) there exists

a Q ∈Q such that ∀r ∈ Q.csr ≥ csop where csr is the carstamp at r.

Proof.

1. Let op be an operation in ops(h)

2. CASE: op ∈ writes(h)

2.1. Let Q ∈Q be the quorum from which the coordinator of op receives Write2Reply

messages.

136

PROOF: By the hypothesis that op is complete and the requirement that the coordina-

tor of op waits to receive Write2Reply messages from a quorum before completing

op (Line 17 of Algorithm 1).

2.2. Each r ∈ Q received a Write2 message for op containing (v,csop) where v is the

value written by op.

PROOF: By 2.1 and that a replica sends a Write2Reply message for op to the coordi-

nator of op only if it receives a Write2 message for op containing (v,csop).

2.3. Each r ∈ Q applied (v,csop) before sending a Write2Reply message for op.

PROOF: By 2.1, 2.2, and the requirement that a replica sends a Write2Reply message

after it applies the tuple it received in a Write2 message (Line 10 of Algorithm 2).

2.4. Q.E.D.

By Lemma B.2.1, Lemma B.2.2, and 2.3.

3. CASE: op ∈ reads(h)

3.1. CASE: op completed after Read Phase 1 (Line 7 of Algorithm 1).

3.1.1. Let Q ∈ Q be the quorum from which the coordinator of op receives

Read1Reply messages.

PROOF: By the hypothesis that op is complete and the requirement that the

coordinator of op waits to receive Read1Reply messages from a quorum before

completing op (Line 3 of Algorithm 1).

3.1.2. When each r ∈Q sent their Read1Reply message, csr = csop where csr is the

carstamp at r.

PROOF: By 3.1.1, Definition B.2.4, the case 3.1 assumption, and the fast read

condition (Line 6 of Algorithm 1).

137

3.1.3. Q.E.D.

PROOF: By Lemma B.2.2 and 3.1.2.

3.2. CASE: op completed after Read Phase 2 (Line 10 of Algorithm 1).

3.2.1. Let Q ∈ Q be the quorum from which the coordinator of op receives

Read2Reply messages.

PROOF: By the hypothesis that op is complete, the case 3.2 assumption, and the

requirement that the coordinator of op waits to receive Read2Reply messages

from a quorum before completing op in Read Phase 2 (Line 9 of Algorithm 1).

3.2.2. Each r ∈ Q received a Read2 message for op containing (v,csop) where v is

the value written by op.

PROOF: By 3.2.1 and that a replica sends a Read2Reply message for op to the

coordinator of op only if it receives a Read2 message for op containing (v,csop).

3.2.3. Each r ∈ Q applied (v,csop) before sending a Read2Reply message.

PROOF: By 3.2.1, 3.2.2, and the requirement that a replica sends a Read2Reply

message after it applies the tuple it received in a Read2 message (Line 5 of

Algorithm 2).

3.2.4. Q.E.D.

By Lemma B.2.1, Lemma B.2.2, and 3.2.3.

4. CASE: op ∈ rmws(h)

PROOF: By Property B.2.2.

5. Q.E.D.

PROOF: By 1, 2, 3, and 4.

138

�

Lemma B.2.4. For all operations op∈ ops(h) and updates u∈ updates(h), op <h u =⇒

csop < csu.

Proof.

1. Let Qop ∈Q be a quorum such that ∀r ∈ Qop.csr ≥ csop where csr is the carstamp at

r when u is invoked.

PROOF: By the hypothesis that op completed before u was invoked and Lemma B.2.3.

2. Let u be an update in updates(h).

3. CASE: u ∈ writes(h)

3.1. Let Qu ∈Q be the quorum from which the coordinator of u receives Write1Reply

messages and csmax be the largest carstamp contained in these messages.

PROOF: By the hypothesis that u is complete and the requirement that the coordinator

of u waits to receive Write1Reply messages from a quorum before completing u

(Line 13 of Algorithm 1).

3.2. Let r ∈ Qop∩Qu be a replica.

PROOF: By 1, 3.1, and the Quorum Intersection property.

3.3. op completed before r received a Write1 message for u.

PROOF: By the hypothesis that op completed before u was invoked and 3.2.

3.4. The Write1Reply message that r sent for u contains a carstamp csr ≥ csop.

PROOF: By 1 and 3.3.

3.5. The coordinator for u assigns u the carstamp csu = (csmax.ts+ 1, id,0) where

csmax ≥ csr and id is the id of the coordinator for u.

139

PROOF: By 3.1 and the assignment of a carstamp to u (Lines 14 and 15 of Algo-

rithm 1).

3.6. Q.E.D.

PROOF: By 3.4, and 3.5.

4. CASE: u ∈ rmws(h)

PROOF: By 1 and Property B.2.1.

5. Q.E.D.

PROOF: By 2, 3, and 4.

�

Lemma B.2.5. For all operations op ∈ ops(h) and reads ρ ∈ reads(h), op <h ρ =⇒

csop ≤ csρ .

Proof.

1. Let u be the update that ρ observes.

PROOF: By the hypothesis that ρ is complete and Definition B.2.3.

2. CASE: u = op

2.1. csρ = csu = csop

PROOF: By the assumption of case 2, 1, and Definition B.2.4.

2.2. Q.E.D.

PROOF: By 2.1.

3. CASE: u 6= op

140

3.1. Let Qop ∈Q be a quorum such that ∀r ∈Qop.csr ≥ csop where csr is the carstamp

at r when ρ is invoked.

PROOF: By the hypothesis that op completed before ρ was invoked and

Lemma B.2.3.

3.2. Let Qρ ∈Q be the quorum from which the coordinator of ρ receives Read1Reply

messages and csmax be the largest carstamp contained in these messages.

PROOF: By the hypothesis that ρ is complete and the requirement that the coordina-

tor of ρ waits to receive Read1Reply messages from a quorum before completing ρ

(Line 3 of Algorithm 1).

3.3. Let r ∈ Qop∩Qρ be a replica.

PROOF: By 3.1, 3.2, and the Quorum Intersection property.

3.4. op completed before r received a Read1 message for ρ .

PROOF: By the hypothesis that op completed before u was invoked and 3.3.

3.5. The Read1Reply message that r sent for ρ contains a carstamp csr ≥ csop.

PROOF: By 3.1 and 3.4.

3.6. The coordinator for ρ chooses u to be the update corresponding to csmax.

PROOF: By 3.2 and the selection of an update to observe for ρ (Lines 4 and 5 of

Algorithm 1).

3.7. Q.E.D.

PROOF: By 3.5 and 3.6.

4. Q.E.D.

PROOF: By 1, 2, and 3.

�

141

We define the relation <ψ on ops(h) as follows:

• ∀op1,op2 ∈ ops(h).csop1 < csop2 =⇒ op1 <ψ op2.

• ∀ρ ∈ reads(h) such that ρ observes an update u ∈ updates(h), u <ψ r. ∀u′ ∈

updates(h) such that u <ψ u′, r <ψ u′.

• ∀ρ1,ρ2 ∈ reads(h) such that ρ1 and ρ2 observe the same update u, inv(ρ1) <

inv(ρ2) =⇒ ρ1 <ψ ρ2.

• ∀op1,op2,op3 ∈ ops(h).op1 <ψ op2∧op2 <ψ op3 =⇒ op1 <ψ op3.

Less formally, <ψ orders operations by their carstamps and inserts reads in between the

updates that the reads observe and subsequent updates.

Lemma B.2.6. For all u1,u2 ∈ updates(h), u1 <h u2 =⇒ u1 <ψ u2.

Proof.

1. csu1 < csu2 .

PROOF: By the hypothesis that u1 <h u2 and Lemma B.2.4.

2. Q.E.D.

PROOF: By 1 and the definition of <ψ .

�

Lemma B.2.7. For all u ∈ updates(h) and ρ ∈ reads(h), u <h ρ =⇒ u <ψ ρ .

Proof.

1. csu ≤ csρ .

142

PROOF: By the hypothesis that u <h ρ and Lemma B.2.5.

2. CASE: csu < csρ .

PROOF: By the definition of <ψ .

3. CASE: csu = csρ .

3.1. ρ observes u

PROOF: By the assumption of case 3 and Definition B.2.3.

3.2. Q.E.D.

PROOF: By 3.1 and the definition of <ψ .

4. Q.E.D.

PROOF: By 1, 2, and 3.

�

Lemma B.2.8. For all ρ ∈ reads(h) and u ∈ updates(h), ρ <h u =⇒ ρ <ψ u.

Proof.

1. csρ < csu.

PROOF: By the hypothesis that ρ <h u and Lemma B.2.4.

2. Q.E.D.

PROOF: By 1 and the definition of <ψ .

�

Lemma B.2.9. For all ρ1,ρ2 ∈ reads(h), ρ1 <h ρ2 =⇒ ρ1 <ψ ρ2.

143

Proof.

1. csρ1 ≤ csρ2 .

PROOF: By the hypothesis that ρ1 <h ρ2 and Lemma B.2.5.

2. CASE: csρ1 < csρ2

PROOF: By the definition of <ψ .

3. CASE: csρ1 = csρ2

3.1. resp(ρ1)< inv(ρ2)

PROOF: By the hypothesis that ρ1 <h ρ2.

3.2. inv(ρ1)< inv(ρ2)

PROOF: By 3.1.

3.3. Q.E.D.

PROOF: By 3.2 and the definition of <ψ .

4. Q.E.D.

PROOF: By 1, 2, and 3.

�

Lemma B.2.10. If τ is a topological sort of <ψ , τ is a legal total order of ops(h).

Proof.

1. Let op ∈ observes(h) be an operation that observes an update u ∈ updates(h).

PROOF: By the hypothesis that op is completed.

144

2. CASE: op ∈ reads(h).

2.1. There is no u′ such that u <ψ u′ <ψ op.

PROOF: By the assumption of case 2 and the definition of <ψ .

2.2. There is no u′ such that u <τ u′ <τ op.

PROOF: By the hypothesis thatτ is a topological sort of <ψ and 2.1.

2.3. Q.E.D.

PROOF: By 2.2, the definition of legal, and Definition B.1.1.

3. CASE: op ∈ rmws(h).

3.1. csop = (csu.ts,csu.id,csu.rmwc+1).

PROOF: By Property B.2.4.

3.2. SUFFICES ASSUME: ∃u′ ∈ updates(h) with carstamp csu′ such that u <ψ u′ <ψ

op.

PROVE: False.

3.2.1. csu < csu′ < csop.

PROOF: By assumption 3.2 and the definition of <ψ .

3.2.2. CASE: csu.ts < csu′.ts

3.2.2.1. csop.ts < csu′.ts.

PROOF: By the assumption of case 3.2.2 and 3.1.

3.2.2.2. Q.E.D.

PROOF: By 3.2.2.1 and 3.2.1.

3.2.3. CASE: csu.ts = csu′.ts and csu.id < csu′.id.

3.2.3.1. csop.ts = csu′.ts and csop.id < csu′.id.

145

PROOF: By the assumption of case 3.2.3 and 3.1.

3.2.3.2. Q.E.D.

PROOF: By 3.2.3.1 and 3.2.1.

3.2.4. CASE: csu.ts = csu′.ts, csu.id = csu′.id, and csu.rmwc < csu′.rmwc.

3.2.4.1. csop.ts = csu′.ts and csop.id = csu′.id.

PROOF: By the assumption of case 3.2.4 and 3.1.

3.2.4.2. csop.rmwc = csu.rmwc+1≤ csu′ .rmwc.

PROOF: By the assumption of case 3.2.4 and 3.1 and that the rmwc component

of a carstamp is a natural number.

3.2.4.3. CASE: u′ ∈ writes(h)

3.2.4.3.1. csu′.rmwc = 0

PROOF: By the assignment of a carstamp to u′ (Lines 14 and 15 of Algo-

rithm 1).

3.2.4.3.2. Q.E.D.

PROOF: By 3.2.4.3.1 and 3.2.4.2.

3.2.4.4. CASE: u′ ∈ rmws(h)

3.2.4.4.1. csop.rmwc 6= csu′.rmwc.

PROOF: By 3.2.4.1 and Property B.2.3.

3.2.4.4.2. csop.rmwc < csu′.rmwc.

PROOF: By 3.2.4.4.1 and 3.2.4.2.

3.2.4.4.3. Q.E.D.

PROOF: By 3.2.4.1, 3.2.4.4.2, and 3.2.1.

146

3.2.4.5. Q.E.D.

PROOF: By 3.2.4.3 and 3.2.4.4.

3.3. Q.E.D.

PROOF: By 3.2, the definition of legal, and Definition B.1.1.

4. Q.E.D.

PROOF: By 1, 2, and 3.

�

Theorem B.2.1. The system implements a shared object with linearizability.

Proof. Consider a partial execution e with history h. Let h′ be h with a response for each

pending operation in updates(h) appended to h. Let h′′ = complete(h′).

1. Let op1 and op2 be operations in ops(h′′). We prove that op1 <h op2 =⇒ op1 <ψ op2.

2. CASE: op1,op2 ∈ updates(h′′).

PROOF: By Lemma B.2.6.

3. CASE: op1 ∈ updates(h′′) and op2 ∈ reads(h′′).

PROOF: By Lemma B.2.7.

4. CASE: op1 ∈ reads(h′′) and op2 ∈ updates(h′′).

PROOF: By Lemma B.2.8.

5. CASE: op1,op2 ∈ reads(h′′).

PROOF: By Lemma B.2.9.

6. Let τ be a topological sort of <ψ on ops(h′′).

7. τ is a legal total order on ops(complete(h′)).

147

PROOF: By 6 and Lemma B.2.10.

8. Q.E.D.

PROOF: By 1, 2, 3, 4, 5, and 7.

�

RMW Properties. In order to prove that Gryff’s rmw protocol provides the aforemen-

tioned properties, we rely on the correctness of EPaxos [96]. Because replicas act as

coordinators for a rmw invoked by other processes, the failure of a replica during a rmw

before the invoking process learns of the result may cause the invoking process to submit

its rmw to another replica. Replicas must be able to recognize duplicates, only execute

the rmw once, and store the result until the invoking process generates a response event.

This issue affects all protocols that rely on a subset of processes to coordinate the

execution of operations on behalf of other processes. In Gryff, if a process learns that a

pending rmw has been executed by at least one replica, it must ensure that a quorum have

executed the rmw before completing it. A replica can ensure this by sending Commit

messages with the appropriate attributes to all replicas. Replicas that receive Commit

messages for a rmw they have already executed can immediately reply with an Executed

message. For brevity, we omit the duplicate execution check for a replica receiving a

rmw in Algorithm 3 and assume that if a replica has already executed a rmw, it will skip

to Line 20 of Algorithm 3.

We assume the use of the majority quorum system Qmaj such that ∀Q ∈Qmaj. |Q|=

bn
2c+1. This assumption implies each quorum is a subset of a fast quorum and equivalent

to a slow quorum in canonical EPaxos.

Definition B.2.5. A command γ is committed at a replica r ∈ R if the cmds array at r

148

contains an instance with γ as the command and committed as the status.

Lemma B.2.11. The system provides Property B.2.1.

Proof. Let rmw be an operation in rmws(h) and Q ∈Q be a quorum.

1. rmw committed with attributes that are the union of the attributes computed by each

r ∈ S where S⊇ Q′ for some Q′ ∈Q.

1.1. rmw commits with basic EPaxos or with optimized EPaxos.

1.2. CASE: rmw commits with basic EPaxos.

PROOF: By Step 1.1 of the proof of Theorem 4 in the EPaxos technical report, which

states that rmw is committed with the union of attributes from bn
2c+1 replicas, and

the assumption that the majority quorum system Qmaj is used.

1.3. CASE: rmw commits with optimized EPaxos.

There are two sub-cases:

1.3.1. CASE: rmw commits without running the recovery procedure.

PROOF: By 1.2 and that a fast quorum in optimized EPaxos is larger than a

majority quorum because this case reduces to 1.2 with the fast quorum size

reduced from n−1.

1.3.2. CASE: rmw commits through the optimized recovery procedure.

1.3.2.1. CASE: rmw commits before step 7 of the optimized recovery procedure,

or after exiting one of the Else branches in step 7.

PROOF: By Step 2.1 of Theorem 7 of the EPaxos technical report, which

states that rmw must have been pre-accepted by a majority of replicas, and the

assumption that the majority quorum system Qmaj is used.

1.3.2.2. CASE: rmw committed after exiting the optimized recovery procedure

on the If branch in step 7.

149

PROOF: By Step 2.2.2 of Theorem 7 of the EPaxos technical report, which

states that rmw must have been pre-accepted by a majority of replicas, and the

assumption that the majority quorum system Qmaj is used.

1.3.2.3. Q.E.D.

PROOF: By 1.3.2.1 and 1.3.2.2.

1.3.3. Q.E.D.

PROOF: By 1.3.1 and 1.3.2.

1.4. Q.E.D.

PROOF: By 1.1, 1.2, and 1.3.

2. The base attribute of rmw is chosen such that base.cs ≥ maxr∈S csr ≥ maxr∈Q′ csr

where csr is the carstamp at r when rmw is invoked.

2.1. rmw committed after the PreAccept Phase or the Accept Phase. Note that the basic

recovery procedure and optimized recovery procedure always exit by running the

PreAccept, Accept, or Commit phase. Each of these is reducible to committing

after the PreAccept phase or Accept phase.

2.2. CASE: rmw committed after the PreAccept Phase (Line 12 of Algorithm 3).

2.2.1. When each r ∈ S sent their PreAcceptOK message, csr = base.cs where csr

is the carstamp at r.

PROOF: By 1, the case 2.2 assumption, and the fast path condition (Line 10 of

Algorithm 3).

2.2.2. Q.E.D.

PROOF: By Lemma B.2.2 and 2.2.1.

2.3. CASE: rmw committed after the Accept Phase.

150

2.3.1. CASE: The Accept phase is run during normal processing.

PROOF: By Lemma B.2.2 and the selection of base in the Accept Phase (Line 15

of Algorithm 3).

2.3.2. CASE: The Accept phase is run during recovery (either basic or optimized).

PROOF: By the fact that the recovery procedures exit directly to the Accept phase

only if rmw has previously been pre-accepted by a majority.

2.4. Q.E.D.

PROOF: By 2.1, 2.2, and 2.3.

3. base.cs≥minr∈Q csr.

PROOF: By 2 and the Quorum Intersection property (maxr∈Q′ cs ≥ minr∈Q∩Q′ csr ≥

mins∈Q′ csr).

4. csrmw > base.cs.

PROOF: By the generation of the carstamp of rmw (Line 18 of Algorithm 4).

5. Q.E.D.

PROOF: By 3 and 4.

�

Lemma B.2.12. The system provides Property B.2.2.

Proof. Let rmw be an operation in rmws(h).

1. After rmw completes, ∃Q ∈Q such that each r ∈ Q has executed rmw.

PROOF: By the hypothesis that rmw is complete and the requirement that the coordi-

nator only completes rmw when it has received Executed messages from a quorum

(Line 21 of Algorithm 3).

151

2. Each r ∈ Q applied csrmw.

PROOF: By 1 and that a replica only sends an Executed message for rmw if it has

applied the carstamp and value of rmw (Line 20 of Algorithm 3).

3. Q.E.D.

PROOF: By 2, Lemma B.2.1, and Lemma B.2.2.

�

Lemma B.2.13. The system provides Property B.2.3.

Proof. Let rmwa and rmwb be operations in rmws(h).

1. Either rmwa is executed before rmwb or vice versa.

PROOF: By Theorem 4 and Theorem 7 from the EPaxos technical report, that the logic

for determining the deps and seq attributes of a command remains unchanged from

EPaxos, and that the logic for determining the execution order of commands remains

unchanged from EPaxos.

2. CASE: rmwa is executed before rmwb.

2.1. csrmwa < csrmwb .

2.1.1. For any two interfering commands rmwa and rmwb, there is a sequence of

zero of more interfering commands that are executed between rmwa and

rmwb. Let this sequence be rmwa = rmw1, ...,rmwk = rmwb.

PROOF: By Theorem 4 and Theorem 7 from the EPaxos technical report.

2.1.2. Proof by induction on the sequence rmw1, ...,rmwk.

2.1.2.1. Base case: k = 2 (rmw2 immediately follows rmw1).

2.1.2.1.1. prev.cs = csrmw1 .

152

PROOF: By the assumption of the base case 2.1.2.1 and that prev is only

modified when a rmw is executed (Line 19 of Algorithm 4).

2.1.2.1.2. csrmw2 > prev.cs.

PROOF: By the generation of csrmw2 to be larger than prev at the time that

rmw2 is executed (Lines 15, 16, and 18 of Algorithm 4).

2.1.2.1.3. Q.E.D.

PROOF: By 2.1.2.1.1 and 2.1.2.1.2.

2.1.2.2. ASSUME: csrmw1 < csrmwi .

PROVE: csrmw1 < csrmwi+1 .

2.1.2.2.1. prev.cs = csrmwi .

PROOF: By the assumption that rmwi was the last rmw to be executed and

that prev is only modified when a rmw is executed (Line 19 of Algorithm 4).

2.1.2.2.2. csrmwi+1 > prev.cs

PROOF: By the generation of csrmwi+1 to be larger than prev at the time that

rmwi+1 is executed (Lines 15, 16, and 18 of Algorithm 4).

2.1.2.2.3. Q.E.D.

PROOF: By 2.1.2.2.1 and 2.1.2.2.2.

2.1.3. Q.E.D.

PROOF: By 2.1.1 and 2.1.2.

2.2. Q.E.D.

PROOF: By 2.1.

3. CASE: rmw2 is executed before rmw1.

153

PROOF: By symmetry with case 2.

4. Q.E.D.

PROOF: By 1, 2, and 3.

�

Lemma B.2.14. The system provides Property B.2.4.

Proof. Let rmw be an operation in rmws(h).

1. Let u ∈ updates(h) be the update that rmw observes.

PROOF: By the assumption that rmw is complete.

2. Let csu be the carstamp chosen on Lines 14 and 16 of Algorithm 4.

PROOF: By 1 and Definition B.2.3.

3. Q.E.D.

PROOF: By 2, Definition B.2.4, and the generation of csrmw (Line 18 of Algorithm 4).

�

Lemmas B.2.11, B.2.12, B.2.13, and B.2.14 imply that Gryff’s rmw protocol satisfies

the assumptions needed to prove Theorem B.2.1.

B.3 Proof of Wait-Freedom

More Definitions. Wait-freedom is a strong liveness property that guarantees a correct

process can always make progress regardless of concurrent operations invoked by other

processes.

154

Definition B.3.1. (Wait-Freedom) A subset S⊆ ops(h) of operations are wait-free in a

history h with execution e if ∀op ∈ S.process(inv(op)) ∈ alive(e,P) =⇒ resp(op) ∈ h.

Unless otherwise noted, the rest of this section considers an execution e with history

h produced by the distributed algorithm specified in Algorithms 1, 2, 3, 4, 5, and 6.

We assume that there are n = 2 f +1 replicas and that up to f replicas may fail and

any number of other processes may fail in e. Thus, we assume the use of the majority

quorum system Qmaj such that ∀Q ∈Qmaj. |Q|= f +1.

Structure. We first prove that Gryff’s reads and writes are wait-free in Theorems B.3.1

and B.3.2. To prove wait-freedom for rmws, we discuss why the synchrony assumption

must be strengthened from asynchrony to partial synchrony. With this stronger assump-

tion, we restate the liveness property of EPaxos and use this to prove that Gryff’s rmws

are wait-free in Theorem B.3.4.

Theorem B.3.1. The system provides read wait-freedom.

Proof. 1. Let op be an operation in reads(h).

2. The coordinator of op is correct.

PROOF: By the definition of a coordinator of a read and by the hypothesis that

process(inv(op)) ∈ alive(e,P).

3. |alive(e,R)| ≥ f +1

PROOF: By the assumption that at most f out of 2 f + 1 replicas can fail in any

execution.

4. The coordinator sends a Read1 message for op to every replica r ∈ R.

PROOF: By 2 and Line 2 of Algorithm 1.

155

5. Each r ∈ alive(e,R) delivers a Read1 message for op.

PROOF: By 4, the assumption that r ∈ alive(e,R), and the assumption that the network

guarantees eventual reliable message delivery.

6. Each r ∈ alive(e,R) sends a Read1Reply message for op to the coordinator.

PROOF: By 5, the assumption that r ∈ alive(e,R), and that the message handler for

a Read1 message contains no blocking instructions or conditional branches (Algo-

rithm 2).

7. The coordinator delivers Read1Reply messages from a quorum Q ∈Q.

PROOF: By 2, 3, 6, the assumption that the network guarantees eventual reliable

message delivery, and the assumption that the majority quorum system Qmaj is used.

8. CASE: ∀r ∈ Q.csr = csmax

PROOF: By 7, the assumption of the case and that the coordinator generates resp(op)

when this assumption holds (Lines 6 and 7 of Algorithm 1).

9. CASE: ∃r ∈ Q : csr 6= csmax

9.1. The coordinator sends a Read2 message for op to every replica r ∈ R.

PROOF: By 2, the assumption of the case, and Line 8 of Algorithm 2.

9.2. Each r ∈ alive(e,R) delivers a Read2 message for op.

PROOF: By 9.1, the assumption that r ∈ alive(e,R), and the assumption that the

network guarantees eventual reliable message delivery.

9.3. Each r ∈ alive(e,R) sends a Read2Reply message for op to the coordinator.

PROOF: By 9.2, the assumption that r ∈ alive(e,R), and that the message handler

156

for a Read2 message contains no blocking instructions or conditional branches on

sending a reply (Algorithm 2).

9.4. The coordinator delivers Read2Reply messages from a quorum Q ∈Q.

PROOF: By 2, 3, 9.3, the assumption that the network guarantees eventual reliable

message delivery, and the assumption that the majority quorum system Qmaj is used.

9.5. Q.E.D.

PROOF: By 7, 9.4, and the fact that the coordinator generates a resp(op) after

receiving a quorum of Read2Reply messages (Line 10 of Algorithm 1).

10. Q.E.D.

PROOF: By 7, 8, and 9.

�

Theorem B.3.2. The system provides write wait-freedom.

Proof. 1. Let op be an operation in writes(h).

2. The coordinator of op is correct.

PROOF: By the definition of a coordinator of a write and by the hypothesis that

process(inv(op)) ∈ alive(e,P).

3. |alive(e,R)| ≥ f +1

PROOF: By the assumption that at most f out of 2 f + 1 replicas can fail in any

execution.

4. The coordinator sends a Write1 message for op to every replica r ∈ R.

PROOF: By 2 and Line 12 of Algorithm 2.

5. Each r ∈ alive(e,R) delivers a Write1 message for op.

157

PROOF: By 4, the assumption that r ∈ alive(e,R), and the assumption that the network

guarantees eventual reliable message delivery.

6. Each r ∈ alive(e,R) sends a Write1Reply message for op to the coordinator.

PROOF: By 5, the assumption that r ∈ alive(e,R), and that the message handler for

a Write1 message contains no blocking instructions or conditional branches (Algo-

rithm 2).

7. The coordinator delivers Write1Reply messages from a quorum Q ∈Q.

PROOF: By 2, 3, 6, the assumption that the network guarantees eventual reliable

message delivery, and the assumption that the majority quorum system Qmaj is used.

8. The coordinator sends a Write2 message for op to every replica r ∈ R.

PROOF: By 2, 7, and Line 16 of Algorithm 2.

9. Each r ∈ alive(e,R) delivers a Write2 message for op.

PROOF: By 8, the assumption that r ∈ alive(e,R), and the assumption that the network

guarantees eventual reliable message delivery.

10. Each r ∈ alive(e,R) sends a Write2Reply message for op to the coordinator.

PROOF: By 9, the assumption that r ∈ alive(e,R), and that the message handler for a

Write2 message contains no blocking instructions or conditional branches on sending

a reply (Algorithm 2).

11. The coordinator delivers Write2Reply messages from a quorum Q ∈Q.

PROOF: By 2, 3, 10, the assumption that the network guarantees eventual reliable

message delivery, and the assumption that the majority quorum system Qmaj is used.

158

12. Q.E.D.

PROOF: By 11 and the fact that the coordinator generates a resp(op) after receiving a

quorum of Write2Reply messages (Algorithm 1).

�

Note that Theorems B.3.1 and B.3.2 rely on our weak network assumption that

messages are eventually delivered and do not require any stronger assumptions about

the synchrony of the system. Eventual message delivery only precludes infinitely long

partitions in the network, which is unlikely to occur in any practical system.

RMW Wait-Freedom. The FLP impossibility result implies that no consensus protocol

can provide both safety and liveness in asynchronous systems where processes can

fail [52]. Because rmw can solve consensus [66], this also implies that no rmw protocol

can provide both.

The rest of this section shows that Gryff’s rmw protocol provides wait-freedom if

we relax the system model from asynchrony to partial synchrony [46]. In the partial

synchrony model, there are two bounds ∆ and Φ such that after some unknown point

in time during an execution of the system, all messages are delivered within ∆ time of

when they are sent and all correct processes take at most Φ time between the execution

of instructions.

As in the proof of linearizability, we rely on the correctness of EPaxos in the partial

synchrony model [96].

Theorem B.3.3. EPaxos guarantees with high probability that every proposed command

will eventually be committed by every r ∈ alive(e,R) as long as messages eventually

reach their destination before their recipient times out.

159

Lemma B.3.1. With high probability, every r ∈ alive(e,R) executes every rmw that

commits.

Proof. Let r be a correct replica, rmw be an operation in rmws(h), and D be the transitive

closure of the set of dependencies for rmw determined by the commit protocol.

1. With high probability, every rmw′ ∈ D eventually commits at r.

PROOF: By Theorem B.3.3.

2. With high probability, every rmw′ ∈D is executed at r. Proof by generalized induction

on D.

2.1. Base case: rmw0 ∈ D is the first rmw committed in e.

PROOF: By the assumption that r is correct, the assumption of the base case 2.1, and

that the EPaxos execution algorithm contains no blocking instructions for commands

with no dependencies.

2.2. ASSUME: For any rmw′′ ∈ D such that rmw′′ is before rmw′ in the EPaxos

execution order, rmw′′ is executed at r.

PROVE: rmw′ is executed at r

PROOF: By the assumption that r is correct, the induction hypothesis 2.2, and that

the EPaxos execution algorithm only blocks the execution of a command until all of

its dependencies have executed.

2.3. Q.E.D.

By 1, 2.1, and 2.2.

3. With high probability, after all rmw′ ∈ D have executed, rmw will be executed.

3.1. CASE: rmw is in its own strongly connected component in the dependency graph.

PROOF: By the execution order specified by the EPaxos execution algorithm, which

160

requires every dependency of a command to be executed before the command is

executed.

3.2. CASE: rmw is in a cycle in the dependency graph.

PROOF: By the execution order specified by the EPaxos execution algorithm, which

requires that cycles be broken in order of seq, and the fact that rmw may be executed

before some of its dependencies within the same cycle.

3.3. Q.E.D.

PROOF: By 3.1 and 3.2.

4. Q.E.D.

PROOF: By 2 and 3.

�

Theorem B.3.4. If there is a point in time after which the system is synchronous with

bounds ∆ and Φ, the system provides rmw wait-freedom with high probability.

Proof. Let op be an operation in rmws(h).

1. |alive(e,R)| ≥ f +1

PROOF: By the assumption that at most f out of 2 f + 1 replicas can fail in any

execution.

2. With high probability, every r ∈ alive(e,R) commits an instance containing op.

PROOF: By the hypothesis that there is a finite time after which all messages are

delivered within ∆ time of when they are sent and Theorem B.3.3.

3. With high probability, every r ∈ alive(e,R) executes op.

PROOF: By 2 and Lemma B.3.1.

161

4. With high probability, every r ∈ alive(e,R) sends an Executed message for op to the

coordinator.

By 3 and that there are no blocking instructions or conditional branches on sending an

Executed message in the EXECUTE function.

5. With high probability, the coordinator delivers an Executed message for op from a

quorum Q ∈Q.

PROOF: By 1, 4, the assumption that the network guarantees eventual reliable message

delivery, and the assumption that the majority quorum system Qmaj is used.

6. Q.E.D.

PROOF: By 5 and the fact that the coordinator generates a resp(op) after receiving a

quorum of Executed messages.

�

B.4 Read Proxy Correctness

We briefly argue that the optimization does not change the correctness proofs.

The optimization changes the definition of the coordinator of a read from the invoking

process to the replica that notifies the invoking process of the result of the read. Neither the

definition change nor the added logic for the optimization affect the proof of linearizability

because the value that a read observes is still chosen to be the one associated with the

maximum carstamp on a quorum. Reads can be executed multiple times without affecting

the state of the shared object, so it is safe for a client to timeout after a finite time t and

forward its read to another replica if it suspects the initial coordinator failed.

162

The proof of wait-freedom for reads remains the same, but needs a small clarification

in the proof of Step 2. Since at most f replicas can fail, a client will eventually forward

its read to a correct replica that will complete the read coordinator protocol. This will

happen after at most f · t time, which is finite.

163

GLOSSARY

availability The fraction of time during which an application or service successfully

processes requests over a given time period. 1, 9

back-end tier A set of stateful services that provide low-level functionality such as

shared storage and coordination. 8, 166

concurrency control The activity of coordinating the actions of processes that operate in

parallel, access shared data, and therefore potentially interfere with each other. [17]

4

consensus A strong synchronization primitive that chooses a single output value from

the input values of an arbitrary number of processes. 2, 165

consistency model A contract between a service and its clients that specifies the values

that a given set of operations is allowed to return. 11, 165, 166

durability The average annual expected loss of data that was successfully written. 1, 9

end-user A person that uses an Internet application. 8, 164, 166

front-end tier A set of stateless servers that execute application logic to process end-user

requests. 8, 166

generality The extent to which an application programming interface provides applica-

tion specific functionality. 3

geographic replication A technique for implementing a fault-tolerant service that cre-

ates multiple copies of the service and distributes them across geographically

distinct locations. If a copy becomes inaccessible because of failures, the service

as a whole remains accessible via the other copies. 1, 9

164

linearizability A strong consistency model that ensures (a) operations invoked by pro-

cesses accessing the object appear to execute in some total order and (b) the total

order is consistent with the real-time order of operations. 12

read-modify-write A consensus primitive that reads the current value of a piece of

shared data, applies some modification function to the value, and writes back the

modified value. 5

regular sequential consistency A strong consistency model that ensures (a) operations

invoked by processes accessing the object appear to execute in some total order

and (b) the total order is consistent with the real-time order of operations. 6

serializability A strong consistency model for transactional database systems that en-

sures that the values observed by the operations in each transaction are consistent

with those that would have been observed in a sequential execution. 11

shared data Application state that is concurrently accessed by multiple users. 2, 164,

165

strong consistency A consistency model in which the values that a service is allowed

to return to its clients for a given set of operations are those that could have been

returned if the operations were executed in a total order. 2, 11, 165, 166

strong guarantees A property of a service that hides the complexities of concurrency

from developers by restricting the observable behavior of the service to that of a

sequential system. 2, 11

strong synchronization primitive A primitive that enables a process to access shared

data as if it is the only process accessing the data. 2, 12, 164, 166

throughput The number of requests processed per unit time. 10

165

transaction A strong synchronization primitive that is a group of multiple data opera-

tions that atomically succeed or fail. 2, 12

two-tier architecture A structure for building large-scale Internet applications that

consists of two tiers, a front-end tier and a back-end tier. 8

user-perceived latency The amount of time from when an end-user initiates a request

to when the end-user observes that the request completes. 10

weak consistency A consistency model that is not a strong consistency model. 3

166

BIBLIOGRAPHY

[1] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Imple-

mentations for Distributed Transactions. PhD thesis, Massachusetts Institute of

Technology, 1999.

[2] Marcos K Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos

Karamanolis. Sinfonia: A New Paradigm for Building Scalable Distributed

Systems. In ACM Symposium on Operating System Principles (SOSP), 2007.

[3] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and Kaushik

Veeraraghavan. Challenges to Adopting Stronger Consistency at Scale. In ACM

SIGOPS Workshop on Hot Topics in Operating Systems (HotOS), 2015.

[4] Akamai Performance Report. https://

www.akamai.com/newsroom/press-release/

akamai-releases-spring-2017-state-of-online-retail-performance-report,

2023.

[5] Peter A Alsberg and John D Day. A Principle for Resilient Sharing of Distributed

Resources. In International Conference on Software Engineering, 1976.

[6] Amazon Latency Impact. https://www.gigaspaces.com/blog/

amazon-found-every-100ms-of-latency-cost-them-1-in-sales/,

2023.

[7] Amazon Web Services. https://aws.amazon.com/, 2021.

[8] Andrew W. Appel. Ssa is functional programming. ACM SIGPLAN NOTICES,

1998.

167

https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://aws.amazon.com/

[9] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giuliano Losa, and Binoy

Ravindran. Speeding up Consensus by Chasing Fast Decisions. In IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), 2017.

[10] Hagit Attiya and Jennifer L Welch. Sequential Consistency versus Linearizability.

ACM Transactions on Computer Systems (TOCS), 1994.

[11] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing Memory Robustly in

Message-Passing Systems. Journal of the ACM (JACM), 42(1):124–142, 1995.

[12] AWS S3 Durability. https://docs.aws.amazon.com/AmazonS3/

latest/userguide/DataDurability.html, 2023.

[13] Azure SQL Database. https://www.windowsazure.com/en-us/

services/sql-database/, 2022.

[14] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James

Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.

Megastore: Providing Scalable, Highly Available Storage for Interactive Services.

In Conference on Innovative Data Systems Research (CIDR), 2011.

[15] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi, Ahmed Jafri,

Xiao Shi, Santosh Ghosh, Hazem Hassan, Aaryaman Sagar, Rhed Shi, Jingming

Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang, Ahmed Yossef, Francois

Richard, and Yee Jiun Song. Virtual Consensus in Delos. In USENIX Symposium

on Operating Systems Design and Implementation (OSDI), 2020.

[16] BerkeleyDB. http://www.oracle.com/technetwork/database/

database-technologies/berkeleydb/overview/index.html,

2022.

168

https://docs.aws.amazon.com/AmazonS3/latest/userguide/DataDurability.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/DataDurability.html
https://www.windowsazure.com/en-us/services/sql-database/
https://www.windowsazure.com/en-us/services/sql-database/
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

[17] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency

Control and Recovery in Database Systems, volume 370. Addison-Wesley Reading,

1987.

[18] Alysson Bessani. Active Quorum Systems: Specification and Correctness Proof.

Technical report, Technical Report DI–FCUL–TR–2010–02, University of Lisbon,

2010.

[19] Alysson Bessani, Paulo Sousa, and Miguel Correia. Active Quorum Systems. In

Workshop on Hot Topics in System Dependability (HotDep), 2010.

[20] Ken Birman, Gregory Chockler, and Robbert van Renesse. Toward a Cloud

Computing Research Agenda. ACM SIGACT News, 40(2):68–80, 2009.

[21] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,

Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark

Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkataramani.

TAO: Facebook’s Distributed Data Store for the Social Graph. In USENIX Annual

Technical Conference (ATC), 2013.

[22] Matthew Burke, Audrey Cheng, and Wyatt Lloyd. Gryff: Unifying Consensus

and Shared Registers. In USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2020.

[23] Matthew Burke, Florian Suri-Payer, Jeffrey Helt, Lorenzo Alvisi, and Natacha

Crooks. Morty: Scaling Concurrency Control with Re-Execution. In ACM SIGOPS

European Conference on Computer Systems (EuroSys), 2023.

[24] Mike Burrows. The Chubby lock service for loosely-coupled distributed systems.

In USENIX Symposium on Operating Systems Design and Implementation (OSDI),

2006.

169

[25] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam

McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev

Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Be-

dekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muham-

mad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli,

Marvin McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas.

Windows Azure Storage: A Highly Available Cloud Storage Service with Strong

Consistency. In ACM Symposium on Operating System Principles (SOSP), 2011.

[26] Stuart K. Card, George G. Robertson, and Jock D. Mackinlay. The information

visualizer, an information workspace. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, CHI ’91, page 181186, New York,

NY, USA, 1991. Association for Computing Machinery. ISBN 0897913833.

doi: 10.1145/108844.108874. URL https://doi.org/10.1145/108844.

108874.

[27] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gru-

ber. Bigtable: A Distributed Storage System for Structured Data. In USENIX

Symposium on Operating Systems Design and Implementation (OSDI), 2006.

[28] Yu Lin Chen, Shuai Mu, Jinyang Li, Cheng Huang, Jin Li, Aaron Ogus, and

Douglas Phillips. Giza: Erasure Coding Objects across Global Data Centers. In

USENIX Annual Technical Conference (ATC), 2017.

[29] Audrey Cheng, Xiao Shi, Lu Pan, Anthony Simpson, Neil Wheaton, Shilpa

Lawande, Nathan Bronson, Peter Bailis, Natacha Crooks, and Ion Stoica. RAMP-

TAO: Layering Atomic Transactions on Facebook’s Online TAO Data Store. In

Proceedings of the VLDB Endowment (PVLDB), 2021.

170

https://doi.org/10.1145/108844.108874
https://doi.org/10.1145/108844.108874

[30] Cloud Spanner. https://cloud.google.com/spanner/, 2022.

[31] Cloud Spanner’s Lock Scanned Ranges. https://cloud.google.com/

spanner/docs/reference/standard-sql/query-syntax, 2022.

[32] CockroachDB. https://www.cockroachlabs.com/, 2020.

[33] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,

Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana

Yerneni. PNUTS: Yahoo!’s Hosted Data Serving Platform. In Proceedings of the

VLDB Endowment (PVLDB), 2008.

[34] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking Cloud Serving Systems with YCSB. In ACM Symposium

on Cloud Computing (SoCC), 2010.

[35] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter

Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-

der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh

Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth

Wang, and Dale Woodford. Spanner: Google’s Globally-Distributed Database. In

USENIX Symposium on Operating Systems Design and Implementation (OSDI),

2012.

[36] CosmosDB. https://azure.microsoft.com/en-us/services/

cosmos-db/, 2022.

[37] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit Agarwal,

and Lorenzo Alvisi. Obladi: Oblivious Serializable Transactions in the Cloud. In

171

https://cloud.google.com/spanner/
https://cloud.google.com/spanner/docs/reference/standard-sql/query-syntax
https://cloud.google.com/spanner/docs/reference/standard-sql/query-syntax
https://www.cockroachlabs.com/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/

USENIX Symposium on Operating Systems Design and Implementation (OSDI),

2018.

[38] Mohammad Dashti, Sachin Basil John, Amir Shaikhha, and Christoph Koch.

Transaction Repair for Multi-Version Concurrency Control. In ACM SIGMOD

International Conference on Management of Data (SIGMOD), 2017.

[39] Db2. https://www.ibm.com/software/data/db2/, 2022.

[40] Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Communications of the

ACM, 56(2):74–80, 2013.

[41] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: Amazon’s Highly Available Key-Value Store. In

ACM Symposium on Operating System Principles (SOSP), 2007.

[42] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro.

FaRM: Fast Remote Memory. In USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2014.

[43] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. GentleRain:

Cheap and Scalable Causal Consistency with Physical Clocks. In ACM Symposium

on Cloud Computing (SoCC), 2014.

[44] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, et al.

The Design and Operation of CloudLab. In USENIX Annual Technical Conference

(ATC), 2019.

[45] Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam Chakraborty. How

172

https://www.ibm.com/software/data/db2/

Fast can a Distributed Atomic Read be? In ACM Symposium on Principles of

Distributed Computing (PODC), 2004.

[46] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence

of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[47] DynamoDB. https://aws.amazon.com/dynamodb/, 2022.

[48] Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph Idziorek, Richard Krog,

Colin Lazier, Erben Mo, Akhilesh Mritunjai, Somasundaram Perianayagam, Tim

Rath, Swami Sivasubramanian, James Christopher Sorenson III, Sroaj Sosothikul,

Doug Terry, and Akshat Vig. Amazon DynamoDB: A Scalable, Predictably

Performant, and Fully Managed NoSQL Database Service. In USENIX Annual

Technical Conference (ATC), 2022.

[49] Burkhard Englert, Chryssis Georgiou, Peter M. Musial, Nicolas Nicolaou, and

Alexander A. Shvartsman. On the Efficiency of Atomic Multi-reader, Multi-writer

Distributed Memory. In International Conference on Principles of Distributed

Systems (OPODIS), 2009.

[50] etcd. https://etcd.io/, 2020.

[51] Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. High Performance

Transactions via Early Write Visibility. In Proceedings of the VLDB Endowment

(PVLDB), 2017.

[52] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of

Distributed Consensus with One Faulty Process. Journal of the ACM (JACM), 32

(2):374–382, 1985.

[53] FoundationDB. http://foundationdb.com/, 2022.

173

https://aws.amazon.com/dynamodb/
https://etcd.io/
http://foundationdb.com/

[54] GCP GCS Durability. https://cloud.google.com/storage/docs/

availability-durability, 2023.

[55] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosen-

blum, and Amin Vahdat. Exploiting a Natural Network Effect for Scalable, Fine-

grained Clock Synchronization. In USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 2018.

[56] Chryssis Georgiou, Nicolas C Nicolaou, and Alexander A Shvartsman. On the

Robustness of (Semi) Fast Quorum-Based Implementations of Atomic Shared

Memory. In International Symposium on Distributed Computing (DISC), 2008.

[57] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas Ander-

son. Scalable Consistency in Scatter. In ACM Symposium on Operating System

Principles (SOSP), 2011.

[58] Google Latency Remarks. http://glinden.blogspot.com/2006/11/

marissa-mayer-at-web-20.html, 2023.

[59] Cary G. Gray and David R. Cheriton. Leases: An Efficient Fault-Tolerant Mecha-

nism for Distributed File Cache Consistency. In ACM Symposium on Operating

System Principles (SOSP), 1989.

[60] Gryff Implementation. https://www.github.com/matthelb/gryff/,

2020.

[61] Gryff-RSC. https://github.com/princeton-sns/gryff-rs/,

2021.

[62] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Incremen-

tal Consistency Guarantees for Replicated Objects. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2016.

174

https://cloud.google.com/storage/docs/availability-durability
https://cloud.google.com/storage/docs/availability-durability
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://www.github.com/matthelb/gryff/
https://github.com/princeton-sns/gryff-rs/

[63] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Incremen-

tal Consistency Guarantees for Replicated Objects. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2016.

[64] Jeffrey Helt, Matthew Burke, Amit Levy, and Wyatt Lloyd. Regular Sequen-

tial Serializability and Regular Sequential Consistency. In ACM Symposium on

Operating System Principles (SOSP), 2021.

[65] Jeffrey Helt, Matthew Burke, Amit Levy, and Wyatt Lloyd. Regular Sequential

Serializability and Regular Sequential Consistency. Technical report, 2021.

[66] Maurice Herlihy. Wait-Free Synchronization. ACM Transactions on Programming

Languages and Systems (TOPLAS), 13(1):124–149, 1991.

[67] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condi-

tion for Concurrent Objects. ACM Transactions on Programming Languages and

Systems (TOPLAS), 12(3):463–492, 1990.

[68] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. Flexible Paxos: Quo-

rum intersection revisited. arXiv preprint arXiv:1608.06696, 2016.

[69] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.

ZooKeeper: Wait-free coordination for Internet-scale systems. In USENIX Annual

Technical Conference (ATC), 2010.

[70] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,

Changhoon Kim, and Ion Stoica. NetChain: Scale-Free Sub-RTT Coordination. In

USENIX Symposium on Networked Systems Design and Implementation (NSDI),

2018.

[71] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander

Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,

175

Yang Zhang, John Hugg, and Daniel J. Abadi. H-Store: A High-Performance,

Distributed Main Memory Transaction Processing System. In Proceedings of the

VLDB Endowment (PVLDB), 2008.

[72] Richard A Kelsey. A correspondence between continuation passing style and static

single assignment form. ACM SIGPLAN Notices, 1995.

[73] Hsiang-Tsung Kung and John T Robinson. On optimistic methods for concurrency

control. ACM Transactions on Database Systems, 6(2):213–226, 1981.

[74] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the ACM, 21(7):558–565, 1978.

[75] Leslie Lamport. The Part-Time Parliament. ACM Transactions on Computer

Systems (TOCS), 16(2):133–169, 1998.

[76] Leslie Lamport. Generalized Consensus and Paxos. Technical report, Technical

Report MSR-TR-2005-33, Microsoft Research, 2005.

[77] Leslie Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006.

[78] Justin Levandoski, David Lomet, Sedipta Sengupta, Ryan Stutsman, and Rui

Wang. Multi-version range concurrency control in deuteronomy. In VLDB, 2015.

[79] LevelDB. http://leveldb.org/, 2022.

[80] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and

Rodrigo Rodrigues. Making Geo-Replicated Systems Fast as Possible, Consistent

when Necessary. In USENIX Symposium on Operating Systems Design and

Implementation (OSDI), 2012.

[81] Harry Li, Allen Clement, Amitanand S. Aiyer, and Lorenzo Alvisi. The Paxos

Register. In IEEE Symposium on Reliable Distributed Systems, 2007.

176

http://leveldb.org/

[82] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R.K. Ports.

Just Say NO to Paxos Overhead: Replacing Consensus with Network Ordering. In

USENIX Symposium on Operating Systems Design and Implementation (OSDI),

2016.

[83] libevent. https://libevent.org/, 2021.

[84] Richard J. Lipton and Jonathan Sandberg. PRAM: A Scalable Shared Memory.

Technical report, Technical Report TR-180-88, Princeton University, 1988.

[85] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.

Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage

with COPS. In ACM Symposium on Operating System Principles (SOSP), 2011.

[86] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-

sen. Stronger Semantics for Low-Latency Geo-Replicated Storage. In USENIX

Symposium on Networked Systems Design and Implementation (NSDI), 2013.

[87] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song,

Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd. Existential Consistency:

Measuring and Understanding Consistency at Facebook. In ACM Symposium on

Operating System Principles (SOSP), 2015.

[88] Lyft on AWS. https://aws.amazon.com/solutions/

case-studies/lyft/, 2023.

[89] Nancy Lynch and Alexander A. Shvartsman. Robust emulation of shared memory

using dynamic quorum-acknowledged broadcasts. In International Symposium on

Fault Tolerant Computing, 1997.

[90] Prashant Malik and Avinash Lakshman. Cassandra - A Decentralized Structured

177

https://libevent.org/
https://aws.amazon.com/solutions/case-studies/lyft/
https://aws.amazon.com/solutions/case-studies/lyft/

Storage System. In ACM SIGOPS Workshop on Large-Scale Distributed Systems

and Middleware (LADIS), 2009.

[91] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building Efficient

Replicated State Machines for WANs. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2008.

[92] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi, Nathan Bron-

son, and Wyatt Lloyd. I Can’t Believe It’s Not Causal! Scalable Causal Con-

sistency with No Slowdown Cascades. In USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2017.

[93] Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed Packet Switching

for Local Computer Networks. Communications of the ACM, 19(7):395–404,

1976.

[94] MongoDB. https://www.mongodb.com/, 2022.

[95] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There Is More

Consensus in Egalitarian Parliaments. In ACM Symposium on Operating System

Principles (SOSP), 2013.

[96] Iulian Moraru, David G. Andersen, and Michael Kaminsky. A Proof of Correctness

for Egalitarian Paxos. Technical report, Technical Report CMU-PDL-13-111,

Carnegie Mellon University, 2013.

[97] Iulian Moraru, David G. Andersen, and Michael Kaminsky. Paxos Quorum Leases:

Fast Reads Without Sacrificing Writes. In ACM Symposium on Cloud Computing

(SoCC), 2014.

[98] Morty Implementation. https://www.github.com/matthelb/morty/,

2022.

178

https://www.mongodb.com/
https://www.github.com/matthelb/morty/

[99] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. Consolidating Concur-

rency Control and Consensus for Commits under Conflicts. In USENIX Symposium

on Operating Systems Design and Implementation (OSDI), 2016.

[100] MySQL. https://www.mysql.com/, 2022.

[101] neo4j. https://neo4j.com/, 2022.

[102] Netflix on AWS. https://aws.amazon.com/solutions/

case-studies/netflix-storage-reinvent22/, 2023.

[103] Brian M. Oki and Barbara H. Liskov. Viewstamped Replication: A New Pri-

mary Copy Method to Support Highly-Available Distributed Systems. In ACM

Symposium on Principles of Distributed Computing (PODC), 1988.

[104] Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus

Algorithm. In USENIX Annual Technical Conference (ATC), 2014.

[105] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel

Rosenblum. Fast Crash Recovery in RAMCloud. In ACM Symposium on Operating

System Principles (SOSP), 2011.

[106] Christos H Papadimitriou. The Serializability of Concurrent Database Updates.

Journal of the ACM (JACM), 1979.

[107] Seo Jin Park and John Ousterhout. Exploiting Commutativity For Practical Fast

Replication. In USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI), 2019.

[108] Andy Pavlo. What Are We Doing With Our Lives? Nobody Cares About Our

Research on Concurrency Control. In ACM SIGMOD International Conference

on Management of Data (SIGMOD), 2017.

179

https://www.mysql.com/
https://neo4j.com/
https://aws.amazon.com/solutions/case-studies/netflix-storage-reinvent22/
https://aws.amazon.com/solutions/case-studies/netflix-storage-reinvent22/

[109] Daniel Peng and Frank Dabek. Large-scale incremental processing using dis-

tributed transactions and notifications. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2010.

[110] Dorian Perkins, Nitin Agrawal, Akshat Aranya, Curtis Yu, Younghwan Go, Har-

sha V. Madhyastha, and Cristian Ungureanu. Simba: Tunable End-to-End Data

Consistency for Mobile Apps. In ACM SIGOPS European Conference on Com-

puter Systems (EuroSys), 2015.

[111] Redis. https://redis.io/, 2020.

[112] Riak. https://riak.com/products/riak-kv/, 2020.

[113] RocksDB. http://rocksdb.org/, 2022.

[114] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis, II. System

level concurrency control for distributed database systems. ACM Transactions on

Database Systems, 3(2):178–198, 1978.

[115] Rust-Tokyo. https://github.com/tokio-rs/tokio, 2021.

[116] Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Machine

Approach: A Tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[117] Slack on AWS. https://aws.amazon.com/solutions/

case-studies/slack/, 2023.

[118] SQL Server. https://www.microsoft.com/sqlserver/, 2022.

[119] SQLite. https://sqlite.org/, 2022.

[120] Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo Alvisi, and Chao Xie. Bringing

Modular Concurrency Control to the Next Level. In ACM SIGMOD International

Conference on Management of Data (SIGMOD), 2017.

180

https://redis.io/
https://riak.com/products/riak-kv/
http://rocksdb.org/
https://github.com/tokio-rs/tokio
https://aws.amazon.com/solutions/case-studies/slack/
https://aws.amazon.com/solutions/case-studies/slack/
https://www.microsoft.com/sqlserver/
https://sqlite.org/

[121] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang, Lorenzo Alvisi,

and Natacha Crooks. Basil: Breaking up BFT with ACID (transactions). In ACM

Symposium on Operating System Principles (SOSP), 2021.

[122] Adriana Szekeres, Michael Whittaker, Jialin Li, Naveen Kr Sharma, Arvind

Krishnamurthy, Dan RK Ports, and Irene Zhang. Meerkat: Multicore-Scalable

Replicated Transactions Following the Zero-Coordination Principle. In ACM

SIGOPS European Conference on Computer Systems (EuroSys), 2020.

[123] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,

Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. Cock-

roachDB: The Resilient Geo-Distributed SQL Database. In ACM SIGMOD Inter-

national Conference on Management of Data (SIGMOD), 2020.

[124] Konstantin Taranov, Gustavo Alonso, and Torsten Hoefler. Fast and strongly-

consistent per-item resilience in key-value stores. In ACM SIGOPS European

Conference on Computer Systems (EuroSys), 2018.

[125] Douglas B Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrish-

nan, Marcos K Aguilera, and Hussam Abu-Libdeh. Consistency-Based Service

Level Agreements for Cloud Storage. In ACM Symposium on Operating System

Principles (SOSP), 2013.

[126] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,

and Daniel J Abadi. Calvin: Fast Distributed Transactions for Partitioned Database

Systems. In ACM SIGMOD International Conference on Management of Data

(SIGMOD), 2012.

[127] TPC-C. http://www.tpc.org/tpcc/, 2021.

181

http://www.tpc.org/tpcc/

[128] Robbert van Renesse and Fred B. Schneider. Chain Replication for Supporting

High Throughput and Availability. In USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 2004.

[129] Marko Vukolić. Quorum Systems: with Applications to Storage and Consensus,

volume 3. Morgan & Claypool Publishers, 2012.

[130] Todd Warszawski and Peter Bailis. ACIDRain: Concurrency-Related Attacks

onDatabase-Backed Web Applications. In ACM SIGMOD International Confer-

ence on Management of Data (SIGMOD), 2017.

[131] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac

Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An Integrated Ex-

perimental Environment for Distributed Systems and Networks. In USENIX

Symposium on Operating Systems Design and Implementation (OSDI), 2002.

[132] Yingjun Wu, Chee-Yong Chan, and Kian-Lee Tan. Transaction healing: Scaling

optimistic concurrency control on multicores. In ACM SIGMOD International

Conference on Management of Data (SIGMOD), 2016.

[133] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong,

Kenneth Salem, and Tim Brecht. Carousel: Low-Latency Transaction Processing

for Globally-Distributed Data. In ACM SIGMOD International Conference on

Management of Data (SIGMOD), 2018.

[134] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. Tictoc: Time

traveling optimistic concurrency control. In SIGMD, 2016.

[135] YugabyteDB. https://www.yugabyte.com/, 2022.

[136] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishnamurthy, and

182

https://www.yugabyte.com/

Dan RK Ports. Building Consistent Transactions with Inconsistent Replication. In

ACM Symposium on Operating System Principles (SOSP), 2015.

[137] Hanyu Zhao, Quanlu Zhang, Zhi Yang, Ming Wu, and Yafei Dai. SDPaxos:

Building Efficient Semi-Decentralized Geo-Replicated State Machines. In ACM

Symposium on Cloud Computing (SoCC), 2018.

[138] ZippyDB. https://engineering.fb.com/2021/08/06/

core-data/zippydb/, 2023.

183

https://engineering.fb.com/2021/08/06/core-data/zippydb/
https://engineering.fb.com/2021/08/06/core-data/zippydb/

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Large-Scale Internet Application Architecture
	Fault Tolerance
	Performance

	Strong Guarantees
	Consistency
	Synchronization Primitives

	Generality of API

	Morty: Scaling Concurrency Control with Re-Execution
	Scraping the Barrel: Limits to Extracting Concurrency
	Sequential Execution
	Read Validity

	Transaction Re-Execution
	Existing Approaches
	Re-Execution

	Morty Design
	Implementing Re-Execution
	Transaction Execution
	Handling Failures
	Garbage Collection & Truncation
	Correctness

	Evaluation
	OLTP Applications
	Scalability
	Microbenchmarks

	Related Work
	Conclusion

	Gryff: Unifying Consensus and Shared Registers
	Consensus vs. Shared Registers
	State Machines and Consensus
	Shared Registers and Their Protocols
	Shared Objects and Their Ordering

	carstamps for Correct Ordering
	Precise Ordering for Shared Objects
	carstamps

	Gryff Protocol
	Background
	Read & Write Protocols
	Read-Modify-Write Protocol

	Proxying Reads
	Evaluation
	Baselines and Implementation
	Experimental Setup
	Tail Latency
	Read/Write/RMW Latency
	Throughput
	Tail at Scale

	Gryff-RSC
	Regular Sequential Consistency Background
	Gryff-RSC Design
	Gryff-RSC Evaluation

	Related Work
	Conclusion

	Conclusion
	Morty Proofs
	System Model
	Proof of Correctness
	Proof of serialization windows and validity windows
	serialization windows
	validity windows

	Gryff Proofs
	Preliminaries
	Model
	Shared Objects

	Proof of Linearizability
	Proof of Wait-Freedom
	Read Proxy Correctness

	Glossary

