
Imperial College London

Department of Computing

First-order Temporal Logic with Fixpoint Operators

over the Natural Numbers

by

Konstantinos Mamouras

Submitted in partial fulfilment of the requirements for the MSc Degree in Advanced
Computing of Imperial College London.

September 2009

Acknowledgments

First and foremost, I would like to express my warmest thanks to my thesis supervi-
sor, Professor Ian Hodkinson, who was always available and eager to help me with any
problems I encountered. He guided me through all the steps of my project and in the
process taught me a great deal of exciting new things about temporal logic and so much
more. His insightful comments on drafts of my thesis have helped me enormously during
the write-up.

I also owe thanks to Dr Nir Piterman, who was kind enough to explain to me some
aspects of automata theory that were not clear to me.

My deepest gratitude goes to my family: my father Ioannis, my mother Stavroula, and
my brother Dimitrios. Their support on so many levels has enabled me to pursue my
academic goals.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER
THE NATURAL NUMBERS

KONSTANTINOS MAMOURAS
SUPERVISED BY PROF. IAN HODKINSON

Abstract. We show that the satisfiability problem for monodic first-order linear time temporal
logic with temporal fixpoint operators and no equality over the flow of the natural numbers is in
EXPSPACE (2EXPTIME), if the purely first-order part of the language is restricted to a fragment
of first-order logic that lies in EXPSPACE (2EXPTIME). The same upper complexity bound
holds for the finite satisfiability problem. For the monodic packed fragment with equality
we show 2EXPTIME-completeness and EXPSPACE-completeness for the bounded-variable or
bounded-arity case. We also consider the monodic guarded and loosely guarded fragments with
temporal fixpoints as well as domain-side least fixpoints and show 2EXPTIME-completeness
(EXPSPACE-completeness for the bounded-variable or bounded-arity case) of the satisfiability
problem over arbitrary domains.

Contents

1. Introduction 7
1.1. Relevant work 7
1.2. Contribution 9
1.3. Layout of report 10
2. Syntax 11
3. Semantics 13
4. Signatures 18
4.1. Positive Form 18
4.2. Fixpoint Approximants 20
4.3. Results on Signatures 25
5. The Monodic Fragment 32
6. Quasimodels 33
6.1. The notion of well-founded quasimodel 33
6.2. Satisfaction in model implies satisfaction in well-founded quasimodel 38
6.3. “Blowing-up” first-order structures 39
6.4. Satisfaction in well-founded quasimodel implies satisfaction in model 41
6.5. Finite satisfiability & satisfaction in finitary quasimodels 49
7. Complexity 51
7.1. Arbitrary domain 51
7.2. Finite Domain 56
8. Monodic packed fragment 63
9. Monodic Guarded Fragments with Time-Fixpoints and Domain-Fixpoints 69
10. Applications on Temporal Description Logics 75
10.1. A Simple Description Logic 75
10.2. Temporalizing Description Logics 77
10.3. Temporal Description Logics with Fixpoint Operators 80
11. Conclusion 82
References 83

5

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 7

1. Introduction

Pnueli was the first who proposed the use of temporal logic as a means of specifying and ver-
ifying correctness properties of programs [46]. For plain deterministic sequential programs, the
correctness of which is essentially adherence to an input/output specification, a formalism such
a Hoare’s logic can also be used [26]. Temporal logic is particularly suited for nonterminating,
reactive systems such as operating systems and network communication protocols. Since the
work of Pnueli, both linear-time and branching-time temporal logics have found wide applica-
tions in program specification and verification. An important distinction is between deductive
verification, in which proof-theoretic methods are used and which is not fully automated, and
model checking, which is a technique for verifying finite state concurrent systems in a completely
mechanized way. Today, model checking is of great commercial importance for the verification
of hardware designs, network protocols, etc. Let us note two important works in the 1980s, one
of Clarke, Emerson, Sistla [11] and one of Clarke, Emerson [10], which proposed model check-
ing algorithms for verifying branching-time temporal-logic specifications of concurrent systems.
Another notable application of temporal logic is in the field of temporal databases, where re-
lational data are enriched with a temporal dimension. See chapters 14,15, and 16 of [19] for
a discussion of relevant topics. Temporal logics also have a role to play in various subareas of
artificial intelligence such as knowledge representation for application domains that require time
to be taken into consideration, in multi-agent systems, where knowledge and belief of agents
may be time-evolving, etc.

A general observation about the use of logics in computer science is that a compromise is gen-
erally sought between the expressiveness of a logical system and its computational difficulty. For
a given application, a logic has to be designed so that it is sufficiently expressive for its intended
purpose and the associated problems (such as validity checking, satisfiability checking, model
checking) are reasonably tractable. Consider first-order logic, which is generally considered as
a very expressive formalism for talking about relational structures: its applicability is severely
limited due to the fact that it is undecidable. Many fragments of first-order logic, however, are
expressive enough for some applications and their complexity allows practical algorithms. Along
similar lines, it is interesting to investigate whether it is possible to take a logical system of
known complexity, enhance its expressiveness while still remaining in the same complexity class.
Our work here is in this direction. Starting from ‘monodic’ fragments of first-order temporal
logic, we add fixpoint operators to the temporal side, thus adding second-order expressiveness,
without increasing the complexity.

1.1. Relevant work. In what follows, we will restrict our attention to linear-time temporal
logics. We will discuss briefly some temporal logics, starting with the simple propositional
temporal logic (PTL) and continuing with more expressive logics, so that it is made more clear
how our results relate to existing work.

It has been proved that for the time flow of the natural numbers, which is the most commonly
used flow for applications in specification and verification, PTL is expressively complete for the
monadic first-order theory of linear order over the naturals [35, 17], which is known to be non-
elementary [52]. This “expressive completeness” result, however, does not mean that there are
not circumstances in which a more expressive formalism is required.

The observation that we cannot express in propositional temporal logic properties that can
be expressed by regular grammars led Pierre Wolper to consider an extended temporal logic,
called ETL, which contains temporal operators that correspond to regular expressions [62]. Even
though ETL is more expressive than PTL, its satisfiability problem lies in the same complexity
class, i.e. it is complete for PSPACE [63, 49]. An obvious drawback of this approach is that we
have to consider an infinity of grammar operators in order to get the full expressive power of
ETL.

Similar in spirit are proposals for using ω-regular automata as temporal operators. Vardi
and Wolper consider in [61] the use of finite automata over ω-words with various acceptance
conditions (finite, looping, and Büchi) as well as alternating automata. It turns out that in all
cases the logics are equally expressive and that the corresponding satisfiability problems are all in

8 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

PSPACE. This is particularly interesting for the case of alternating automata operators, since
alternating automata are exponentially more succinct than nondeterministic automata over
infinite words. In [38], two-way alternating automata, which can be transformed to language-
equivalent nondeterministic automata with an exponential blow-up, are considered as temporal
connectives. The satisfiability problem is shown to be in PSPACE.

Let us note at this point that ω-automata are as expressive as the monadic second-order
theory of one successor function (S1S) [7], which is non-elementary [43]. Another extension of
PTL, quantified PTL or QPTL [50], in which quantification over propositional atoms is allowed,
is equally expressive as S1S and its satisfiability problem is non-elementary [51].

Extensions with fixpoint operators have also been considered. They are similar to the fixpoint
extensions of propositional dynamic logic presented in [47, 36, 37]. Banieqbal and Barringer
introduce νTL, the propositional temporal logic with least (µ) and greatest (ν) fixpoint op-
erators and the tomorrow operator, which is expressively equivalent to ETL [4]. They give a
decision procedure for the satisfiability problem that needs exponential time and space. Vardi
extends νTL with the yesterday operator and gives an automata-theoretic decision procedure
for satisfiability that needs polynomial space [58].

In propositional temporal logic, we define semantics by attaching to each moment the set
of propositional atoms that are true at that particular moment. We can greatly increase the
expressive power by attaching a first-order structure to each moment and using a first-order
temporal language to talk about these much more complex temporal structures. Unfortunately,
full first-order temporal logic (FOTL) turns out to be highly undecidable. Unpublished results
of Per Lindström and Dana Scott first established that the first-order temporal logics with
temporal operators ‘sometime in the future’ (F) and ‘sometime in the past’ (P) over the naturals,
the integers, and the reals are not even recursively enumerable. There is a general result due to
Mark Reynolds that shows several first-order temporal logics to be not recursively axiomatizable
by encoding first-order arithmetic in them (Theorem 4.6.1 in [18]). Let us note, however, that
there are axiomatizations for the first-order temporal logics of F and P over the class of all linear
flows and over the flow of the rationals.

After a series of negative results (see, for example, [1, 42, 54, 55]), Hodkinson, Wolter, and
Zakharyaschev presented expressive ‘monodic’ fragments of FOTL that are decidable over var-
ious classes of flows of time [32]. The monodicity requirement essentially limits the interaction
between the temporal and the first-order dimension, by imposing the restriction that subfor-
mulas beginning with a temporal topmost operator have at most one free variable. In order to
get decidability, the purely first-order part of the language will also have to be restricted to a
decidable fragment.

Lower and upper complexity bounds have been proved for monodic first-order temporal logics
over the flow of the naturals [30]. An EXPSPACE-hardness result can be shown by encoding
the 2n-corridor tiling problem using just formulas that are in the one-variable fragment and
contain only the ‘always in the future’ (G) temporal operator. An EXPSPACE (2EXPTIME)
upper bound can also be obtained, when the first-order part lies in EXPSPACE (2EXPTIME).
The applicability of this result is immediately obvious if we notice that various decidable classes
of first-order logic, such as the monadic class (with unary function symbols or without), the
Bernays-Schönfinkel class (formulas with a ∃?∀? quantifier prefix), the Gödel-Kalmár-Schütte
class (formulas with a ∃?∀2∃? quantifier prefix), the Ackermann class (formulas with a ∃?∀∃?
quantifier prefix), and the two-variable class (formulas with two distinct individual variables) are
all complete for NEXPTIME and hence in EXPSPACE [6]. Thus, we deduce that the satisfiability
problems for the corresponding fragments of monodic FOTL over the naturals are complete for
EXPSPACE.

Wolter and Zakharyaschev show in [64] that the monodic fragment over the naturals has
a finite Hilbert-style axiomatization, but becomes not recursively enumerable when equality is
added to the language. Degtyarev, Fisher, and Lisitsa prove that even the simpler monodic two-
variable fragment with equality over the naturals is not recursively enumerable [12]. Hodkinson,
however, has obtained a positive result by showing that if we restrict the first-order part to the
packed fragment with equality, we get decidable monodic fragments over various classes of flows

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 9

of time [28]. Complexity results for such monodic guarded fragments with equality are given in
[29].

The addition of function symbols has been considered by Hussak in [34]. He extends monadic
monodic fragments with flexible functions and without equality and shows decidability for some
flows of time and EXPSPACE-completeness for the flow of the naturals. The addition of one
rigid function makes the logic not recursively enumerable. However, further restrictions can
be applied on the way terms interact with quantifiers and regain decidability for these ‘term
monodic’ fragments.

In an effort to get even more powerful logics, it seems very interesting to examine whether we
can extend decidable monodic fragments of FOTL with fixpoint operators and still get decidable
logics. Indeed, it has been shown in [13] that this is possible. The satisfiability problem for
monodic FOTL with temporal fixpoint operators is decidable over various classes of flows of
time, given that the corresponding first-order part is decidable. The complexity, however, of
these decidable fragments was left open.

1.2. Contribution. In this report, we consider monodic FOTL with fixpoint operators over the
flow of the natural numbers. The language contains the usual Boolean connectives, first-order
quantifiers, the temporal operators # (‘tomorrow’), (‘yesterday’), � (‘yesterday’, if yesterday
exists’), as well as least (µ) and greatest (ν) temporal fixpoint operators. These operators
express easily Kamp’s temporal connectives U (‘until’) and S (‘since’)

φU ψ ≡ µX[#ψ ∨#(φ ∧X)] φSψ ≡ µX[ψ ∨ (φ ∧X)] .

The monodicity restriction, which is essential for decidability, can be briefly stated as ‘every
subformula that begins with a temporal or fixpoint operator has at most one free individual
variable and every subformula that begins with a quantifier has no free fixpoint variables’. Even
with this restriction we get the expressiveness of full first-order logic, full temporal logic with
fixpoint operators, and even more.

We present new results regarding the computational complexity of several such monodic logics
over the naturals. First, we show the following general theorems.
− If the first-order part is in EXPSPACE (2EXPTIME), then the satisfiability problem for the

logic is also in EXPSPACE (2EXPTIME).
− The same holds for the finite satisfiability problem, i.e. the problem of deciding whether a

formula has a temporal model of finite domain.
− As corollaries, we obtain, for example, that the monadic, the one-variable, and the two-

variable monodic first-order temporal logics with temporal fixpoint operators over the natu-
rals are complete for EXPSPACE. EXPSPACE-hardness follows from Theorem 3.1 of [30].

The interesting observation is that, similarly to the propositional case, enhancing the expres-
siveness on the temporal side with fixpoint operators does not result in an increase of the
complexity. We also consider the case of the monodic packed fragment with equality and prove
the following.
− The (finite) satisfiability problem for the monodic packed fragment with equality and tem-

poral fixpoint operators over the naturals is complete for 2EXPTIME.
− In the bounded-variable or in the bounded-arity case the (finite) satisfiability problem for

this fragment is complete for EXPSPACE.
We investigate the extension of the monodic packed fragment with least fixpoints on the domain
side, thus having both time-fixpoints and domain-fixpoints, and obtain the following.
− The satisfiability problem for the monodic (loosely) guarded fragment with equality, least

and greatest temporal fixpoints and least domain-fixpoints over the naturals is complete for
2EXPTIME.

− Again, if we bound the variables or the arity of the symbols, we get EXPSPACE-completeness.
In order to prove these results, we extend the ‘quasimodel’ technique of [32], which is remi-

niscent of the well-known filtration technique for modal logics, and the ‘well-founded premodel’
technique of [53, 58]. Quasimodels are objects that encode models. Instead of attaching a

10 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

first-order structure to each moment, we can say roughly that a quasimodel records at each
moment the subformulas that hold at each domain point. The monodicity restriction allows
special functions called runs to encode temporal consistency. The notion of well-foundedness is
useful for characterizing the way fixpoints are evaluated: a least fixpoint involves finite loop-
ing, whereas a greatest fixpoint may involve infinite looping. The crucial proposition is that a
sentence has a temporal model if and only if it has a well-founded quasimodel. The complexity
results are obtained by extending the automata-theoretic techniques for PTL [58, 59]. That is,
(finite) satisfiability of a sentence is reduced to the nonemptiness problem of a large and com-
plex Büchi automaton. This approach results in a clean proof that separates well the logical
from the combinatorial part.

We believe that apart from the importance of our results in themselves, there are many
interesting theoretical applications. The logics we consider are very powerful and they subsume
expressively a very wide range of other logics. Thus, we provide a general framework for
encoding logics that have a temporal dimension such as various temporal description logics and
logics of knowledge and belief. This means that complexity results can be obtained for many
logics as immediate corollaries of the theorems presented here.

1.3. Layout of report. In Section 2 we present the syntax of first-order temporal logic with
fixpoint operators. We continue in Section 3 with the definition of semantics, which is shown to
be well-defined. Section 4 introduces the notions of fixpoint approximants and signatures. With
the help of signatures we will formalize later the idea that least fixpoints need a finite number
of steps to be evaluated, i.e. the idea of well-founded regeneration of least fixpoint formulas.
The monodic fragment is defined in Section 5. The quasimodel technique of [32] is described
and extended with the notion of well-foundedness of [53] in Section 6. We conclude Section 6
with the crucial theorem that a sentence of our language has a (finite) model if and only if
it is satisfied in a (finitary) well-founded quasimodel. In Section 7 we show upper complexity
bounds. Given a sentence φ, whose (finite) satisfiability we want to check, we construct an
automaton that accepts the (finitary) quasimodels — stripped down of their runs — that satisfy
φ. We discuss in Section 8 that the technique of [28] for the monodic packed fragment directly
extends to our case, when fixpoint operators are added. Domain-side least fixpoint operators are
considered in Section 9 as an extension of the monodic packed fragment. Section 10 is devoted
to presenting how description logics are extended with a temporal dimension and showing how
the more general reasoning tasks of a wide range of such logics can be immediately reduced
to the satisfiability problem of monodic first-order temporal logic with fixpoint operators. For
many cases tight complexity bounds can be obtained as corollaries. The report is concluded
in Section 11 with a summary of the results presented here and a brief discussion about open
questions that relate to our work.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 11

2. Syntax

We present formally the syntax of full first-order temporal logic with temporal fixpoint op-
erators. First, we enumerate the various symbols that make up the alphabet and proceed to
define terms and formulas. Some useful definitions for individual and fixpoint variables are also
introduced.

We fix a first-order signature, which is a tuple σ = (P,P0,F , C, ar). P = {P0, P1, . . .} is the
set of predicate symbols, P0 = {p0, p1, . . .} the set of propositional variables, F = {f0, f1, . . .} the
set of function symbols, and C = {c0, c1, . . .} the set of individual constants. To each predicate
symbol and each function symbol we associate a positive integer called its arity through the
function ar : P ∪ F → N \ {0}. We also fix a countably infinite set V = {x0, x1, . . . , y, z, . . .} of
individual variables and a countably infinite set X = {X0, X1, . . . , Y, Z, . . .} of fixpoint variables.
The alphabet will also include the Boolean connectives ¬,∧,∨, the universal quantifier ∀, the
existential quantifier ∃, the temporal operators # (tomorrow), (yesterday), � (yesterday, if
yesterday exists), and the fixpoint operators µ (least fixpoint) and ν (greatest fixpoint). We
also include the punctuation symbols left parenthesis, right parenthesis, and comma. So, let
the alphabet be

Σ = P ∪ P0 ∪ F ∪ C ∪ V ∪ X ∪ {¬,∧,∨,∀,∃,#, ,�, µ, ν, (,), , } .

See Table 1 for a listing of the various symbols that make up the alphabet. The Boolean
operators →,↔ will be treated as abbreviations.

Definition 1 (terms). The terms are constructed using only symbols from F , C,V and punc-
tuation symbols. Let us call the set that contains all these symbols ΣT . Clearly, ΣT ⊆ Σ. The
set of terms T is the smallest subset of Σ?

T (Kleene closure of ΣT) that satisfies the following
conditions.

• T includes V, i.e. V ⊆ T .
• T includes C, i.e. C ⊆ T .
• For any function symbol f , if t1, . . . , tm are in T (m = ar[f]), then f(t1, . . . , tm) ∈ T .

Definition 2 (FOTLµν). The set of first-order temporal formulas with fixpoint operators FOTLµν
is the smallest subset of Σ? that satisfies the following conditions.

• FOTLµν includes P0, i.e. P0 ⊆ FOTLµν .
• FOTLµν includes X , i.e. X ⊆ FOTLµν .
• For any predicate symbol P , if t1, . . . , tn ∈ T (n = ar[P]), then P (t1, . . . , tn) ∈ FOTLµν .
• For any unary operator ◦ ∈ {¬,#, ,�}, if φ ∈ FOTLµν , then ◦φ ∈ FOTLµν .
• For any binary operator ⊗ ∈ {∧,∨}, if φ1, φ2 ∈ FOTLµν , then (φ1 ⊗ φ2) ∈ FOTLµν .
• For any quantifier Q ∈ {∀, ∃}, if x ∈ V and φ ∈ FOTLµν , then Qxφ ∈ FOTLµν .
• For any fixpoint operator f ∈ {µ, ν}, if X is a fixpoint variable, φ ∈ FOTLµν , and all

free occurrences of X in φ are positive, then fXφ ∈ FOTLµν .
We will write FOTLµν [σ] when we want to make explicit that the signature of the language is
σ.

In a (sub)formula Qxφ, where Q is a quantififer, we say that Q binds x and that the occur-
rences of x in φ are bound. If an occurrence of an individual variable y in φ is not bound
by any quantifier, then we say that it is free. For example, the first occurrence of y in

Table 1. The alphabet of first-order temporal logic with fixpoint operators.

predicate symbols P P0, P1, . . .
propositional variables P0 p0, p1, . . .
function symbols F f0, f1, . . .
individual constants C c0, c1, . . .
individual variables V x0, x1, . . .

boolean connectives ¬,∧,∨
quantifiers ∀,∃
temporal operators #, ,�
fixpoint operators µ, ν
parentheses & comma () ,

12 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

φ = ∀x[Rxy ∧ ∃y∀zPxyz] is free, but the second one is bound. Similarly, we define bound
and free fixpoint variables.

We say that a free occurrence of a fixpoint variable is positive if it falls under an even number
of negations and negative if it falls under an odd number of negations. A FOTLµν-formula is a
fp-sentence if it has no free fixpoint variables. It is a dom-sentence if it has no free individual
variables. It is a sentence if it is both a fp-sentence and a dom-sentence.

We will often abbreviate consecutive occurrences of temporal operators with a power-like
notation. That is, #3 means ###. The usual parenthesis elimination conventions, such as
omitting the outermost parentheses, etc., will be used subsequently whenever convenient. We
denote the set of subformulas of φ by sbf[φ].

Definition 3 (µ-vars, ν-vars, µν-vars, fp-free, fp-vars, vars, fvars, bvars). Let φ be a FOTLµν-formula.
We define µ-vars[φ] to be the set of fixpoint variables bound by least fixpoint operators in φ,
ν-vars[φ] the set of fixpoint variables bound by greatest fixpoint operators in φ, µν-vars[φ] =
µ-vars[φ] ∪ ν-vars[φ], fp-free[φ] the set of free fixpoint variables in φ, and fp-vars[φ] the set of all
fixpoint variables that appear in φ. Obviously, it holds that

fp-vars[φ] = µν-vars[φ] ∪ fp-free[φ] .

We denote by vars[φ] the set of individual variables that appear in φ. fvars[φ] is the set of
individual variables that are free in φ, and bvars[φ] the set of those that are bound by quantifiers.
Clearly, vars[φ] = fvars[φ] ∪ bvars[φ].

Note that fvars[φ] and bvars[φ] are not necessarily disjoint, as the formula (Px ∧ ∃y∀xRxy)
illustrates. The same holds for µ-vars[φ] and ν-vars[φ] as well as for µν-vars[φ] and fp-free[φ].
An example for the former would be the formula

φ = µZ(∃xPx ∨ 3Z) ∧ νZ(∃x¬Rxx ∧�Z) ,

for which µ-vars[φ] = ν-vars[φ] = {Z}, and for the latter the formula

ψ = Y ∧ µY (∃xPx ∨#X ∨ Y) ,

for which µν-vars[ψ] = {Y } and fp-free[ψ] = {X,Y }.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 13

3. Semantics

The move from propositional temporal logic to first-order temporal logic opens a whole range
of options as to how semantics is defined. Do we have the same domain of individuals at every
moment? Are individual variable assignments time-dependent? See Chapter 4 of [18] for a
discussion. Garson gives a very interesting survey in [20] about the available choices when for-
malizing quantified modal logics. We have opted here for constant domains, rigid constants and
functions, and flexible predicates. After defining formally semantics, we show that it is indeed
well-defined (this is not immediately obvious because of the temporal fixpoint operators). We
also define the notions of equivalence, satisfiability, equisatisfiability, substitution and proceed
to show a ‘fixpoint unfolding’ lemma, which reflects syntactically the definition of fixpoints.

In order to define semantics for FOTLµν-formulas, we need to specify a first-order temporal
structure M =

(
〈N, <〉,D, I

)
over the signature σ. The underlying frame is the flow of the

natural numbers under their usual ordering. D is a non-empty set called the domain of M.
Sometimes we will write dom(M) to refer to the domain of M. I is a function that maps each
moment u ∈ N to a first-order structure Iu over the signature σ.

Iu = (D, ·Iu) P Iu ⊆ Dn, n = ar[P] pIu ∈ {0, 1} f Iu : Dm → D, m = ar[f] cIu ∈ D

·Iw maps each predicate symbol P ∈ P to a n-ary (n = ar[P]) relation on D, each propositional
variable p ∈ P0 to an element of {0, 1} (1 represents truth, and 0 falsity), each function symbol
f ∈ F to a function from Dm (m = ar[f]) to D and each individual constant c ∈ C to an element
of the domain. We make the assumption of rigid constants and functions, i.e. for any c ∈ C,
any f ∈ F , and any u, v ∈ N, cIu = cIv and f Iu = f Iv . In order to valuate terms we also need an
individual variable assignment, h : V → D, which maps each individual variable to an element
of the domain. Hence, the valuation of terms is defined as follows for x ∈ V, c ∈ C, f ∈ F ,
m = ar[f].

JxKIuh = h(x) JcKIuh = cIu Jf(t1, . . . , tm)KIuh = f Iu(Jt1KIuh , . . . , JtmKIuh)

We also fix a fixpoint variable assignment g : X → ℘ (N). Intuitively, g maps each fixpoint
variable to the set of moments in which it is true. Now, we can define the truth relation
inductively as follows.(

〈N, <〉,D, I
)
, h, g, u |= p ⇐⇒ pIu = 1(

〈N, <〉,D, I
)
, h, g, u |= X ⇐⇒ u ∈ g(X)(

〈N, <〉,D, I
)
, h, g, u |= P (t1, . . . , tn) ⇐⇒

(
Jt1KIuh , . . . , Jt1K

Iu
h

)
∈ P Iu(

〈N, <〉,D, I
)
, h, g, u |= ¬φ ⇐⇒

(
〈N, <〉,D, I

)
, h, g, u 6|= φ(

〈N, <〉,D, I
)
, h, g, u |= (φ1 ∧ φ2) ⇐⇒

(
〈N, <〉,D, I

)
, h, g, u |= φ1 and

(
〈N, <〉,D, I

)
, h, g, u |= φ2(

〈N, <〉,D, I
)
, h, g, u |= (φ1 ∨ φ2) ⇐⇒

(
〈N, <〉,D, I

)
, h, g, u |= φ1 or

(
〈N, <〉,D, I

)
, h, g, u |= φ2(

〈N, <〉,D, I
)
, h, g, u |= ∀xφ ⇐⇒ for all d ∈ D,

(
〈N, <〉,D, I

)
, h[x 7→ d], g, u |= φ(

〈N, <〉,D, I
)
, h, g, u |= ∃xφ ⇐⇒ there is d ∈ D s.t.

(
〈N, <〉,D, I

)
, h[x 7→ d], g, u |= φ(

〈N, <〉,D, I
)
, h, g, u |= #φ ⇐⇒

(
〈N, <〉,D, I

)
, h, g, u+ 1 |= φ(

〈N, <〉,D, I
)
, h, g, u |= φ ⇐⇒ u > 0 and

(
〈N, <〉,D, I

)
, h, g, u− 1 |= φ(

〈N, <〉,D, I
)
, h, g, u |= �φ ⇐⇒ u = 0 or

[
u > 0 and

(
〈N, <〉,D, I

)
, h, g, u− 1 |= φ

](
〈N, <〉,D, I

)
, h, g, u |= µXφ ⇐⇒ u belongs to the least fixpoint of the function

fφ : ℘ (N)→ ℘ (N) , defined as

fφ(S) =
{
v ∈ N |

(
〈N, <〉,D, I

)
, h, g[X 7→ S], v |= φ

}(
〈N, <〉,D, I

)
, h, g, u |= νXφ ⇐⇒ u belongs to the greatest fixpoint of the function

fφ : ℘ (N)→ ℘ (N) , defined as

fφ(S) =
{
v ∈ N |

(
〈N, <〉,D, I

)
, h, g[X 7→ S], v |= φ

}

14 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

We write h[x 7→ d] to denote the function that maps x to d and every y ∈ V \{x} to h(y). That
is, h[x 7→ d] differs from h only at x. Similarly for g[X 7→ S].

The truth set ‖φ‖M,h
g of a FOTLµν-formula φ is the set of moments where φ is true under

the first-order temporal structure M, the individual variable assignment h, and the fixpoint
variable assignment g. That is,

‖φ‖M,h
g =

{
v ∈ N |M, h, g, v |= φ

}
.

It should be noted that we are not done until we have shown that semantics is well-defined.
We will continue to prove that the function fφ for a fixpoint formula µ

νXφ has indeed least and
greatest fixpoint. This is the case because of the requirement that the free occurrences of X
in φ are positive. We can show the monotonicity of the function fφ and argue by virtue of the
Knaster-Tarski theorem [56] that fφ has least and greatest fixpoint.

Proposition 4 (semantics is well-defined). Fix a first-order temporal structure M =
(
〈N, <

〉,D, I
)

and let φ be a FOTLµν-formula. Then, for any individual variable assignment h : V → D,
any fixpoint variable assignment g : ℘ (N)→ ℘ (N), and any moment u ∈ N the following hold.

(1) Semantics is defined for φ.
(2) For any fixpoint variable X ∈ X and any A,B ∈ ℘ (N) with A ⊆ B, we have that

(a) if all free occurrences of X in φ are positive, then

M, h, g[X 7→ A], u |= φ =⇒ M, h, g[X 7→ B], u |= φ

and
(b) if all free occurrences of X in φ are negative, then

M, h, g[X 7→ B], u |= φ =⇒ M, h, g[X 7→ A], u |= φ .

Proof. By induction on the structure of φ.
• φ = p. Fix h, g, u. (1) Clearly, semantics is defined. (2) Obvious, since truth for p only

depends on pIu .
• φ = P (t1, . . . , tn). Fix h, g, u. (1) Clearly, semantics is defined. (2) Obvious, since truth for
P (t1, . . . , tn) depends on P Iu .
• φ = Y . Fix h, g, u. (1) Clearly, semantics is defined. (2) Fix X ∈ X and A ⊆ B ⊆ N. If
Y 6= X, then we observe that truth for Y depends only on g(Y). If Y = X, then all free
occurrences of X in φ are positive and M, h, g[X 7→ A], u |= φ = X implies that u ∈ A ⊆ B
and hence M, h, g[X 7→ B], u |= X = φ.
• φ = ¬φ1. Fix h, g, u. (1) By the inductive hypothesis (1), semantics is defined for φ1. It

follows that semantics is defined for ¬φ1 = φ. (2) Fix X ∈ X and A ⊆ B ⊆ N. (a) Suppose
that all free occurrences of X in φ = ¬φ1 are positive. Then, all free occurrences of X in φ1 are
negative. Suppose now that M, h, g[X 7→ A], u |= φ = ¬φ1, which means that M, h, g[X 7→
A], u 6|= φ1. By the inductive hypothesis (contrapositive of 2b), M, h, g[X 7→ B], u 6|= φ1 and
hence M, h, g[X 7→ B], u |= ¬φ1 = φ. (b) Similarly.
• The cases φ = (φ1 ∧ φ2), (φ1 ∨ φ2),#φ1, φ1,�φ1 are all easy.
• φ = ∀xφ1. Fix h, g, u. (1) Easy. (2) Fix X ∈ X and A ⊆ B ⊆ N. (a) Suppose that all

free occurrences of X in ∀xφ1, and hence in φ1, are positive and that M, h, g[X 7→ A], u |=
∀xφ1. Assume to the contrary that M, h, g[X 7→ B], u 6|= ∀xφ1. There is d ∈ D such that
M, h[x 7→ d], g[X 7→ B], u 6|= φ1. From the contrapositive of inductive hypothesis (2a), we get
that M, h[x 7→ d], g[X 7→ A], u 6|= φ1. Contradiction. (b) Similarly.
• φ = ∃xφ1. Fix h, g, u. (1) Easy. (2) Fix X ∈ X and A ⊆ B ⊆ N. (a) Suppose that all free

occurrences of X in ∃xφ1, and hence in φ1, are positive and that M, h, g[X 7→ A], u |= ∃xφ1.
There is d ∈ D such that M, h[x 7→ d], g[X 7→ A], u |= φ1. From the inductive hypothesis (2a),
we have that M, h[x 7→ d], g[X 7→ B], u |= φ1, which implies that M, h, g[X 7→ B], u |= ∃xφ1.
(b) Similarly.
• φ = µY φ1. Fix h, g, u. (1) Consider the function

f : ℘ (N)→ ℘ (N) f(S) =
{
v ∈ N |M, h, g[Y 7→ S], v |= φ1

}
= ‖φ1‖M,h

g[Y 7→S] .

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 15

By the inductive hypothesis (1), semantics is defined for φ1 under M, h, g[X 7→ S] for any
S ⊆ N and any moment v. So, f is a well-defined function. It remains to show that f has
least fixpoint. Since µY φ1 is a FOTLµν-formula, all free occurrences of Y in φ1 are positive.
This implies that f is monotonic. Let S1 ⊆ S2 ⊆ N. We show that f(S1) ⊆ f(S2). Let
v ∈ f(S1), which means that M, h, g[Y 7→ S1], v |= φ1. By the inductive hypothesis (2a), we
get that M, h, g[Y 7→ S2], v |= φ1 and hence v ∈ f(S2). Since ℘ (N) is a complete lattice with
respect to set inclusion, we have by the Knaster-Tarski theorem that f has least fixpoint. It
follows that semantics is defined for φ. (2) Fix X ∈ X and A ⊆ B ⊆ N. If X = Y , then all
occurrences of X in φ are bound and hence truth for φ is independent of the assignment to
X. The interesting case is when X 6= Y . (a) Suppose that all free occurrences of X in φ, and
hence in φ1, are positive and that M, h, g[X 7→ A], u |= φ = µY φ1. Consider the functions

fA : ℘ (N)→ ℘ (N) fA(S) =
{
v ∈ N |M, h, g[X 7→ A, Y 7→ S], v |= φ1

}
= ‖φ1‖M,h

g[X 7→A,Y 7→S]

fB : ℘ (N)→ ℘ (N) fB(S) =
{
v ∈ N |M, h, g[X 7→ B, Y 7→ S], v |= φ1

}
= ‖φ1‖M,h

g[X 7→B,Y 7→S] .

Notice that all free occurrences of Y in φ1 are positive. From the inductive hypothesis (2a),
we deduce that both fA and fB are monotonic and that for any S ∈ ℘ (N), fA(S) ⊆ fB(S).
By the Knaster-Tarski theorem, fA has least fixpoint lfp(fA) and fB has least fixpoint lfp(fB),
where

lfp(fA) =
⋂{

S ∈ ℘ (N) | fA(S) ⊆ S
}︸ ︷︷ ︸

PREF (fA)

lfp(fB) =
⋂{

S ∈ ℘ (N) | fB(S) ⊆ S
}︸ ︷︷ ︸

PREF (fB)

Notice that PREF (fB) ⊆ PREF (fA)

S ∈ PREF (fB) =⇒ fB(S) ⊆ S =⇒ fA(S) ⊆ S =⇒ S ∈ PREF (fA),

which implies that lfp(fA) ⊆ lfp(fB). Therefore, u ∈ lfp(fA), from which it follows that
u ∈ lfp(fB) and M, h, g[X 7→ B], u |= µY φ1 = φ. (b) The case in which all free occurrences
of X in φ are negative is similar. As before, we have that fA and fB are monotonic, since all
free occurrences of Y in φ1 are positive (inductive hypothesis 2a). The inductive hypothesis
(2b) gives us that for any S ∈ ℘ (N), fB(S) ⊆ fA(S). Therefore, lfp(fB) ⊆ lfp(fA) and we
are done.
• φ = νY φ1. Fix h, g, u. (1) We prove this part with arguments similar to the ones for φ =
µY φ1. By the Knaster-Tarski theorem, a monotonic function on the complete lattice ℘ (N)
has greatest fixpoint. (2) As before, we define functions fA, fB, which are both monotonic.
By the Knaster-Tarski theorem, fA has greatest fixpoint gfp(fA) and fB has greatest fixpoint
gfp(fB), where

gfp(fA) =
⋃{

S ∈ ℘ (N) | S ⊆ fA(S)
}︸ ︷︷ ︸

POSTF (fA)

gfp(fB) =
⋃{

S ∈ ℘ (N) | S ⊆ fB(S)
}︸ ︷︷ ︸

POSTF (fB)

It is then easy to see, for example, that ∀S ⊆ N
[
fA(S) ⊆ fB(S)

]
implies that POSTF (fA) ⊆

POSTF (fB) and hence gfp(fA) ⊆ gfp(fB). �

Definition 5 (equivalence). Let φ, ψ be FOTLµν-formulas. We say that φ and ψ are equivalent,
and write φ ≡ ψ, if for any first-order temporal structure M, any individual variable assignment
h, any fixpoint variable assignment g, and any moment u ∈ N,

M, h, g, u |= φ ⇐⇒ M, h, g, u |= ψ .

Equivalently, for any M, h, g, ‖φ‖M,h
g = ‖ψ‖M,h

g .

Definition 6 (satisfiability, equisatisfiability). We say that a FOTLµν-formula φ is satisfiable
if there is a first-order temporal structure M, an individual variable assignment h, a fixpoint
variable assignment g, and a moment u ∈ N such that M, h, g, u |= φ. Two FOTLµν-formulas
φ, ψ are called equisatisfiable if φ is satisfiable if and only if ψ is satisfiable.

16 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

Note that a fixpoint variable is given semantics similarly to a propositional variable. So, if
we are given a FOTLµν-formula φ with free fixpoint variables X1, . . . , Xk, we can construct an
equisatisfiable FOTLµν-fp-sentence ψ, which is the result of replacing each Xi by a propositional
variable pXi that does not occur in φ. For example,

φ = #(∃xPx ∧X) ∨ µY (∀xRxx ∨ Z ∨ 5Y) ψ = #(∃xPx ∧ pX) ∨ µY (∀xRxx ∨ pZ ∨ 5Y)

φ and ψ are equisatisfiable. Thus, from a FOTLµν-formula we can easily construct an equisat-
isfiable fp-sentence.

If a FOTLµν-formula φ has free individual variables fvars[φ] = {x1, . . . , xk}, then it is satisfi-
able iff the dom-sentence ∃x1 · · · ∃xkφ is satisfiable.

Definition 7 (substitution). Let φ, ψ be FOTLµν-formulas and X be a fixpoint variable. We
denote the formula that results from substituting ψ for X in φ by [φ]{ψ/X}. More formally,

[p]{ψ/X} = p

[Y]{ψ/X} =

{
ψ, if Y = X

Y, if Y 6= X

[P (t1, . . . , tn)]{ψ/X} = P (t1, . . . , tn)

[◦φ]{ψ/X} = ◦[φ]{ψ/X} , where ◦ ∈ {¬,#, ,�}
[φ1 ⊗ φ2]{ψ/X} = [φ1]{ψ/X} ⊗ [φ2]{ψ/X} , where ⊗ ∈ {∧,∨}

[Qxφ]{ψ/X} = Qx[φ]{ψ/X} , where Q ∈ {∀, ∃}

[fY φ]{ψ/X} =

{
fY φ, if Y = X

fY [φ]{ψ/X}, if Y 6= X
, where f ∈ {µ, ν}

For example, [∃xµY (Rxy ∨ (X ∧ #Y))]{ψ/X} = ∃xµY (Rxy ∨ (ψ ∧ #Y)). We should note
that, when substituting, it is possible to get a formula that is not well-formed, as the following
example illustrates.

φ = µZ(Py ∨ Y ∨#Z) ψ = ∃yRxy ∧ ¬Z [φ]{ψ/Y } = µZ[Py ∨ (∃yRxy ∧ ¬Z) ∨#Z]

Clearly, [φ]{ψ/Y } is not a FOTLµν-formula, because the first occurrence of Z is negative.

Lemma 8 (substitution-assignment lemma). Let φ be a FOTLµν-formula. For any ψ ∈ FOTLµν ,
any first-order temporal structure M, any individual variable assignment h, any fixpoint variable
assignment g, any fixpoint variable X, and any moment u ∈ N, if no free variable (individual
or fixpoint) in ψ gets bound in [φ]{ψ/X}, then

M, h, g, u |= [φ]{ψ/X} ⇐⇒ M, h, g[X 7→ ‖ψ‖M,h
g], u |= φ .

Proof. By induction on φ.
• The cases φ = p, P (t1, . . . , tn), Y are trivial.
• The cases φ = ¬φ1, (φ1 ∧ φ2), (φ1 ∨ φ2),#φ1, φ1,�φ1 are easy.
• φ = ∀xφ1. Fix ψ,M with domain D, h, g,X, u. Suppose that no free variable in ψ gets

bound in [φ]{ψ/X} and that M, h, g, u |= [φ]{ψ/X} = [∀xφ1]{ψ/X} = ∀x[φ1]{ψ/X}. For
contradiction, assume that

M, h, g[X 7→ ‖ψ‖M,h
g], u 6|= φ = ∀xφ1 ,

which implies that there is d ∈ D such that

M, h[x 7→ d], g[X 7→ ‖ψ‖M,h
g], u 6|= φ1 .

Observe that x does not appear free in ψ (if it did, then it would get bound in [φ]{ψ/X})
and therefore the truth set of ψ is independent of the assignment to x. So, we have that

M, h[x 7→ d], g[X 7→ ‖ψ‖M,h[x 7→d]
g], u 6|= φ1 .

Clearly, no free variable in ψ gets bound in [φ1]{ψ/X}. By the inductive hypothesis,

M, h[x 7→ d], g, u 6|= [φ1]{ψ/X} .

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 17

Contradiction. The converse is shown using similar arguments.
• φ = ∃xφ1. Fix ψ,M with domain D, h, g,X, u. Suppose that no free variable in ψ gets bound

in [φ]{ψ/X} and that

M, h, g, u |= [φ]{ψ/X} = [∃xφ1]{ψ/X} = ∃x[φ1]{ψ/X} ,
which means that there is d ∈ D such that M, h[x 7→ d], g, u |= [φ1]{ψ/X}. Notice that x
does not appear free in ψ and that no free variable in ψ gets bound in [φ1]{ψ/X}. From the
inductive hypothesis, we get that

M, h[x 7→ d], g[X 7→ ‖ψ‖M,h[x7→d]
g], u |= φ1

and, since the truth set of ψ is independent of the assignment to x,

M, h[x 7→ d], g[X 7→ ‖ψ‖M,h
g], u |= φ1 .

It follows that
M, h, g[X 7→ ‖ψ‖M,h

g], u |= ∃xφ1 = φ .

We show the converse similarly.
• φ = µY φ1. Fix ψ,M, h, g,X, u. Suppose that no free variable in ψ gets bound in [φ]{ψ/X}

and hence in [φ1]{ψ/X}. If Y = X, then [φ]{ψ/X} = φ and the property follows easily. If
Y 6= X, then [φ]{ψ/X} = [µY φ1]{ψ/X} = µY [φ1]{ψ/X}. We define the functions

f1(S) =
{
v ∈ N |M, h, g[Y 7→ S], v |= [φ1]{ψ/X}

}
f2(S) =

{
v ∈ N |M, h, g[X 7→ ‖ψ‖M,h

g , Y 7→ S], v |= φ1

}
Observe that Y does not occur free in ψ and therefore

g[X 7→ ‖ψ‖M,h
g , Y 7→ S] = g[Y 7→ S][X 7→ ‖ψ‖M,h

g[Y 7→S]] .

From the inductive hypothesis, we easily deduce that for any S ⊆ N, f1(S) = f2(S). It follows
that lfp(f1) = lfp(f2), from which we get that

M, h, g, u |= [φ]{ψ/X} = µY [φ1]{ψ/X} ⇐⇒ u ∈ lfp(f1)

⇐⇒ u ∈ lfp(f2) ⇐⇒ M, h, g[X 7→ ‖ψ‖M,h
g], u |= µY φ1 = φ .

• The case φ = νY φ1 is similar to the previous one. �

Lemma 9 (fixpoint unfolding).
(1) Let µXφ be a FOTLµν-formula. If no free variable in µXφ gets bound in [φ]{µXφ/X},

then µXφ ≡ [φ]{µXφ/X}.
(2) Let νXφ be a FOTLµν-formula. If no free variable in νXφ gets bound in [φ]{νXφ/X}, then

νXφ ≡ [φ]{νXφ/X}.

Proof. (1) Fix M, h, g, u. We define f(S) = ‖φ‖M,h
g[X 7→S] and observe that lfp(f) = ‖µXφ‖M,h

g .
We have that

M, h, g, u |= µXφ ⇐⇒ u ∈ lfp(f) = f(lfp(f)) ⇐⇒ u ∈ ‖φ‖M,h
g[X 7→lfp(f)] ⇐⇒

M, h, g[X 7→ lfp(f)], u |= φ ⇐⇒ M, h, g[X 7→ ‖µXφ‖M,h
g], u |= φ

Lemma 8⇐⇒
M, h, g, u |= [φ]{µXφ/X} .

(2) Similarly to (1). �

18 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

4. Signatures

Given a monotonic function f over subsets of a set, the Knaster-Tarski theorem [56] gives
the least fixpoint of f , which we denote by lfp(f), in terms of a transfinite sequence

µ0(f), µ1(f), µ2(f), . . . , µω(f), µω+1(f), µω+2(f), . . .

that ranges over the class of ordinals. This sequence is increasing and we can say intuitively
that at every step it gives us a better approximation of the least fixpoint. Similarly, the greatest
fixpoint of f , denoted by gfp(f), can be given in terms of a transfinite sequence

ν0(f), ν1(f), ν2(f), . . . , νω(f), νω+1(f), νω+2(f), . . .

which is decreasing. Each step in the above sequences corresponds to an application of the
function f .

The notion of signature, introduced later in this section, captures the intuition that in
order to verify that a formula is satisfied at a specific moment, we only need to perform a
certain “amount” of “iterations” (these iterations correspond to least fixpoint unfoldings) for
the least fixpoints involved in the formula. Consider, for example, the least fixpoint formula
φ = µX(�⊥ ∨ 3X), which is true at the moments 0, 3, 6, 9, 12, . . .

φ ¬φ ¬φ φ ¬φ ¬φ φ ¬φ ¬φ φ ¬φ ¬φ
• ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ N//
0 1 2 3 4 5 6 7 8 9 10 11

The truth set of φ is the least fixpoint of the function f(S) = {0} ∪ {u + 3 | u ∈ S}. The
sequence of approximations of lfp(f) is

∅, {0}, {0, 3}, {0, 3, 6}, {0, 3, 6, 9}, {0, 3, 6, 9, 12}, {0, 3, 6, 9, 15}, . . .

which means that at every moment 3u that is in the truth set of φ, we need (u+ 1) iterations
to verify that 3u is indeed in the least fixpoint.

First, we will discuss how we can obtain positive form by “pushing down” the negations. We
continue with a formal definition of fixpoint approximants. Then, we proceed to show some
lemmas that give us confidence that our definitions have sufficiently captured our intuition
about approximants. For example, we will show that if we “increase the amount of least fixpoint
iterations”, we get a wider truth set. Subsequently, the concept of signature is defined. We
speak of µ-signatures and their dual ν-signatures. We conclude with an important proposition,
the main point of which is that µ-signature decreases when a least fixpoint is unfolded and does
not increase in the rest of the cases.

4.1. Positive Form. The operators of the language are sufficient to transform any FOTLµν-
formula to an equivalent one in which all negations occur only in front of propositional variables
of fixpoint variables. We then say that the formula is in positive form. Apart from the well-
known equivalences

¬¬φ ≡ φ ¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2 ¬∀xφ ≡ ∃x¬φ
¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2 ¬∃xφ ≡ ∀x¬φ

we can easily prove the following.

¬#φ ≡ #¬φ ¬ φ ≡ �¬φ ¬�φ ≡ ¬φ

It remains to show that we can push negations in when they occur in front of fixpoint formulas.

Lemma 10 (pushing negation in through fixpoints). For any FOTLµν-formula φ and any fix-
point variable X with all free occurrences of X in φ being positive,

¬µXφ ≡ νX¬[φ]{¬X/X} ¬νXφ ≡ µX¬[φ]{¬X/X} .

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 19

Proof. Fix a first-order temporal structure M, an individual variable assignment h, a fixpoint
variable assignment g, and a moment u ∈ N. We define the functions

f1 : ℘ (N)→ ℘ (N) f1(S) =
{
v ∈ N |M, h, g[X 7→ S], v |= φ

}
f2 : ℘ (N)→ ℘ (N) f2(S) =

{
v ∈ N |M, h, g[X 7→ S], v |= ¬[φ]{¬X/X}

}
.

We observe that

‖¬µXφ‖M,h
g = N \ ‖µXφ‖M,h

g = N \ lfp(f1) ‖νX¬[φ]{¬X/X}‖M,h
g = gfp(f2) ,

and that for any S ∈ ℘ (N),

f2(S) = N \
{
v ∈ N | (N, <), h, g[X 7→ S], v |= [φ]{¬X/X}

}
= N \

{
v ∈ N | (N, <), h, g[X 7→ ‖¬X‖hg[X 7→S]], v |= φ

}
(Lemma 8)

= N \
{
v ∈ N | (N, <), h, g[X 7→ N \ S], v |= φ

}
= N \ f1(N \ S) .

It also holds that for any S ∈ ℘ (N), f1(S) = N\f2(N\S). Let S ⊆ N and Sc = N\S. It follows
that f2(Sc) = N \ f1(N \Sc) = N \ f1(S), which implies that f1(S) = N \ f2(Sc) = N \ f2(N \S).

We have that gfp(f2) = f2(gfp(f2)) = N \ f1(N \ gfp(f2)), which implies that N \ gfp(f2) =
f1(N \ gfp(f2)). It follows that N \ gfp(f2) is a fixpoint of f1 and hence lfp(f1) ⊆ N \ gfp(f2).
Similarly, lfp(f1) = f1(lfp(f1)) = N\f2(N\lfp(f1)), which means that N\lfp(f1) = f2(N\lfp(f1)).
Therefore, N\ lfp(f1) is a fixpoint of f2 and hence N\ lfp(f1) ⊆ gfp(f2). So, N\gfp(f2) ⊆ lfp(f1).
We have that lfp(f1) = N \ gfp(f2) and we are done. We prove the equivalence ¬νXφ ≡
µX¬[φ]{¬X/X} with similar arguments. �

Definition 11 (FOTLpos
µν). We define the set of FOTLpos

µν -formulas to be the smallest subset of
Σ? that satisfies the following conditions.
• FOTLµν includes P0 and {¬p | p ∈ P0}.
• FOTLµν includes X and {¬X | X ∈ X}.
• For any predicate symbol P , if t1, . . . , tn ∈ T (n = ar[P]), then P (t1, . . . , tn),¬P (t1, . . . , tn) ∈
FOTLpos

µν .
• For any unary operator ◦ ∈ {#, ,�}, if φ ∈ FOTLpos

µν , then ◦φ ∈ FOTLpos
µν .

• For any binary operator ⊗ ∈ {∧,∨}, if φ1, φ2 ∈ FOTLpos
µν , then (φ1 ⊗ φ2) ∈ FOTLpos

µν .
• For any quantifier Q ∈ {∀, ∃}, if x ∈ V and φ ∈ FOTLpos

µν , then Qxφ ∈ FOTLpos
µν .

• For any fixpoint operator f ∈ {µ, ν}, if X is a fixpoint variable, φ ∈ FOTLpos
µν , and all free

occurrences of X in φ are positive, then fXφ ∈ FOTLpos
µν .

Definition 12 (pos[·], neg[·]). We define the function pos[·] : FOTLµν → FOTLpos
µν , which con-

verts a FOTLµν-formula to an equivalent one in positive form.

pos[¬p] = ¬p pos[p] = p

pos[¬X] = ¬X pos[X] = X

pos[¬P (t1, . . . , tn)] = ¬P (t1, . . . , tn) pos[P (t1, . . . , tn)] = P (t1, . . . , tn)

pos[¬¬φ] = pos[φ]

pos[¬(φ1 ∧ φ2)] = pos[¬φ1] ∨ pos[¬φ2] pos[φ1 ∧ φ2] = pos[φ1] ∧ pos[φ2]

pos[¬(φ1 ∨ φ2)] = pos[¬φ1] ∧ pos[¬φ2] pos[φ1 ∨ φ2] = pos[φ1] ∨ pos[φ2]

pos[¬∀xφ] = ∃xpos[¬φ] pos[∀xφ] = ∀xpos[φ]

pos[¬∃xφ] = ∀xpos[¬φ] pos[∃xφ] = ∃xpos[φ]

pos[¬#φ] = #pos[¬φ] pos[#φ] = #pos[φ]

pos[¬ φ] = �pos[¬φ] pos[φ] = pos[φ]

pos[¬�φ] = pos[¬φ] pos[�φ] = �pos[φ]

pos[¬µXφ] = νXpos[¬[φ]{¬X/X}] pos[µXφ] = µXpos[φ]

pos[¬νXφ] = µXpos[¬[φ]{¬X/X}] pos[νXφ] = νXpos[φ]

20 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

We also define neg[φ] = pos[¬φ]. Consider a formula φ in positive form. The positive form of
its negation neg[φ] results from φ by replacing ∧ by ∨, ∨ by ∧, ∀ by ∃, ∃ by ∀, by �, �
by , µ by ν, ν by µ, p by ¬p, ¬p by p, P (t1, . . . , tn) by ¬P (t1, . . . , tn), and ¬P (t1, . . . , tn) by
P (t1, . . . , tn). For example,

φ = µX
{
 ∃xPx ∨

[
∀yRyy ∧#µY (X ∨ (Qz ∧#Y))

]}
∧ νW

[
νZ(¬p ∧#Z) ∧�3W

]
neg[φ] = νX

{
�∀¬Px ∧

[
∃¬Ryy ∨#νY (X ∧ (¬Qz ∨#Y))

]}
∨ µW

[
µZ(p ∨#Z) ∨ 3W

]
.

It is easy to see that neg[neg[φ]] = φ, which can be expressed equivalently as ψ = neg[φ] ⇐⇒
φ = neg[ψ]. In order to cut down on the clutter of the brackets, we will sometimes write +χ to
mean pos[χ] and ∼χ to mean neg[χ].

Lemma 13. Let φ be a FOTLµν-formula. Then, for any ψ ∈ FOTLµν and any X ∈ X ,
(1) if all free occurrences of X in φ are positive, then

+[φ]{ψ/X} = [+φ]{+ψ/X} ∼[φ]{ψ/X} = [∼[φ]{¬X/X}]{∼ψ/X}
(2) if all free occurrences of X in φ are negative, then

+[φ]{ψ/X} = [+[φ]{¬X/X}]{∼ψ/X} ∼[φ]{ψ/X} = [∼φ]{+ψ/X} .

Proof. By induction on φ. �

4.2. Fixpoint Approximants. Let µXφ be a FOTLµν-formula that is true at u under M, h, g.
That is, M, h, g, u |= µXφ or equivalently, u belongs to the least fixpoint of the monotonic
function

f(S) =
{
v ∈ N |M, h, g[X 7→ S], v |= φ

}
= ‖φ‖M,h

g[X 7→S] .

By the Knaster-Tarski theorem, the least fixpoint of f is equal to

lfp(f) = sup
α∈Ord

µα(f) =
⋃

α∈Ord

µα(f) ,

where Ord is the proper class of ordinals and µα(f) is defined as

µ0(f) = ∅ µα+1(f) = f(µα(f)) µλ(f) = sup
α<λ

µα(f) =
⋃
α<λ

µα(f), for limit ordinal λ

It follows that u ∈ lfp(f) and hence there is some ordinal α such that u ∈ µα(f). It is easy to
show that if α < β, then µα(f) ⊆ µβ(f).

Consider now a FOTLµν-formula νXφ that is false at u under M, h, g. That is, u does not
belong to the greatest fixpoint of f , which is equal to

gfp(f) = inf
α∈Ord

να(f) =
⋂

α∈Ord

να(f) .

We deduce that there is an ordinal α such that u /∈ να(f). να(f) is defined as follows.

ν0(f) = N να+1(f) = f(να(f)) νλ(f) = inf
α<λ

να(f) =
⋂
α<λ

να(f), for limit ordinal λ

If α < β, then νβ(f) ⊆ να(f).

Definition 14 (annotated fixpoint operators). We extend the syntax so that we also have
annotated fixpoint operators µα and να for any ordinal α. We then get the set of formulas
FOTLµνα and the corresponding set FOTLpos

µνα of FOTLµνα-formulas in positive form. Semantics
is defined as one would expect.

M, h, g, u |= µαXφ ⇐⇒ u ∈ µα(fφ), where fφ : ℘ (N)→ ℘ (N) is defined as

fφ(S) =
{
v ∈ N |M, h, g[X 7→ S], v |= φ

}
= ‖φ‖M,h

g[X 7→S]

M, h, g, u |= ναXφ ⇐⇒ u ∈ να(fφ), where fφ : ℘ (N)→ ℘ (N) is defined as

fφ(S) =
{
v ∈ N |M, h, g[X 7→ S], v |= φ

}
= ‖φ‖M,h

g[X 7→S]

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 21

Definition 15 (positive normal form). We say that a FOTLµν-formula φ is in positive normal
form if it is positive and all fixpoint formulas in sbf[φ] bind different fixpoint variables. For
example,

φ = µX(∃xPx ∨#X)︸ ︷︷ ︸
φ1

∧ 2 νY (p ∧�2Y)︸ ︷︷ ︸
φ2

∧

φ3︷ ︸︸ ︷
µZ
[
µX(∃xPx ∨#X)︸ ︷︷ ︸

φ1

∨ 5Z
]

all the fixpoint subformulas of φ (i.e. φ1, φ2, and φ3) bind the distinct fixpoint variables X,Y, Z
respectively and hence φ is in positive normal form. The formula

ψ = µY (∀x¬Qx ∨#3Y)︸ ︷︷ ︸
ψ1

∧�# νY (∃y∀zRyz ∧�2Y)︸ ︷︷ ︸
ψ2

,

however, is not in positive normal form, because its fixpoint subformulas ψ1, ψ2 bind the same
fixpoint variable, namely Y .

It is easy to see that renaming a bound fixpoint variable does not change semantics. For
example, the formulas φ = ∃xµX(Rxx∨#X) and φ = ∃xµY (Rxx∨#Y) are equivalent. So, for
any FOTLµν-formula φ there is an equivalent one in positive normal form, which can be easily
constructed from φ by applying the pos[·] function and renaming the bound fixpoint variables
appropriately. Some important properties follow.

(1) Let µ
νXφ be a FOTLpnf

µν -formula. Then, [φ]{µνXφ/X} is not necessarily a FOTLpnf
µν -formula.

For example,

νXφ = νXµY [(Px ∨ Y) ∧#X] in p.n.f.

[φ]{νXφ/X} = µY
{

(Px ∨ Y) ∧#νXµY [(Px ∨ Y) ∧#X]
}

not in p.n.f.

However, we can rectify this by renaming appropriately some bound fixpoint variables, while
preserving semantics. For the previous example, we would rename the bound variable Y in
φ to Z and thus

[
...
φ]{νXφ/X} = µZ

{
(Px ∨ Z) ∧#νXµY [(Px ∨ Y) ∧#X]

}
,

where
...
φ is equal to φ modulo the name of one bound variable. It is clear that [

...
φ]{νXφ/X}

is in positive normal form.
(2) Let φ be a FOTLpnf

µν -formula. Then, µ-vars[φ] and ν-vars[φ] are disjoint.
(3) Let µXφ be a FOTLpnf

µν -formula. Then, X /∈ µ-vars[φ].
(4) Let νXφ be a FOTLpnf

µν -formula. Then, X /∈ ν-vars[φ].

Definition 16 (annotation). We say that a partial function from the set of fixpoint variables
to the class of ordinals is an annotation. An annotation a : X → Ord induces a function from
FOTLµν to FOTLµνα as follows.

ann[p, a] = p

ann[X, a] = X

ann[P (t1, . . . , tn), a] = P (t1, . . . , tn)

ann[◦φ, a] = ◦ann[φ, a] , where ◦ ∈ {¬,#, ,�}
ann[φ1 ⊗ φ2, a] = ann[φ1, a]⊗ ann[φ2, a] , where ⊗ ∈ {∧,∨}

ann[Qxφ, a] = Qxann[φ, a] , where Q ∈ {∀,∃}

ann[fXφ, a] =

{
fa(X)Xann[φ, a], if a(X) is defined
fXann[φ, a], if a(X) is undefined

, where f ∈ {µ, ν}

22 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

For example,

φ = µX
[
µY (∃xPx ∨ 10Y) ∨#3X

]
∧ ∀yνZ(¬Ryy ∧�4Z) ∧ µY (p ∨ 2Y)

a = {X 7→ 5, Y 7→ ω}
ann[φ, a] = µ5X

[
µωY (∃xPx ∨ 10Y) ∨#3X

]
∧ ∀yνZ(¬Ryy ∧�4Z) ∧ µωY (p ∨ 2Y)

Note that ann[φ, a] depends only on the values of a for µν-vars[φ]. That is, any two annotations
a, b that have the same values for all the fixpoint variables in µν-vars[φ] annotate the formula
φ in exactly the same way.

Definition 17 (ordering annotations). Let a : X → Ord, b : X → Ord be annotations. We
define the partial order ≤ and the strict partial order < on annotations as follows.

a ≤ b def⇐⇒ Domain(a) ⊆ Domain(b) &

for any X ∈ Domain(a), a(X) ≤ b(X)

a < b
def⇐⇒ a ≤ b & there is Y ∈ Domain(a) s.t. a(Y) < b(Y) .

Consider now the annotations that are defined on a specified finite set of fixpoint variables
V = {X0, X1, . . . , Xk}, which is linearly ordered as X0 < X1 < . . . < Xk. They can be easily
well-ordered lexicographically. That is, for any a : V → Ord, b : V → Ord,

a <V b
def⇐⇒ a(X0)a(X1) . . . a(Xk) <lex b(X0)b(X1) . . . b(Xk) .

It is easy to see that for any annotations a, b defined on V , a < b =⇒ a <V b. We write a ≤V b
to mean (a <V b or a = b).

Lemma 18 (annotation and substitution). Let φ, ψ be FOTLµν-formulas, X be a fixpoint
variable, and a an annotation. Then,

ann[[φ]{ψ/X}, a] = [ann[φ, a]]{ann[ψ, a]/X} .

Proof. An easy induction on φ. �

Lemma 19. pos[ann[φ, a]] = ann[pos[φ], a].

Proof. Easy. �

Definition 20 (µ-annotation, ν-annotation). Let φ be a FOTLpnf
µν -formula and a : X → Ord.

We say that a is a µ-annotation for φ if it is defined at all fixpoint variables in µ-vars[φ] and at
no fixpoint variables in ν-vars[φ]. The idea is that a µ-annotation only annotates least fixpoint
subformulas. Similarly, we say that a is a ν-annotation for φ if it is defined on ν-vars[φ] and
undefined on µ-vars[φ]. Thus, a ν-annotation only annotates greatest fixpoint subformulas.
These definitions are meaningful, because (as noted in Definition 15) for a formula φ in positive
normal form, µ-vars[φ] ∩ ν-vars[φ] = ∅.

Observe all ν (µ) operators in φ become µ (ν) operators in neg[φ]. So, a ν-annotation for φ
is a µ-annotation for neg[φ]. Similarly, a µ-annotation for φ is a ν-annotation for neg[φ].

Lemma 21 (increasing µ-annotation). Let φ be a FOTLpnf
µν -formula. Then, for any µ-annotations

a, b for φ with a ≤ b, any first-order temporal structure M, any individual variable assignment
h, any fixpoint variable assignment g, and any moment u ∈ N,

M, h, g, u |= ann[φ, a] =⇒ M, h, g, u |= ann[φ, b] .

Proof. By induction on φ.
• The cases φ = p,¬p,X,¬X,P (t1, . . . , tn),¬P (t1, . . . , tn) are trivial.
• φ = (φ1 ∧ φ2). Fix a, b with a ≤ b, and M, h, g, u. Suppose that M, h, g, u |= ann[φ, a],

which implies that M, h, g, u |= ann[φ1, a] and M, h, g, u |= ann[φ2, a]. By the inductive
hypothesis, M, h, g, u |= ann[φ1, b] and M, h, g, u |= ann[φ2, b]. Therefore, M, h, g, u |=
ann[φ1, b] ∧ ann[φ2, b] = ann[φ1 ∧ φ2, b].
• The case φ = (φ1 ∨ φ2) is dealt with similar arguments.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 23

• φ = ∀xφ1. Fix a, b with a ≤ b, M with domain D, and h, g, u. Suppose that M, h, g, u |=
ann[φ, a] = ann[∀xφ1, a] = ∀xann[φ1, a] and assume for contradiction that M, h, g, u 6|=
ann[φ, b] = ann[∀xφ1, b] = ∀xann[φ1, b]. There is d ∈ D such that M, h[x 7→ d], g, u 6|=
ann[φ1, b]. By the contrapositive of the inductive hypothesis, M, h[x 7→ d], g, u 6|= ann[φ1, a].
Contradiction.
• φ = ∃xφ1. Fix a, b with a ≤ b, M with domain D, and h, g, u. Suppose that M, h, g, u |=

ann[φ, a] = ann[∃xφ1, a] = ∃xann[φ1, a], which means that there is d ∈ D such that M, h[x 7→
d], g, u |= ann[φ1, a]. From the inductive hypothesis, we get that M, h[x 7→ d], g, u |= ann[φ1, b]
and therefore M, h, g, u |= ∃xann[φ1, b] = ann[∃xφ1, b] = ann[φ, b].
• The cases φ = #φ1, φ1,�φ1 are easy.
• φ = µXφ1. Fix a, b with a ≤ b and M, h, g, u. Suppose that M, h, g, u |= ann[µXφ1, a] =
µαXann[φ1, a], where α = a(X). We define the functions

f1(S) =
{
v ∈ N |M, h, g[X 7→ S], v |= ann[φ1, a]

}
= ‖ann[φ1, a]‖M,h

g[X 7→S]

f2(S) =
{
v ∈ N |M, h, g[X 7→ S], v |= ann[φ1, b]

}
= ‖ann[φ1, b]‖M,h

g[X 7→S]

From the inductive hypothesis we get that for any S ⊆ N, f1(S) ⊆ f2(S). Let β = b(X) and
notice that α ≤ β. It follows that u ∈ µα(f1) ⊆ µβ(f1) ⊆ µβ(f2). Therefore, M, h, g, u |=
µβXann[φ1, b] = ann[µXφ1, b].
• φ = νXφ1. Fix a, b with a ≤ b and h, g, u. Suppose that M, h, g, u |= ann[νXφ1, a] =
νXann[φ1, a]. We define the functions

f1(S) = ‖ann[φ1, a]‖M,h
g[X 7→S] f2(S) = ‖ann[φ1, b]‖M,h

g[X 7→S] .

From the inductive hypothesis we get that for any S ⊆ N, f1(S) ⊆ f2(S). Therefore, u ∈
gfp(f1) ⊆ gfp(f2) and hence M, h, g, u |= νXann[φ1, b] = ann[νXφ1, b]. �

Corollary 22 (increasing ν-annotation). Let φ be a FOTLpnf
µν -formula. Then, for any ν-

annotations a, b for φ with a ≤ b, any first-order temporal structure M, any individual variable
assignment h, any fixpoint variable assignment g, and any moment u ∈ N,

M, h, g, u 6|= ann[φ, a] =⇒ M, h, g, u 6|= ann[φ, b] .

Proof. Let ψ = pos[¬φ], which means that φ = pos[¬ψ]. Fix ν-annotations a, b for φ with a ≤ b,
M, h, g, u. Notice that a, b are µ-annotations for ψ. Suppose that M, h, g, u 6|= ann[φ, a], which
implies that

M, h, g, u |= pos[¬ann[φ, a]] = pos[ann[¬φ, a]] Lemma 19= ann[pos[¬φ], a] = ann[ψ, a] .

From Lemma 21, we get that M, h, g, u |= ann[ψ, b] and hence

M, h, g, u 6|= pos[¬ann[ψ, b]] = pos[ann[¬ψ, b]] Lemma 19= ann[pos[¬ψ], b] = ann[φ, b] . �

Lemma 23. Fix a first-order temporal structure M. Let φ be a FOTLpnf
µν -formula. The following

hold:
(1) For any individual variable assignment h, any fixpoint variable assignment g, and any

moment u ∈ N, if there is a µ-annotation a for φ such that M, h, g, u |= ann[φ, a], then
M, h, g, u |= φ.

(2) There is a µ-annotation a for φ such that for any individual variable assignment h, any
fixpoint variable assignment g, and any moment u ∈ N,

M, h, g, u |= φ ⇐⇒ M, h, g, u |= ann[φ, a] .

Proof. Fix M with domain D. The proof proceeds by induction on φ.
• The cases φ = p,¬p,X,¬X,P (t1, . . . , tn),¬P (t1, . . . , tn) are trivial.
• φ = (φ1 ∧ φ2). (1) Fix h, g, u. Suppose that there is a µ-annotation a for φ such that

M, h, g, u |= ann[φ, a] = ann[φ1, a] ∧ ann[φ2, a] .

Then, M, h, g, u |= ann[φ1, a] and M, h, g, u |= ann[φ2, a]. From the inductive hypothesis (1),
we have that M, h, g, u |= φ1 and M, h, g, u |= φ2, which implies that M, h, g, u |= φ1∧φ2 = φ.

24 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

(2) From the inductive hypothesis (2), we have that there is a µ-annotation ai for φi such
that for any h, g, ‖φi‖hg = ‖ann[φ, ai]‖hg . It is clear that µ-vars[φ] = µ-vars[φ1]∪µ-vars[φ2]. We
define a µ-annotation a for φ as follows.

a(X) =

a1(X), if a1(X) is defined & a2(X) is undefined
a2(X), if a1(X) is undefined & a2(X) is defined
sup{a1(X), a2(X)}, if both a1(X) and a2(X) are defined

We show that a satisfies the property for φ. Fix h, g, u. (a) Observe that a1 ≤ a and a2 ≤ a.
Suppose that M, h, g, u |= φ = φ1∧φ2, which implies that M, h, g, u |= φ1 and M, h, g, u |= φ2.
It follows that M, h, g, u |= ann[φ1, a1] and M, h, g, u |= ann[φ2, a2]. From Lemma 21, we get
that M, h, g, u |= ann[φ1, a] and M, h, g, u |= ann[φ2, a]. We deduce that

M, h, g, u |= ann[φ1, a] ∧ ann[φ2, a] = ann[φ1 ∧ φ2, a] = ann[φ, a] .

(b) For the converse, suppose that

M, h, g, u |= ann[φ, a] = ann[φ1 ∧ φ2, a] = ann[φ1, a] ∧ ann[φ2, a] .

So, M, h, g, u |= ann[φ1, a] and M, h, g, u |= ann[φ2, a]. From the inductive hypothesis (1), we
get that M, h, g, u |= φ1 and M, h, g, u |= φ2. Hence M, h, g, u |= φ1 ∧ φ2 = φ.
• The case φ = (φ1 ∨ φ2) is similar to the previous one.
• φ = ∀xφ1. (1) Fix h, g, u and suppose that there is a µ-annotation a for φ such that

M, h, g, u |= ann[∀xφ1, a] = ∀xann[φ1, a]. Assume to the contrary that M, h, g, u 6|= ∀xφ1.
There is d ∈ D such that M, h[x 7→ d], g, u 6|= φ1. From the contrapositive of inductive
hypothesis (1), we deduce that M, h[x 7→ d], g, u 6|= ann[φ1, a]. Contradiction. (2) From the
inductive hypothesis (2), we get that there is a µ-annotation a for φ1 such that

‖φ1‖M,h
g = ‖ann[φ1, a]‖M,h

g .

We argue that a satisfies the property for φ. Fix h, g, u. (a) Suppose that M, h, g, u |= ∀xφ1

and assume to the contrary that M, h, g, u 6|= ann[∀xφ1, a] = ∀xann[φ1, a]. There is d ∈ D such
that M, h, g, u 6|= ann[φ1, a]. From the inductive hypothesis (2), we get that M, h, g, u 6|= φ1.
Contradiction. (b) Suppose that M, h, g, u |= ann[∀xφ1, a] = ∀xann[φ1, a] and that, to the
contrary, M, h, g, u 6|= ∀xφ1. There is d ∈ D such that M, h[x 7→ d], g, u 6|= φ1. From the
contrapositive of the inductive hypothesis (1), we get that M, h[x 7→ d], g, u 6|= ann[φ1, a].
Contradiction.
• The case φ = ∃xφ1 is as straightforward as the previous one.
• The cases φ = #φ1, φ1,�φ1 are easy.
• φ = µXφ1. (1) Fix h, g, u and assume that there is a µ-annotation a for φ such that

M, h, g, u |= ann[µXφ1, a] = µαXann[φ1, a], where α = a(X).

We define the functions

f1(S) = ‖ann[φ1, a]‖M,h
g[X 7→S] f2(S) = ‖φ1‖M,h

g[X 7→S] .

From the inductive hypothesis (1), we get that for any S ⊆ N, f1(S) ⊆ f2(S). It follows that
u ∈ µα(f1) ⊆ lfp(f1) ⊆ lfp(f2) and hence M, h, g, u |= µXφ1. (2) It follows from the inductive
hypothesis (2) that there is a µ-annotation a1 for φ1 such that for any h, g,

‖φ1‖M,h
g = ‖ann[φ1, a1]‖M,h

g .

Fix h, g, u and suppose that M, h, g, u |= µXφ1. There is an ordinal α = α(h, g, u) such that
M, h, g, u |= µαXφ1. The collection of all these ordinals is a set and since Ord is a proper
class, there is an ordinal β that is greater than all these α(h, g, u). So, for any h, g, we get
that

‖µXφ1‖M,h
g = ‖µβXφ1‖M,h

g .

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 25

Observe that µ-vars[µXφ1] = {X} ∪ µ-vars[φ1] and that X /∈ µ-vars[φ1]. We will show that
the µ-annotation a for φ, defined as

a(Y) =

{
β, if Y = X

a1(Y), if Y 6= X and Y ∈ µ-vars[φ1]

satisfies the property. First, we define the families of functions {fh,g1 }h,g, {f
h,g
2 }h,g as

fh,g1 (S) = ‖φ1‖M,h
g[X 7→S] fh,g2 (S) = ‖ann[φ1, a1]‖M,h

g[X 7→S]

and observe that for any h, g and any S ⊆ N, fh,g1 (S) = fh,g2 (S). Fix h, g, u. We have that

M, h, g, u |= µXφ1 ⇐⇒ M, h, g, u |= µβXφ1 ⇐⇒ u ∈ µβ(fh,g1) = µβ(fh,g2)

⇐⇒ M, h, g, u |= µβXann[φ1, a1] = µβXann[φ1, a] = ann[µXφ1, a] .

• φ = νXφ1. (1) Fix h, g, u. Suppose that there is a µ-annotation a for φ such that M, h, g, u |=
ann[νXφ1, a] = νXann[φ1, a]. We define the following functions.

f1(S) = ‖ann[φ1, a]‖M,h
g[X 7→S] f2(S) = ‖φ1‖M,h

g[X 7→S]

It follows from the inductive hypothesis (1) that for any S ⊆ N, f1(S) ⊆ f2(S). Therefore,
u ∈ gfp(f1) ⊆ gfp(f2) and hence M, h, g, u |= νXφ1. (2) It follows from the inductive
hypothesis (2) that there is a µ-annotation a1 for φ1 such that for any h, g,

‖φ1‖M,h
g = ‖ann[φ1, a1]‖M,h

g .

We define the families of functions {fh,g1 }h,g and {fh,g2 }h,g as previously and observe that for
any h, g and any S ⊆ N, fh,g1 (S) = fh,g2 (S). We argue that a1 satisfies the property. Fix
h, g, u. We have that

M, h, g, u |= νXφ1 ⇐⇒ u ∈ gfp(fh,g1) = gfp(fh,g2)

⇐⇒ M, h, g, u |= νXann[φ1, a1] = ann[νXφ1, a1] . �

Corollary 24. Let φ be a FOTLpnf
µν -formula. Then, for any first-order temporal structure M,

any individual variable assignment h, any fixpoint variable assignment g, and any moment u,

M, h, g, u |= φ ⇐⇒ there is a µ-annotation a for φ s.t. M, h, g, u |= ann[φ, a].

Proof. It is an immediate consequence of Lemma 23. �

Corollary 25. Let φ be a FOTLpnf
µν -formula. Then, for any first-order temporal structure M,

any individual variable assignment h, any fixpoint variable assignment g, and any moment u,

M, h, g, u 6|= φ ⇐⇒ there is a ν-annotation a for φ s.t. M, h, g, u 6|= ann[φ, a].

Proof. Fix φ,M, h, g, u. Suppose that M, h, g, u 6|= φ, which implies that M, h, g, u |= pos[¬φ].
From Corollary 24 it follows that there is a µ-annotation a for pos[¬φ] such that

M, h, g, u |= ann[pos[¬φ], a] Lemma 19= pos[ann[¬φ, a]] = pos[¬ann[φ, a]] .

Therefore, M, h, g, u 6|= ann[φ, a]. Observe that a is a ν-annotation for φ. �

4.3. Results on Signatures. We have already seen how formula satisfiability can be reduced
to fp-sentence satisfiability. So, from now on, we will be limiting our attention to fp-sentences.

Consider a fixpoint fp-sentence µ
νXψ. Observe that when unfolding to [ψ]{µνXψ/X}, we do

not run the risk of a free fixpoint variable in µ
νXψ getting bound. However, we still have to

require that no free individual variable in µ
νXψ gets bound in [ψ]{µνXψ/X} if we want semantics

to be preserved.

26 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

Definition 26 (fixpoint height). Let φ be a FOTLµν-formula. We define the fixpoint height
of φ to be the depth of nesting of fixpoint subformulas of φ. More formally we define | · |µν :
FOTLµν → N inductively as follows.

|p|µν = 0

|X|µν = 0

|P (t1, . . . , tn)|µν = 0

| ◦ φ|µν = |φ|µν ,where ◦ ∈ {¬,#, ,�}
|φ1 ⊗ φ2|µν = sup{|φ1|µν , |φ2|µν} , where ⊗ ∈ {∧,∨}
|Qxφ|µν = |φ|µν , where Q ∈ {∀, ∃}
|fXφ|µν = 1 + |φ|µν , where f ∈ {µ, ν}

For example, the fixpoint height of µX(Px ∨#X) is 1 and the fixpoint height of

µX[νY (¬Px ∧�10Y) ∨ (∃yRxy ∧X)]

is 2.

We have already discussed that unfolding a FOTLpnf
µν -formula fXφ into [φ]{fXφ/X} does

not necessarily yield a formula in positive normal form. We will develop a systematic way of
renaming bound fixpoint variables of φ, thus getting

...
φ , so that

...
φ is equal to φ modulo some

bound fixpoint variables and [
...
φ]{fXφ/X} is in positive normal form. We have an uncountably

infinite set of fixpoint variables X = {X0, X1, X2, X3, . . .} that are used in the construction of
formulas. We introduce a infinite sequence of sets of fixpoint variables

X ′ = {X ′0, X ′1, X ′2, . . .} X ′′ = {X ′′0 , X ′′1 , X ′′2 , . . .} X ′′′ = {X ′′′0 , X
′′′
1 , X

′′′
2 , . . .} . . .

Think of these sets that they form layers as in Figure 1. The idea is that when we want to rename
a fixpoint variable X we use the variable X ′ from the layer below. This way, we only introduce
fresh variables. Moreover, if X,Y are in different columns, then X ′, Y ′ are in different columns
and hence they are distinct. Observe that we only have to rename the fixpoint variables for
fixpoint subformulas of φ in which X appears free. This is illustrated by the following example.

φ1 = µXψ1 = µX
{
νY (¬p1 ∧�10Y) ∨ [p3 ∧#µZ(X ∨ (p2 ∧#Z))]

}
...
ψ1 = νY (¬p1 ∧�10Y)︸ ︷︷ ︸

no renaming

∨[p3 ∧#µZ ′(X ∨ (p2 ∧#Z ′))︸ ︷︷ ︸
renaming

]

[
...
ψ1]{φ1/X} = νY (¬p1 ∧�10Y) ∨ [p3 ∧#µZ ′(φ1 ∨ (p2 ∧#Z ′))]

Let us work out a slightly more complex example.

φ1 = µXψ1 = µXµY [µU(p ∨ U) ∨ νV (p ∧#X ∧ V) ∨ νW (p ∧X ∧#Y ∧�W)]

[
...
ψ1]{φ1/X} = φ2 = µY ′ψ2 =

renaming︷ ︸︸ ︷
µY ′[µU(p ∨ U)︸ ︷︷ ︸

no renaming

∨ νV ′(p ∧#φ1 ∧ V ′)︸ ︷︷ ︸
renaming

∨ νW ′(p ∧ φ1 ∧#Y ′ ∧�W ′)︸ ︷︷ ︸
renaming

]

φ3 = [
...
ψ2]{φ2/Y

′} = µU(p ∨ U)︸ ︷︷ ︸
no renaming

∨ νV ′(p ∧#φ1 ∧ V ′)︸ ︷︷ ︸
no renaming

∨ νW ′′(p ∧ φ1 ∧#φ2 ∧�W ′′)︸ ︷︷ ︸
renaming

Let φ be a FOTLpnf
µν -fp-sentence and X a fixpoint variable in φ. Clearly, X gets bound by

some subformula fXψ of φ. We associate to X the fixpoint height of fXψ. For the formulas
φ1, φ2, φ3 of the previous example we have

A = {U 7→ 1, V 7→ 1,W 7→ 1, Y 7→ 2, X 7→ 3}
B = A ∪ {V ′ 7→ 4,W ′ 7→ 4, Y ′ 7→ 5}
C = B ∪ {W ′′ 7→ 6}

respectively. Observe that B agrees with A at the variables that φ1, φ2 share and that C agrees
with B at the variables that φ2, φ3 share.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 27

X0

��

X1

��

X2

��

X3

��

X4

��

X5

��

. . .

X ′0

��

X ′1

��

X ′2

��

X ′3

��

X ′4

��

X ′5

��

. . .

X ′′0

��

X ′′1

��

X ′′2

��

X ′′3

��

X ′′4

��

X ′′5

��

. . .

X ′′′0

��

X ′′′1

��

X ′′′2

��

X ′′′3

��

X ′′′4

��

X ′′′5

��

. . .

...
...

...
...

...
...

. . .

Figure 1. Fixpoint variables used to ensure that all sentences in the closure of
a PTLpnf

µν -sentence are in positive normal form.

Definition 27 (positive closure, closure). Let φ be a FOTLpnf
µν -fp-sentence. We define the

positive closure of φ to be the smallest set cl+[φ] of fp-sentences that satisfies the following
conditions:

(1) φ is in cl+[φ].
(2) If (ψ1 ⊗ ψ2) ∈ cl+[φ], then ψ1, ψ2 ∈ cl+[φ], for ⊗ ∈ {∧,∨}.
(3) If Qxψ ∈ cl+[φ], then ψ ∈ cl+[φ], for Q ∈ {∀, ∃}.
(4) If ◦ψ ∈ cl+[φ], then ψ ∈ cl+[φ], for ◦ ∈ {#, ,�}.
(5) If fXψ ∈ cl+[φ], then [

...
ψ]{fXψ/X} ∈ cl+[φ], for f ∈ {µ, ν}.

We define the closure of φ to be cl[φ] = cl+[φ] ∪ cl+[neg[φ]]. See Table 2 for an example. It is
easy to see that cl+[neg[φ]] = neg[cl+[φ]]. From this we can deduce immediately that cl[φ] is
closed under neg[·].

It should be noted that the closure of a FOTLpnf
µν -fp-sentence contains only fp-sentences in

positive normal form. We also define

Vµ(φ) =
⋃

ψ∈cl[φ]

µ-vars[ψ] Vν(φ) =
⋃

ψ∈cl[φ]

ν-vars[ψ] V (φ) = Vµ(φ) ∪ Vν(φ) =
⋃

ψ∈cl[φ]

µν-vars[ψ] .

To each fp-sentence ψ in cl[φ] we associate a function dψ : µν-vars[ψ] → N, which maps each
fixpoint variable in µν-vars[ψ] to the fixpoint depth of the fixpoint subformula of ψ that binds
it. It is easy to see that dψ, d′ψ agree on the fixpoint variables in µν-vars[ψ] ∩ µν-vars[ψ′]. It
follows that d =

⋃
ψ∈cl[φ] dψ is a function from V (φ) to N. Obviously, d induces a strict partial

order on V (φ)
X < Y

def⇐⇒ d(X) < d(Y) ,
which can be easily extended to some strict linear order <. See Table 3.

Lemma 28. The cardinality of cl[φ] is linear in the length of φ.

Proof. Easy. �

Definition 29 (µφ-annotation, νφ-annotation, <φ). Let φ be a FOTLpnf
µν -fp-sentence. A µφ-

annotation a for ψ ∈ cl[φ] is a µ-annotation for ψ that is defined exactly on Vµ(φ). Similarly, a
νφ-annotation a for ψ ∈ cl[φ] is a ν-annotation for ψ that is defined exactly on Vν(φ).

The reason we introduce µφ-annotations and νφ-annotation is that they can be easily well-
ordered lexicographically as described in Definition 17. The order in which we consider the
fixpoint variables in Vµ(φ) and Vν(φ) is important. For µφ-annotations a, b, we will write a <φ b
to mean a <Vµ(φ) b. For νφ-annotations a, b, we will write a <φ b to mean a <Vν(φ) b. We also
define

a ≤φ b
def⇐⇒ a <φ b or a = b .

Definition 30 (µφ-signature, νφ-signature). Let φ be a FOTLpnf
µν -fp-sentence.

28 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

Table 2. Closure of a FOTLpnf
µν -fp-sentence.

φ = �∀x¬Rxz ∧ ∃yµX(#Py ∨ 3X) φ̃ = neg[φ] = ∃xRxz ∨ ∀yνX(#¬Py ∧�3X)

cl+[φ] cl+[φ̃]

1 �∀x¬Rxz ∧ ∃yµX(#Py ∨ 3X) ∃xRxz ∨ ∀yνX(#¬Py ∧�3X)

2 �∀x¬Rxz ∃xRxz
3 ∀x¬Rxz ∃xRxz
4 ¬Rxz Rxz

5 ∃yµX(#Py ∨ 3X) ∀yνX(#¬Py ∧�3X)

6 φ1 = µX(#Py ∨ 3X) φ̃1 = νX(#¬Py ∧�3X)

7 #Py ∨ 3φ1 #¬Py ∧�3φ̃1

8 #Py #¬Py
9 Py ¬Py

10 3φ1 �3φ̃1

11 2φ1 �2φ̃1

12 φ1 �φ̃1

Table 3. Closure of a FOTLpnf
µν -fo-sentence and ordering of fixpoint variables.

φ1 = µX
{
νY (¬Py ∧�10Y) ∨ [Qx ∧#µZ(X ∨ (Rxy ∧#Z))]

}
φ2 = νY (¬Py ∧�10Y) ∨ [Qx ∧#µZ ′(φ1 ∨ (Rxy ∧#Z ′))]

φ̃1 = neg[φ1] = νX
{
µY (Py ∨ 10Y) ∧ [¬Qx ∨#νZ(X ∧ (¬Rxy ∨#Z))]

}
φ̃2 = neg[φ2] = µY (Py ∨ 10Y) ∧ [¬Qx ∨#νZ ′(φ1 ∧ (¬Rxy ∨#Z ′))]

i cl+[φ] cl+[φ̃] di(X)di(Y)di(Z)di(Z ′)

1 φ1 φ̃1 2 1 1

2 φ2 φ̃2 2 1 1 3

3 φ3 = νY (¬Py ∧�10Y) φ̃3 = µY (Py ∨ 10Y) 1

4 ¬Py ∧�10φ3 Py ∨ 10φ̃3 1

5 ¬Py Py

6 �10φ3 10φ̃3 1

7 �9φ3 9φ̃3 1
...

...
...

...

15 �φ3 φ̃3 1

16 Qx ∧#µZ ′(φ1 ∨ (Rxy ∧#Z ′)) ¬Qx ∨#νZ ′(φ̃1 ∧ (¬Rxy ∨#Z ′)) 2 1 1 3

17 Qx ¬Qx
18 #µZ ′(φ1 ∨ (Rxy ∧#Z ′)) #νZ ′(φ̃1 ∧ (¬Rxy ∨#Z ′)) 2 1 1 3

19 φ19 = µZ ′(φ1 ∨ (Rxy ∧#Z ′)) φ̃19 = νZ ′(φ1 ∧ (¬Rxy ∨#Z ′)) 2 1 1 3

20 φ1 ∨ (Rxy ∧#φ19) φ̃1 ∧ (¬Rxy ∨#φ̃19) 2 1 1 3

21 Rxy ∧#φ19 ¬Rxy ∨#φ̃19 2 1 1 3

22 Rxy ¬Rxy
23 #φ19 #φ̃19 2 1 1 3

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 29

• We say that ψ ∈ cl[φ] has µφ-signature a at moment u under M, h if a is the <φ-least
µφ-annotation for ψ such that M, h, u |= ann[ψ, a].
• We say that ψ ∈ cl[φ] has νφ-signature a at moment u under M, h if a is the <φ-least
νφ-annotation for ψ such that M, h, u 6|= ann[ψ, a].

A fp-sentence ψ ∈ cl[φ] has µφ-signature at u under M, h if and only if M, h, u |= ψ (Corol-
lary 24). Similarly, ψ ∈ cl[φ] has νφ-signature at u under M, h if and only if M, h, u 6|= ψ
(Corollary 25).

Fix a fp-sentence ψ ∈ cl[φ] with µφ-signature (νφ-signature) a at u under h and a fixpoint
variable X in Vµ(φ) (Vν(φ)) that is not in µ-vars[ψ] (ν-vars[ψ]). It is obvious that a(X) = 0.

Lemma 31. Let φ be a FOTLpnf
µν -fp-sentence and ψ ∈ cl[φ]. Then, for any first-order temporal

structure M, any individual variable assignment h, and any moment u ∈ N, ψ has µφ-signature
a at u under M, h if and only if neg[ψ] has νφ-signature a at u under M, h.

Proof. Let b be an arbitrary µφ-annotation for ψ. So, b is a νφ-annotation for neg[ψ]. Fix a
first-order temporal structure M, an individual variable assignment h, and a moment u. We
have that

M, h, u |= ann[ψ, b] ⇐⇒ M, h, u 6|= pos[¬ann[ψ, b]] = pos[ann[¬ψ, b]] Lemma 19= ann[pos[¬ψ], b] .

Suppose that ψ has µφ-signature a1 at u under M, h and neg[ψ] has νφ-signature a2 at u under
M, h. From the ⇒ direction, we have that a2 ≤φ a1 and from the ⇐ direction that a1 ≤φ a2.
It follows that a1 = a2. �

Proposition 32 (µφ-signatures). Let φ be a FOTLpnf
µν -fp-sentence.

(1) If (ψ1 ∧ ψ2) is in cl[φ] and has µφ-signature a at moment u under M, h, then both ψ1

and ψ2 have µφ-signatures ≤φ a at u under M, h.
(2) If (ψ1 ∨ ψ2) is in cl[φ] and has µφ-signature a at moment u under M, h, then ψ1 or ψ2

has µφ-signature ≤φ a at u under M, h.
(3) If ∀xψ is in cl[φ] and has µφ-signature a at moment u under M, h, then for any d in

dom(M), ψ has µφ-signature ≤φ a at u under M, h[x 7→ d].
(4) If ∃xψ is in cl[φ] and has µφ-signature a at moment u under M, h, then there is d in

dom(M) such that ψ has µφ-signature ≤φ a at u under M, h[x 7→ d].
(5) If #ψ is in cl[φ] and has µφ-signature a at moment u under M, h, then ψ has µφ-signature

a at (u+ 1) under M, h.
(6) If ψ is in cl[φ] and has µφ-signature a at moment u > 0 under M, h, then ψ has

µφ-signature a at (u− 1) under M, h.
(7) If �ψ is in cl[φ] and has µφ-signature a at moment u > 0 under M, h, then ψ has

µφ-signature a at (u− 1) under M, h.
(8) If µXψ is in cl[φ], has µφ-signature a at moment u under M, h, and no free individual

variable in µXψ gets bound in [
...
ψ]{µXψ/X}, then a(X) is a successor ordinal and

[
...
ψ]{µXψ/X} has µφ-signature ≤φ b at u under M, h, where b(X) = a(X)− 1, b(Y) =
a(Y) for any Y ∈ µ-vars[ψ], and b(Z ′) = b(Z) for any newly introduced Z ′ ∈ µ-vars[

...
ψ] \

µ-vars[ψ].
(9) If νXψ is in cl[φ], has µφ-singnature a at moment u under M, h, and no free individual

variable in νXψ gets bound in [
...
ψ]{νXψ/X}, then [

...
ψ]{νXψ/X} has µφ-signature ≤φ b

at u under M, h, where b(Y) = a(Y) for any Y ∈ µ-vars[ψ], and b(Z ′) = b(Z) for any
newly introduced Z ′ ∈ µ-vars[

...
ψ] \ µ-vars[ψ].

Proof. Fix a FOTLpnf
µν -fp-sentence φ.

(1) Suppose that (ψ1 ∧ψ2) is in cl[φ] and has µφ-signature a at u under M, h. This means that
M, h, u |= ann[ψ1 ∧ ψ2, a] = ann[ψ1, a] ∧ ann[ψ2, a], which implies that M, h, u |= ann[ψ1, a]
and M, h, u |= ann[ψ2, a]. It immediately follows that both ψ1 and ψ2 have µφ-signatures
≤φ a at u under M, h.

(2) Similarly to (1).

30 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

(3) Suppose that ∀xψ is in cl[φ] and has µφ-signature a at u under M, h. This means that
M, h, u |= ann[∀xψ, a] = ∀xann[ψ, a]. Let d be an arbitrary element of dom(M). We have
that M, h[x 7→ d], u |= ann[ψ, a] and hence ψ has µφ-signature ≤φ a at u under M, h[x 7→ d].

(4) The case for ∃xψ is similar to the previous one.
(5) Let b be an arbitrary µφ-annotation. For any M, h, u, it holds that

M, h, u |= ann[#ψ, b] = #ann[ψ, b] ⇐⇒ M, h, u+ 1 |= ann[ψ, b] .

Suppose that #ψ is in cl[φ] and has µφ-signature a1 at u under M, h. Let a2 be the µφ-
signature of ψ at (u+ 1) under M, h. From the ⇒ direction we get that a2 ≤φ a1 and from
the ⇐ direction that a1 ≤φ a2. It follows that a1 = a2.

(6) Similarly to (5).
(7) Similarly to (6).
(8) Suppose that µXψ is in cl[φ], has µφ-signature a at u under M, h, and no free individ-

ual variable in µXψ gets bound in [
...
ψ]{µXψ/X}. First, notice that a(X) is a succes-

sor ordinal. Suppose for contradiction that a(X) is a limit ordinal λ. We have that
M, h, u |= ann[µXψ, a] = µλXann[ψ, a], which means that

u ∈ µλ(f) =
⋃
α<λ

µα(f) , where f(S) = ‖ann[ψ, a]‖M,h
X 7→S .

So, there is an ordinal α < λ such that u ∈ µα(f) and hence M, h, u |= µαXann[ψ, a].
Consider the µφ-annotation â = a[X 7→ α] for ψ. We have that ann[ψ, â] = ann[ψ, a] and
therefore M, h, u |= µαXann[ψ, â] = ann[µXψ, â]. But, â < a and hence â <φ a, which is a
contradiction. We have established that a(X) is a successor ordinal (α+ 1).

We define a µφ-annotation b as b(X) = α = a(X)− 1, b(Y) = a(Y) for any Y ∈ µ-vars[ψ]
and b(Z ′) = b(Z) for any newly introduced Z ′ ∈ µ-vars[

...
ψ] \ µ-vars[ψ]. Observe that a, b

agree on µ-vars[ψ] and that ann[ψ, b], ann[
...
ψ, b] are equal modulo the names of some bound

fixpoint variables. Define f ′(S) = ‖ann[ψ, b]‖M,h
X 7→S . We have that

M, h, u |= ann[µXψ, a] = µα+1Xann[ψ, a] = µα+1Xann[ψ, b] =⇒
u ∈ µα+1(f ′) = f ′(µα(f ′)) =⇒ M, h,X 7→ µα(f ′), u |= ann[ψ, b] =⇒

M, h,X 7→ µα(f ′), u |= ann[
...
ψ, b] Lemma 8=⇒

M, h, u |= [ann[
...
ψ, b]]{µαXann[ψ, b]/X} = [ann[

...
ψ, b]]{ann[µXψ, b]/X}

Lemma 18= ann[[
...
ψ]{µXψ/X}, b] .

It follows that [
...
ψ]{µXψ/X} has µφ-signature ≤φ b at u under M, h.

(9) Suppose that νXψ is in cl[φ], has µφ-signature a at u under M, h, and no free individual
variable in νXψ gets bound in [

...
ψ]{νXψ/X}. We define a µφ-annotation b as b(Y) =

a(Y) for any Y ∈ µ-vars[ψ] and b(Z ′) = b(Z) for any newly introduced Z ′ ∈ µ-vars[
...
ψ] \

µ-vars[ψ]. Observe that ann[ψ, b], ann[
...
ψ, b] are equal modulo the names of some bound

fixpoint variables. Define f(S) = ‖ann[ψ, b]‖M,h
X 7→S . We have that

M, h, u |= ann[νXψ, a] = νXann[ψ, a] = νXann[ψ, b] =⇒
u ∈ gfp(f) = f(gfp(f)) =⇒ M, h,X 7→ gfp(f), u |= ann[ψ, b] =⇒

M, h,X 7→ gfp(f), u |= ann[
...
ψ, b] Lemma 8=⇒

M, h, u |= [ann[
...
ψ, b]]{νXann[ψ, b]/X} = [ann[

...
ψ, b]]{ann[νXψ, b]/X}

Lemma 18= ann[[
...
ψ]{νXψ/X}, b] .

It follows that [
...
ψ]{νXψ/X} has µφ-signature ≤φ b at u under M, h. �

Proposition 33 (νφ-signatures). Let φ be a FOTLpnf
µν -fp-sentence.

(1) If (ψ1 ∧ ψ2) is in cl[φ] and has νφ-signature a at moment u under M, h, then ψ1 or ψ2

has νφ-signature ≤φ a at u under M, h.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 31

(2) If (ψ1 ∨ ψ2) is in cl[φ] and has νφ-signature a at moment u under M, h, then both ψ1

and ψ2 have νφ-signatures ≤φ a at u under M, h.
(3) If ∀xψ is in cl[φ] and has νφ-signature a at moment u under M, h, then there is d in

dom(M) such that ψ has νφ-signature ≤φ a at u under M, h[x 7→ d].
(4) If ∃xψ is in cl[φ] and has νφ-signature a at moment u under M, h, then for any d in

dom(M), ψ has νφ-signature ≤φ a at u under M, h[x 7→ d].
(5) If #ψ is in cl[φ] and has νφ-signature a at moment u under M, h, then ψ has νφ-signature

a at (u+ 1) under M, h.
(6) If ψ is in cl[φ] and has νφ-signature a at moment u > 0 under M, h, then ψ has

νφ-signature a at (u− 1) under M, h.
(7) If �ψ is in cl[φ] and has νφ-signature a at moment u > 0 under M, h, then ψ has

νφ-signature a at (u− 1) under M, h.
(8) If µXψ is in cl[φ], has νφ-singnature a at moment u under M, h, and no free individual

variable in µXψ gets bound in [
...
ψ]{µXψ/X}, then [

...
ψ]{µXψ/X} has νφ-signature ≤φ b

at u under M, h, where b(Y) = a(Y) for any Y ∈ ν-vars[ψ], and b(Z ′) = b(Z) for any
newly introduced Z ′ ∈ ν-vars[

...
ψ] \ ν-vars[ψ].

(9) If νXψ is in cl[φ], has νφ-signature a at moment u under M, h, and no free individual
variable in νXψ gets bound in [

...
ψ]{νXψ/X}, then a(X) is a successor ordinal and

[
...
ψ]{νXψ/X} has νφ-signature ≤φ b at u under M, h, where b(X) = a(X) − 1, b(Y) =
a(Y) for any Y ∈ ν-vars[ψ], and b(Z ′) = b(Z) for any newly introduced Z ′ ∈ ν-vars[

...
ψ] \

ν-vars[ψ].

Proof. It is an immediate consequence of Proposition 32 and Lemma 31. Let us show (8). Fix
a FOTLpnf

µν -fp-sentence φ and µXψ ∈ cl[φ]. Suppose that µXψ has νφ-signature a (at u under
M, h) and that no free individual variable in µXψ gets bound in [

...
ψ]{µXψ/X}. From Lemma 31,

we get that ∼µXψ = νX∼[ψ]{¬X/X} has µφ-signature a. Let ψ′ = ∼[ψ]{¬X/X} and observe
that

...
ψ′ = ∼[

...
ψ]{¬X/X}. By Proposition 32, [∼[

...
ψ]{¬X/X}]{∼µXψ/X} = ∼[

...
ψ]{µXψ/X}

(Lemma 13) has µφ-signature ≤φ b, where b is defined as in (8). From Lemma 31, we deduce
that [

...
ψ]{µXψ/X} has νφ-signature ≤φ b. �

32 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

5. The Monodic Fragment

The monodic fragment of first-order temporal logic (with no fixpoint operators) is defined in
[32] as the subset of first-order temporal formulas φ such that any subformula of φ beginning
with a temporal operator has at most one free individual variable. If the pure first-order part
is decidable, then the monodic fragment is known to be decidable over several classes of flows
of time [32].

Naturally, when temporal fixpoint operators are added, a similar monodicity restriction will
have to be applied to µ/ν-subformulas, i.e. ‘any µ/ν-subformula has at most one free individual
variable’. Without this restriction, we immediately deduce undecidability. It is clear that the
F (‘sometime in the future’) connective can be expressed with a least fixpoint as

Fφ ≡ #φ ∨#Fφ ≡ µX[#φ ∨#X] .

So, if we allow two free individual variables in µ-subformulas, we can express Fφ(x, y) and
encode the N× N recurrent tiling problem (see Theorem 2 in [32]), which is Σ1

1-complete [25].
Another restriction will also be enforced, namely that a ∀/∃-subformula does not contain

any free fixpoint variables. This requirement, even though is appears a bit different from the
monodicity restriction of [32], serves a similar purpose. The idea of monodicity is that we move
through time “on a single domain element”. This is why, for example, a formula of the form #φ
is not allowed to have two free individual variables. But, during the evaluation of fixpoints we
move through time. If along the way of the evaluation we come across a quantifier (this happens
only when the fixpoint variable of the fixpoint being evaluated is free below the quantifier), we
“move” to another domain element.

Definition 34 (monodic FOTLµν-formulas). We define the set of FOTL1µν-formulas to be the
subset of FOTLµν that contains a FOTLµν-formula φ iff

• any subformula of φ beginning with a temporal or fixpoint operator has at most one
free individual variable and
• any subformula of φ beginning with a quantifier has no free fixpoint variables.

That is, φ ∈ FOTL1µν iff the following hold.
(1) φ ∈ FOTLµν
(2) For any ◦ ∈ {#, ,�} and any ◦ψ ∈ sbf[φ], |fvars[◦ψ]| ≤ 1.
(3) For any f ∈ {µ, ν} and any fXψ ∈ sbf[φ], |fvars[fXψ]| ≤ 1.
(4) For any Q ∈ {∀, ∃} and any Qxψ ∈ sbf[φ], fp-free[Qxψ] = ∅.

FOTLpos
1µν is the set of monodic FOTLµν-formulas in positive form and FOTLpnf

1µν is the set of
monodic FOTLµν-formulas in positive normal form.

For example, the formula ∃xµX(#∀yRxy∨ 2X) is monodic, whereas the formula ∃x∀yµX(Rxy∨
 3X) is not.

Observe that we can always unfold a fixpoint monodic FOTL1µν-fp-sentence with the seman-
tics being preserved. Let fXφ be a FOTL1µν-fp-sentence. As far as free fixpoint variables are
concerned, we are done: fXφ has no free fixpoint variables. Assume now that fXφ has a free
individual variable, namely x. Does it get bound in [φ]{fXφ/X}? For contradiction, assume
that it gets bound. This means that there is a subformula of Qxψ of φ, where Q is a quantifier,
such that X occurs free in ψ. This contradicts the monodic restriction.

We will denote by FOTLkµν the set of FOTLµν-formulas that have at most k free individual
variables.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 33

6. Quasimodels

It may be helpful to view the quasimodel technique of [32] as a (much more involved) general-
ization of the filtration technique used for the propositional case. In order to decide satisfiability
of a formula φ of propositional temporal logic (without fixpoint operators), each moment is as-
sociated — in an object called pre-model — with a maximal Boolean-consistent subset of the
subformulas of φ (type). The pre-model also satisfies obvious temporal constraints. The idea is
then to show that the pre-model records at each moment exactly those subformulas of φ that are
true at the particular moment under the propositional variable assignment that the pre-model
defines. Hence, φ is satisfied in a temporal structure if and only if it is satisfied in a pre-model.

In the first-order case (without fixpoints), the situation is considerably more complicated.
The quasimodel technique can also handle constants, but we will ignore them for now. The
monodicity restriction allows us to consider only those subformulas of φ that have at most one
free variable. Call them sub1. A type is then a maximal Boolean-consistent subset of sub1.
Under a given first-order temporal structure, truth for a formula of sub1 is considered with
respect to a specific moment and a specific domain element. Consider, at a given moment, the
elements of the domain that satisfy the same formulas of sub1. We group them under the type
they satisfy. So, we define a quasimodel that records at each moment a set of types, which can
be thought to partition the elements of the domain. Suppose that we fix a domain element and
assign the free variable of each formula of sub1 to this domain element. We are then down to the
propositional case and certain temporal consistency restrictions are satisfied. This is encoded
by special functions, called runs, that correspond to domain elements. The crucial question
is whether this information is sufficient to reconstruct a model out of it. Towards this end,
we want the set of types attached to each moment to represent a first-order structure. This
property will be called realizability. In order to check this, we have to make the formulas purely
first-order, by replacing the maximal subformulas that begin with a temporal operator with a
unary predicate symbol or propositional variable called surrogate. We will not go into further
details at this point. Suffice it to say that what the quasimodel does is separate in a way the
first-order part from the temporal part. The algorithm that checks realizability is plugged-in.
The temporal part is handled largely by the runs.

The addition of fixpoint operators in the case of propositional temporal logic, creates the
need to introduce the concept of well-foundedness. The idea is very roughly that least fixpoints
need a finite number of steps to be evaluated, whereas for greatest fixpoints this is not the case.
In order to “guide” the evaluation of least fixpoints, Streett and Emerson use “choice functions”
that direct the evaluation towards some disjunct of a disjunction [53]. For the case of monodic
first-order temporal logic with fixpoint operators the same technique is applied. It is not a very
difficult extension, since at the level of a run things are in a way “propositional”.

6.1. The notion of well-founded quasimodel. We will continue to define types, surrogates,
state candidates, realizable state candidates, state functions, and quasimodels. In order to
handle the fixpoints, we also introduce choice functions, adorned quasimodels and define the
central notion of well-foundedness of a quasimodel.

Definition 35 (cl+1 , cl1, cl0). Let φ be a FOTLµν [σ]-fp-sentence. We define cl+1 [φ] to be the
subset of cl+[φ] that contains only the fp-sentences that have at most one free individual variable.
Similarly, we define cl1[φ] to be the subset of cl[φ] that contains only the fp-sentences that have
at most one free individual variable. cl0[φ] is the subset of cl[φ] that contains only sentences.

Definition 36 (type). A type for a FOTLpnf
1µν [σ]-sentence φ is a subset t of cl1[φ] that satisfies

the following conditions.
(1) For any ψ ∈ cl1[φ], ψ ∈ t ⇐⇒ neg[φ] /∈ t.
(2) For any (ψ1 ∧ ψ2) ∈ cl1[φ], (ψ1 ∧ ψ2) ∈ t ⇐⇒ ψ1 ∈ t and ψ2 ∈ t.
(3) For any (ψ1 ∨ ψ2) ∈ cl1[φ], (ψ1 ∨ ψ2) ∈ t ⇐⇒ ψ1 ∈ t or ψ2 ∈ t.
(4) For any µXψ ∈ cl1[φ], µXψ ∈ t ⇐⇒ [

...
ψ]{µXψ/X} ∈ t.

(5) For any νXψ ∈ cl1[φ], νXψ ∈ t ⇐⇒ [
...
ψ]{νXψ/X} ∈ t.

34 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

It follows from the first condition that a type for φ contains exactly
∣∣cl+1 [φ]

∣∣ =
∣∣cl+1 [neg[φ]]

∣∣
elements. We denote by Types(φ) the set of all types for φ. Clearly, Types(φ) is a subset of the
powerset of cl1[φ]. It follows that there are at most

[(φ) = |℘ (cl1[φ])| = 2|cl1[φ]|

different types for φ.

Definition 37 (renaming the free individual variable). We define the function

[·]? : FOTL1
µν ×

(
V ∪ C ∪ { }

)
→ FOTL1

µν [φ]x =

{
φ, if φ has no free variables
[φ]{x/y} if φ has y as its unique free variable

That is, the function renames the free individual variable in φ if one exists, or leaves φ unchanged
if it is a dom-sentence. The symbol acts as a “placeholder” for the free individual variable. It
is obvious that properties like

[φ1 ∧ φ2]x = [φ1]x ∧ [φ2]x
hold, because of the inductive definition of substitution.

Definition 38 (surrogates). For every FOTL1µν [σ]-formula ψ that begins with a temporal or
fixpoint operator and has one free individual variable we introduce a unary predicate symbol
P[ψ] . For every FOTL1µν [σ]-dom-sentence χ that begins with a temporal or fixpoint operator
we introduce a propositional variable pχ. P[ψ] and pχ are called the surrogates of ψ and χ
respectively. For example,

ψ = #(Pu ∧ ∀vQuv) P[ψ] = P#(P ∧∀vQ v)

χ = µX(∃x∀yRxy ∨ 2X) pχ = p
µX(∃x∀yRxy∨ 2

X)

Given the signature
σ = (P,P0,F = ∅, C, ar)

for our language, we fix a new signature

σsurr = (P ′,P ′0,F = ∅, C, ar′)
P ′ = P ∪

{
P[ψ] | ψ is a (#/ /�/µ/ν)-FOTL1µν [σ]-formula with |fvars[ψ]| = 1

}
P ′0 = P0 ∪

{
pχ | χ is a (#/ /�/µ/ν)-FOTL1µν [σ]-dom-sentence

}
ar′[P] =

{
ar[P], if P ∈ P;
1, if P is a surrogate.

that contains the surrogates.

Definition 39 (reduct). Let φ be a FOTL1µν [σ]-formula. We define the function

· : FOTL1µν [σ]→ FOL[σsurr] ,

where FOL[σsurr] is the first-order language (no temporal or fixpoint operators) over the signa-
ture σsurr. φ is the first-order formula that results by replacing its maximal temporal or fixpoint
subformulas by their surrogates. φ is called the reduct of φ. More formally,

p = p ¬φ = ¬φ ∀xφ = ∀xφ

P (t1, . . . , tn) = P (t1, . . . , tn) φ1 ∧ φ2 = φ1 ∧ φ2 ∃xφ = ∃xφ
X = X φ1 ∨ φ2 = φ1 ∨ φ2

◦φ =

{
p◦φ, if ◦φ is a sentence;
P[◦φ] (x), if x is the unique free variable in ◦φ

, for all ◦ ∈ {#, ,�}

fXφ =

{
pfXφ, if fXφ is a sentence;
P[fXφ] (x), if x is the unique free variable in fXφ

, for all f ∈ {µ, ν}

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 35

Definition 40 (state candidate). Let φ be a FOTLpnf
1µν [σ]-sentence, T be a set of types for φ

and T con a function from con[φ] to T . Then, the pair (T, T con) is called a state candidate for φ.
We denote by StateC(φ) the set of all state candidates for φ. The number of distinct state

candidates for φ is at most
](φ) = 2[(φ) · [(φ)|con[φ]| .

Since T is a set of types for φ ∈ FOTLpnf
1µν [σ], T ∈ ℘ (℘ (cl1[φ])), it can be constructed at most

in
|℘ (℘ (cl1[φ]))| = 2|℘(cl1[φ])| = 2[(φ)

ways. T con contains exactly |con[φ]| ordered pairs. The type in each one of these pairs can be
chosen among at most [(φ) as it has already been shown. Therefore, T con can be constructed
at most in

[(φ)× [(φ)× [(φ)× · · · × [(φ)︸ ︷︷ ︸
|con[φ]| times

= [(φ)|con[φ]|

ways. The value for](φ) follows immediately.

Definition 41. Let φ be a FOTLpnf
1µν [σ]-sentence, D = (D, ·D) be a first-order structure over

the signature σsurr, and a ∈ D. We define the set

tD(a) =
{
ψ ∈ cl1[φ] | D, z 7→ a |= [ψ]z

}
.

Assume that z is a reserved individual variable that never occurs in a formula. This way we
can be certain that z does not get bound in [ψ]z. tD(a) is the set of formulas in cl1[φ] that are
true in the structure D under any variable assignment that maps their free variable (if any) to
a. It is easy to see that tD(a) is a type for φ.

Definition 42 (realizable state candidate). Let φ be a FOTLpnf
1µν [σ]-sentence. We say that

the first-order structure D over σsurr realizes a state candidate (T, T con) for φ iff the following
conditions are true.

T =
{
tD(a) | a ∈ D

}
T con(c) = tD(cD) , for all c ∈ con[φ]

A state candidate is said to be finitely realizable iff there exists a finite first-order structure that
realizes it. A realizable state candidate is a state candidate that is realized by some first-order
structure D.

We denote by Real(φ) the set of all realizable state candidates for φ. Clearly, Real(φ) is a
subset of StateC(φ) and hence there can be at most](φ) distinct realizable state candidates.

Remark 43. Let D = (D, ·D) be a first-order structure over the signature σsurr and (T, T con)
be a state candidate that is realized by D. Then, T defines a partitioning of the domain D. We
define the relation ∼D ⊆ D ×D:

for any a, b ∈ D, a ∼D b ⇐⇒ tD(a) = tD(b) .

∼D is obviously reflexive, symmetric, and transitive. Hence, it is an equivalence relation.

We say that two types t and t′ for a FOTLpnf
1µν [σ]-sentence φ agree on cl0[φ] iff t∩cl0[φ] = t′∩cl0[φ],

i.e. they contain the same sentences.

Lemma 44 (types of realizable state candidates agree on cl0[φ]). Let φ be a FOTLpnf
1µν [σ]-

sentence and (T, T con) a realizable state candidate for φ. Then, all types in T agree on cl0[φ],
i.e. for any t, t′ ∈ T , t ∩ cl0[φ] = t′ ∩ cl0[φ].

Proof. Since (T, T con) is a realizable state candidate, there exists a first-order structure D =
(D, ·D) over the signature σsurr such that

T =
{
tD(a) | a ∈ D

}
tD(a) =

{
ψ ∈ cl1[φ] | D, z 7→ a |= [ψ]z

}
.

Assume to the contrary that there exist t, t′ ∈ T such that t ∩ cl0[φ] 6= t′ ∩ cl0[φ]. Without loss
of generality we assume that there exists ψ such that ψ ∈ t ∩ cl0[φ] and ψ /∈ t′ ∩ cl0[φ]. There
are a, b ∈ D such that t = tD(a) and t′ = tD(b). We have that ψ ∈ cl0[φ], which means that ψ

36 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

is a sentence. Therefore, its truth value its independent of the variable assignment. It follows
that

D, z 7→ a |= [ψ]z = ψ ⇐⇒ D |= ψ ⇐⇒ D, z 7→ b |= ψ = [ψ]z .
We immediately deduce that ψ ∈ tD(b) = t′ and therefore ψ ∈ t′ ∩ sbf0

¬[φ]. Contradiction. �

Lemma 45. Let φ be a FOTLpnf
1µν [σ]-sentence, t a type for φ, D = (D, ·D) a first-order structure

over σsurr, and a ∈ D. Then,

D, z 7→ a |=
∧
ψ∈t

[ψ]z if and only if t = tD(a) .

Proof. The ⇐ direction is trivial. Let us show the ⇒ direction. • t ⊆ tD(a). Let ψ ∈ t. Since t
is a type for φ, ψ ∈ cl1[φ]. By satisfaction of the conjunction, we also get that D, z 7→ a |= [ψ]z.
Therefore, ψ ∈ tD(a). • tD(a) ⊆ t. Let ψ ∈ tD(a). Then, ψ ∈ cl1[φ] and D, z 7→ a |= [ψ]z.
Assume for contradiction that ψ /∈ t. It follows that neg[ψ] ∈ t and therefore

D, z 7→ a |= [neg[ψ]]z = [neg[ψ]]z = neg[[ψ]z] ,

which implies that D, z 7→ a 6|= [ψ]z. Contradiction. �

Lemma 46. Let φ be a FOTLpnf
1µν [σ]-sentence and C = (T, T con) be a state candidate for φ. C

is (finitely) realizable if and only if the FOL[σsurr]-sentence

αC =

∧
t∈T
∃z
∧
ψ∈t

[ψ]z

 ∧
∀z ∨

t∈T

∧
ψ∈t

[ψ]z

 ∧
 ∧
c∈con[φ]

∧
ψ∈T con (c)

[ψ]c

is satisfied in some (finite) first-order structure.

Proof. Suppose that (T, T con) is realizable. Then, there exists a first-order structure D = (D, ·D)
over σsurr such that

T =
{
tD(a) | a ∈ D

}
and T con(c) = tD(cD) , for all c ∈ con[φ] .

We will prove that αC is satisfied in D, i.e. D |= αC.
• Let t be an arbitrary type in T . Then, there exists a ∈ D such that t = tD(a). By definition

of tD(a), D, z 7→ a |= [ψ]z, for all ψ ∈ tD(a) = t, which implies that D, z 7→ a |=
∧
ψ∈t[ψ]z. It

follows that D |= ∃z
∧
ψ∈t[ψ]z.

• Let a be an arbitrary element of D. Then, t = tD(a) ∈ T and as before we can prove that
D, z 7→ d |=

∧
ψ∈t[ψ]z.

• Let c be an arbitrary constant in con[φ] and ψ an arbitrary formula in T con(c) = tD(cD). By
definition of tD(cD), D, z 7→ cD |= [ψ]z, which implies that D |= [ψ]c.
Suppose now that the sentence αC is satisfied in a first-order structure D = (D, ·D), i.e.

D |= αC. We will prove that C = (T, T con) is realized by D, that is

T =
{
tD(a) | a ∈ D

}
and T con(c) = tD(cD) , for all c ∈ con[φ] .

• T ⊆ {tD(a) | a ∈ D}. Let t ∈ T . By satisfaction of αC (first conjunct), we get that
D |= ∃z

∧
ψ∈t[ψ]z, which means that there exists a ∈ D such that D, z 7→ a |=

∧
ψ∈t[ψ]z. By

Lemma 45, t = tD(a).
• {tD(a) | a ∈ D} ⊆ T . Let us consider tD(a), where a ∈ D. By satisfaction of the formula αC

(second conjunct), we get that there exists t ∈ T such that D, z 7→ a |=
∧
ψ∈t[ψ]z. By Lemma

45, t = tD(a).
• Let c be an arbitrary constant in con[φ]. By satisfaction of αC (third conjunct), we get

that D |=
∧
ψ∈T con (c)[ψ]c, which implies that D, z 7→ cD |=

∧
ψ∈T con (c)[ψ]z. By Lemma 45,

T con(c) = tD(cD). �

Definition 47 (state function). Let φ be a FOTLpnf
1µν [σ]-sentence. A state function for φ is a

function f that maps each u ∈ N to a realizable state candidate f(u) = (Tu, T con
u) for φ. We

will often write Tu = f(u).T and T con
u = f(u).T con .

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 37

Definition 48 (run). Let φ be a FOTLpnf
1µν [σ]-sentence and f a state function for φ. A run r

in f is a function in
∏
u∈N f(u).T such that the following hold.

• For every #ψ ∈ cl1[φ] and every u ∈ N, #ψ ∈ r(u) ⇐⇒ ψ ∈ r(u+ 1).
• For every ψ ∈ cl1[φ] and every u ∈ N, ψ ∈ r(u) ⇐⇒ u > 0 and ψ ∈ r(u− 1).
• For every �ψ ∈ cl1[φ] and every u ∈ N, �ψ ∈ r(u) ⇐⇒ u = 0 or [u > 0 and
ψ ∈ r(u− 1)].

Definition 49 (quasimodel, choice function, adorned quasimodel, finitary quasimodel). Let φ
be a FOTLpnf

1µν-sentence, f be a state function for φ, and R be a set of runs in f . The pair
m = (f,R) is a quasimodel for φ if the following hold.

(1) For any u ∈ N and any t ∈ f(u).T , there is r ∈ R such that r(u) = t.
(2) For every c ∈ con[φ], the function rc, defined as rc(u) = f(u).T con(c), is a run in R.

We define the set of occurrences in a quasimodel m = (f,R) as

Occ(m) = {(ψ, r, u) | u ∈ N, r ∈ R, ψ ∈ r(u)} .

A choice function for a quasimodel m is a function that maps each occurrence (ψ1 ∨ψ2, r, u) of
a disjunction in m to a disjunct ψi provided that ψi is in r(u). An adorned quasimodel for φ is
a pair (m, τ), where m is a quasimodel for φ and τ is a choice function for m.

Since the choice function τ for a quasimodel m = (f,R) takes a run as a parameter, we can
also see it as a family of functions {τr}r∈R , where τr(ψ1 ∨ ψ2, u) = τ(ψ1, ψ2, r, u). An adorned
run in f is a pair (r, τr), where r is a run in f and τr is a choice function for r, i.e. a function
that maps each disjunction in a type r(u) to a disjunct that is in r(u).

A quasimodel m = (f,R) is called finitary if for every u ∈ N, the quasistate f(u) is finitely
realizable and the set of runs R is finite.

Definition 50 (derivation on runs, regeneration, well-foundedness). Let φ be a FOTLpnf
1µν [σ]-

sentence and (m, τ) an adorned quasimodel for φ. We define the derivation relation `m,τ on
the occurrences Occ(m) as follows (we drop the parentheses around occurrences to increase
readability).

(1) If (ψ1 ∧ ψ2, r, u) ∈ Occ(m), then ψ1 ∧ ψ2, r, u `m,τ ψ1, r, u and ψ1 ∧ ψ2, r, u `m,τ ψ2, r, u.
(2) If (ψ1 ∨ ψ2, r, u) ∈ Occ(m), then ψ1 ∨ ψ2, r, u `m,τ τ(ψ1 ∨ ψ2, r, u), r, u.
(3) If (#ψ, r, u) ∈ Occ(m), then #ψ, r, u `m,τ ψ, r, u+ 1.
(4) If (ψ, r, u) ∈ Occ(m), then u > 0 (by definition) and ψ, r, u `m,τ ψ, r, u− 1.
(5) If (�ψ, r, u) ∈ Occ(m) and u > 0, then �ψ, r, u `m,τ ψ, r, u− 1.
(6) If (µXψ, r, u) ∈ Occ(m), then µXψ, r, u `m,τ [

...
ψ]{µXψ/X}, r, u.

(7) If (νXψ, r, u) ∈ Occ(m), then νXψ, r, u `m,τ [
...
ψ]{νXψ/X}, r, u.

The transitive closure of `m,τ is denoted by `+
m,τ and its reflexive transitive closure by `∗m,τ . It

is easy to see that from a fp-sentence ψ ∈ cl1[φ] we can only derive fp-sentences in cl1[ψ].
For every run r ∈ R, and every least fixpoint fp-sentence µXψX in cl1[φ], we define a

regeneration relation Rm,τ
r,X on the set of moments {u ∈ N | µXψX ∈ r(u)} as: (u, v) ∈ Rm,τ

r,X iff
there is a finite sequence of occurrences (ψ1, r, u1), (ψ2, r, u2), . . . , (ψk, r, uk) such that

• ψ1 = µXψX and u1 = u,
• ψk = µXψX and uk = v,
• ψi, r, ui `m,τ ψi+1, r, ui+1 for all i ∈ {1, . . . , k − 1},
• µXψX is a subformula of ψi for all i ∈ {1, . . . , k}.

We say that (m, τ) is well-founded if for every run r ∈ R and every least fixpoint sentence
µXψX in cl1[φ], the regeneration relation Rm,τ

r,X is converse well-founded.

Definition 51 (satisfaction in quasimodels). Let φ be a FOTLpnf
1µν [σ]-sentence. We say that φ

is satisfied in a quasimodel m = (f,R) for φ if there is a moment u ∈ N such that φ is in all
types in f(u).T . It is satisfied in an adorned quasimodel (m, τ) if it is satisfied in m.

38 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

6.2. Satisfaction in model implies satisfaction in well-founded quasimodel. Starting
from a temporal structure, in which φ is satisfied, it is relatively straightforward to construct a
quasimodel that satisfies φ. At each moment, the set of types of the state candidate is defined
by taking all the types that are satisfied at some element under the temporal structure. Each
constant is mapped to the type that is satisfied at the domain element that is the interpre-
tation of the constant. Easily, we show that the state candidates are realized by a first-order
structure that extends the local first-order structure of the temporal structure by interpreting
the surrogates in the same way the corresponding temporal formulas are interpreted by the
temporal structure. For each domain element, a run is defined that follows through time the
types satisfied at this particular element. It remains to “adorn” the quasimodel with an appro-
priate choice function and prove its well-foundedness. The choice function selects the disjuncts
with the least signatures. The converse well-foundedness of the regeneration relations is shown
by noticing that the first least fixpoint unfolding strictly decreases the signature and that this
decrease cannot be compensated for.

Theorem 52. Let φ be a FOTLpnf
1µν [σ]-sentence. If φ is satisfiable, then there is a well-founded

adorned quasimodel for φ, in which φ is satisfied.

Proof. Fix a FOTLpnf
1µν [σ]-sentence φ and suppose that φ is satisfied in some first-order temporal

structure
(
〈N, <〉,D, I

)
over the signature σ at w ∈ N. Let tua denote the set of fp-sentences in

cl1[φ] that are true in M at the moment u and at the domain element a. That is, for all u ∈ N
and for all a ∈ D,

tua =
{
ψ ∈ cl1[φ] |M, z 7→ a, u |= [ψ]z

}
.

It is clear that all tua are types for φ. We also define

Tu =
{
tua | a ∈ D

}
T con
u (c) = tucIw f(u) = (Tu, T con

u)

We claim that for all u ∈ N, f(u) is a realizable state candidate. Let u be an arbitrary moment
in N. In order to prove this claim we will construct a first-order structure Nu = (D, ·Nu) over
the signature σsurr that realizes f(u). We define

PNu = P Iu P is a predicate symbol in P
PNu

[ψ] =
{
d ∈ D |M, z 7→ d, u |= [ψ]z

}
ψ is a (#/ /�/µ/ν)-FOTL1µν [σ]-formula with

one free individual variable

pNu
χ =

{
1, if M, u |= χ

0, if M, u 6|= χ
χ is a (#/ /�/µ/ν)-FOTL1µν [σ]-dom-sentence

cNu = cIu c is a constant in C

Claim 53. For any FOTL1µν [σ]-formula φ, any variable assignment h : V → D, and any
moment u ∈ N, if φ is an fp-sentence, then

M, h, u |= φ ⇐⇒ Nu, h |= φ .

Proof. First, let us observe that for any term t (remember that we have no function symbols
and hence the terms are just individual variables or constants) JtKIuh = JtKNu

h . If t is a variable,
then JtKIuh = h(t) = JtKNu

h . If t is a constant, then JtKIuh = tIu = tNu = JtKNu
h . We prove the claim

by induction on φ.
• φ = p. We have that M, h, u |= p ⇐⇒ pIu = 1 ⇐⇒ pNu = 1 ⇐⇒ Nu, h |= p = p.
• φ = P (t1, . . . , tn). We have that M, h, u |= P (t1, . . . , tn) ⇐⇒ (Jt1KIuh , . . . , JtnK

Iu
h) ∈ P Iu ⇐⇒

(Jt1KNu
h , . . . , JtnKNu

h) ∈ PNu ⇐⇒ Nu, h |= P (t1, . . . , tn) = φ.
• φ = X. Holds vacuously.
• The cases φ = ¬φ1, (φ1 ∧ φ2), (φ1 ∨ φ2),∀xφ1,∃xφ1 are easy.
• φ = µXφ1. Since φ is monodic, it has at most one free individual variable.
− Assume that φ has one free variable, namely y. We then have that M, h, u |= φ =
µXφ1 ⇐⇒ M, z 7→ h(y), u |= [µXφ1]z ⇐⇒ h(y) ∈ PNu

[µXφ1] ⇐⇒ Nu, h |= P[µXφ1] (y) =

µXφ1 = φ.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 39

− Assume that φ is a sentence. We then have that M, h, u |= φ = µXφ1 ⇐⇒ pNu
µXφ1

=
1 ⇐⇒ Nu, h |= pµXφ1 = µXφ1 = φ.

• The cases φ = #φ1, φ1,�φ1, νXφ1 are similar to the previous one. �

Using the above claim, we easily deduce that

tua =
{
ψ ∈ cl1[φ] |M, z 7→ a, u |= [ψ]z

}
=
{
ψ ∈ cl1[φ] | Nu, z 7→ a |= [ψ]z

}
= tNu(a) .

It immediately follows that

Tu =
{
tua = tNu(a) | a ∈ D

}
T con
u (c) = tucIu = tNu(cIu) = tNu(cNu)

and hence f(u) = (Tu, T con
u) is realized by Nu. So, f is a state function for φ. For every a ∈ D,

we define a function ra from N to
⋃
u∈N Tu as ra(u) = tua, for all u ∈ N. It is easy to see that

every ra is a run in f . Let R be the set of all these runs, i.e. R = {ra | a ∈ D}. Then, (f,R)
is obviously a quasimodel that satisfies φ.

Let (ψ1∨ψ2, ra, u) be the occurrence of a disjunction in m. We define a choice function τ that
picks the disjunct ψi that has the <φ-least µφ-signature at the moment u under M, h, where
h(x) = a for all x ∈ V.

It remains to show that the regeneration relations are converse well-founded. Consider a run
ra ∈ R, a least fixpoint fp-sentence µXψ ∈ cl1[φ], and its regeneration relation R. We show that
R is converse well-founded. Assume for contradiction that R has an infinite R-ascending chain
u0Ru1Ru2R . . . We argue that regeneration strictly decreases µφ-signature of the occurrences
under M, h. The first derivation step unavoidably involves unfolding the least fixpoint sentence

µXψX , ra, ui `m,τ [
...
ψX]{µXψX/X}, ra, ui

and strictly decreases µφ-signature under M, h by reducing the ordinal for X and by not increas-
ing the more significant ordinals, i.e. those that correspond to fixpoint variables in µ-vars[ψX]
(see Proposition 32). Derivation steps from conjunctions, and sentences starting with #, ,�
cannot increase µφ-signature. In the case of disjunctions, µφ-signature does not increase, since
the choice function τ always selects the disjunct with <φ-least µφ-signature under M, h. A
derivation step from a least fixpoint sentence µY ψY (remember that µXψX is a sub-fp-sentence
of µY ψY) does not increase any ordinal up to the ordinal for X. The same holds for a derivation
step from a greatest fixpoint sentence. So, the decrease of the ordinal for X cannot be canceled
and none of the more significant ordinals increases. Thus, we get an infinite <φ-descending
chain

[µφ-signature of (µXψ, ra, u0) under M, h] >φ [µφ-signature of (µXψ, ra, u1) under M, h] >φ . . .

This is a contradiction, since µφ-signatures are well-ordered by <φ. �

We present now a simple example that shows why in the definition of the regeneration of
a fixpoint fp-sentence µXψX we impose the restriction that µXψX is a sub-fp-sentence of all
the fp-sentences in the sequence. Consider the fp-sentence φ1 = νXµY [(Px ∨ Y) ∧#X], the
variable assignment h that maps x to a, and the structure M =

(
〈N, <〉,D, I

)
that interprets

P as ∅ at all moments except for 0, where P I0 = {a}. It is easy to verify that φ1 is true at
all moments under M, h. By unfolding φ1 and renaming fixpoint variables appropriately, we
get φ2 = µY ′[(Px ∨ Y ′) ∧ #φ1]. It is clear that Vµ(φ) = {Y, Y ′}. Consider the adorned
quasimodel m defined as in Theorem 52. The choice function is defined as one would expect,
i.e. τ(Px ∨ φ2, r, 0) = Px and τ(Px ∨ φ2, r, u) = φ2 for u > 0. See Figure 2 and observe
that the “regeneration” of φ2 from 1 to 2 (φ2 is not a sub-fp-sentence of all the fp-sentences in
the sequence) along the right subtree does not decrease µφ1-signature.

6.3. “Blowing-up” first-order structures. Before continuing with the main theorem of this
section, we will prove a useful model-theoretic lemma that allows us to “blow-up” first-order
structures, when the first-order language does not include equality.

40 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

φ1 = νXµY [(Px ∨ Y) ∧#X], ra, 1 (ω, 0)

φ2 = µY ′[(Px ∨ Y ′) ∧#φ1], ra, 1 (ω, 2)

(Px ∨ φ2) ∧#φ1, ra, 1 (ω, 1)

dddddddddddddddddddddddd

ZZZZZZZZZZZZZZZZZZZZZZZZ

Px ∨ φ2, ra, 1 (ω, 1) #φ1, ra, 1 (ω, 0)

 φ2, ra, 1 (ω, 1) φ1, ra, 2 (ω, 0)

φ2, ra, 0 (ω, 1) φ2, ra, 2 (ω, 3)

(Px ∨ φ2) ∧#φ1, ra, 0 (ω, 0)

hhhhhhhhhhhhh

VVVVVVVVVVVVV (Px ∨ φ2) ∧#φ1, ra, 2 (ω, 2)

hhhhhhhhhhhhh

VVVVVVVVVVVVV

Px ∨ φ2, ra, 0 (0, 0) #φ1, ra, 0 (ω, 0) Px ∨ φ2, ra, 2 (ω, 2) #φ1, ra, 0 (ω, 0)

Px, ra, 0 (0, 0) φ1, ra, 1 (ω, 0) φ2, ra, 2 (ω, 2) φ1, ra, 3 (ω, 0)

Figure 2. Derivations sequences and µφ1-signatures. (α, β) abbreviates {(Y, α), (Y ′, β)}.

Lemma 54. Let σ = (P,P0,F , C, ar) be a first-order signature. Let D = (D, ·D) and E = (E , ·E)
be first-order structures over σ. Suppose that there is a relation R ⊆ D × E that is left-total,
injective, and right total (and hence R−1 is a surjective function from E to D). Also assume
that the following hold.

(i) For any predicate symbol P ∈ P with n = ar[P] and any (b1, . . . , bn) ∈ En,

(b1, . . . , bn) ∈ PE ⇐⇒ (R−1(b1), . . . , R−1(bn)) ∈ PD .

(ii) For any propositional variable p ∈ P0, pE = pD.
(iii) For any function symbol f ∈ F with m = ar[f] and any (b1, . . . , bn) ∈ Em,

fD(R−1(b1), . . . , R−1(bm))RfE(b1, . . . , bm) .

(iv) For any individual constant c ∈ C, cDRcE.
Consider the variable assignments h : V → D, g : V → E . We define

hRg
def⇐⇒ Domain(h) = Domain(g) = D and h(x)Rg(x) for all x ∈ D.

The relation R induces an equivalence relation ∼R on E , defined as

b1 ∼R b2
def⇐⇒ there is a ∈ D s.t. aRb1 and aRb2 ⇐⇒ R−1(b1) = R−1(b2) .

Consider the variable assignments g1 : V → E and g2 : V → E . We define

g1 ∼R g2
def⇐⇒ for all x ∈ V, g1(x) ∼R g2(x) .

The following hold.
(1) For any term t ∈ T [σ], and any h : V → D, g : V → E with hRg, JtKD

hRJtKE
g .

(2) For any φ ∈ FOL[σ], and any h : V → D, g : V → E with hRg, D, h |= φ ⇐⇒ E, g |= φ.
(3) For any φ ∈ FOL[σ], and any g1 : V → E , g2 : V → E with g1 ∼R g2, E, g1 |= φ ⇐⇒

E, g2 |= φ.

Proof. We show (1) by induction on t.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 41

• t = x. Fix h, g with hRg. JxKD
h = h(x)Rg(x) = JxKE

g .
• t = c. Fix h, g with hRg. JcKD

h = cDRcE = JcKE
g .

• t = f(t1, . . . , tm). From the inductive hypothesis we have that JtiKD
hRJtiKE

g for all i = 1, . . . ,m.
Equivalently, JtiKD

h = R−1(JtiKE
g) for all i = 1, . . . ,m. It follows that

Jf(t1, . . . , tm)KD
h = fD(Jt1KD

h , . . . , JtmKD
h) = fD(R−1(Jt1KE

g), . . . , R−1(JtmKE
g))R

fE(Jt1KE
g , . . . , JtmKE

g) = Jf(t1, . . . , tm)KE
g .

We show (2) by induction on φ.
• φ = p. Fix h, g with hRg. D, h |= p ⇐⇒ pD = 1 ⇐⇒ pE = 1 ⇐⇒ E, g |= p.
• φ = P (t1, . . . , tn). Fix h, g with hRg. From (1) we have that JtiKD

hRJtiKE
g for all i = 1, . . . , n.

It follows that

D, h |= P (t1, . . . , tn) ⇐⇒ (Jt1KD
h , . . . , JtnK

D
h) ∈ PD ⇐⇒ (R−1(Jt1KE

g), . . . , R−1(JtnKE
g)) ∈ PD

⇐⇒ (Jt1KE
g , . . . , JtnK

E
g) ∈ PE ⇐⇒ E, g |= P (t1, . . . , tn) .

• The cases φ = ¬φ1 and φ = (φ1 ∧ φ2) are easy.
• φ = ∃xφ1. Fix h, g with hRg.
− Suppose that D, h |= ∃xφ1. There is a ∈ D such that D, h[x 7→ a] |= φ1. Since R is

left-total, there is b ∈ E such that aRb. Observe that h[x 7→ a]Rg[x 7→ b]. By the inductive
hypothesis, E, g[x 7→ b] |= φ1, which implies that E, g |= ∃xφ1.

− Suppose that E, g |= ∃xφ1, which means that there is b ∈ E such that E, g[x 7→ b] |= φ1.
Let a = R−1(b) and observe that h[x 7→ a]Rg[x 7→ b]. From the inductive hypothesis we
get that D, h[x 7→ a] |= φ1 and hence D, h |= ∃xφ1.

(3) is an easy consequence of (2). Fix g1 : V → E , g2 : V → E , and define h : V → D as
h(x) = R−1(g1(x)) = R−1(g2(x)) for all x ∈ V. Observe that hRg1 and hRg2. Therefore,

E, g1 |= φ ⇐⇒ D, h |= φ ⇐⇒ E, g2 |= φ . �

Remark 55. Let us see why the proof of Lemma 54 cannot be extended when we include
equality in the first-order language. Consider two first-order structures D = (D, ·D), E = (E , ·E),
and a relation R ⊆ D × E that satisfy the conditions of Lemma 54. It is possible that there
is an element a of D that is related through R to two distinct elements b1, b2 of E . That is,
b1 6= b2, aRb1, and aRb2. Observe that the partial variable assignments {(x, a), (y, a)} and
{(x, b1), (y, b2)} can be easily extended to total variable assignments h and g respectively such
that hRg. Then, we would have that D, h |= x = y and E, g 6|= x = y.

6.4. Satisfaction in well-founded quasimodel implies satisfaction in model. Suppose
that φ is satisfied in some well-founded adorned quasimodel m = (f,R, τ). We will show
that we can construct from m a temporal structure that satisfies φ. First, we argue by the
Löwenheim-Skolem theorem that each quasistate f(u) is realized by some first-order structure
Du = (Du, ·Du) of countable domain Du. Clearly, we cannot construct a temporal model from
this sequence of structures because, for one thing, they have different domains. The idea is to
blow these structures up by virtue of Lemma 54 so that they share the same domain and so that
constants are rigidly interpreted. Take a cardinal κ ≥ ℵ0. κ is bigger than any Du. We define
E = R × κ. For each moment u, we define appropriately a left-total, injective, and right-total
relation Ru ⊆ Du × E . Lemma 54 allows us to define a family of first-order structures {Eu}u∈N
with the same domain E that realize the corresponding quasistates. We have also arranged that
constants are rigidly interpreted. We string the structures {Eu}u∈N together into a first-order
temporal structure M.

The crucial claim is that if a formula ψ, with ψ in the closure of φ, is satisfied at some moment
u under the structure Eu and some individual variable assignment h, then ψ is satisfied under
M, h at moment u. We consider such triples (ψ, h, u) and gather them under the set Occ(E).
It is rather straightforward to extend the derivation relation to Occ(E) and argue about the
converse well-foundedness of the regeneration relations. Due to the monodic restrictions, the
regeneration of least fixpoint formulas cannot involve formulas with more than one free variables

42 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

•u •v • Nw //

r1,r5 typeu1
r1,r5 typev1

r5

r1

UUUUUUUUUUUUUUUU typew1
r5

r2,r3,r4 typeu2
r4

r2

UUUUUUUUUUUUUUUU

r3

KKKKKKKKKKKKKKKKKK
typev2

r4 typew2
r1,r2,r4

typev3

r2
iiiiiiiiiiiiiiii

typew3
r3

typev4

r3
iiiiiiiiiiiiiiii

f(u).T f(v).T f(w).T

Du = (Du, ·Du) Dv = (Dv, ·Dv) Dw = (Dw, ·Dw)

Figure 3. Runs, quasistates and first-order structures that realize them.

nor quantified formulas. To each occurrence of a least fixpoint formula µXψX in Occ(E), we
assign the “well-ordering ordinal” (in the words of Streett and Emerson) of the regeneration
relation for µXψX . Then, we can attach an appropriate µ-annotation, which is reminiscent of
signatures but not the same thing, to each occurrence (ψ, h, u) in Occ(E) and proceed to show
the claim by a delicate induction on these annotations and formula structure.

Theorem 56. Let φ be a FOTLpnf
1µν [σ]-sentence. If φ is satisfied in some well-founded adorned

quasimodel for φ, then it is satisfiable.

Proof. Fix a FOTLpnf
1µν [σ]-sentence φ and suppose that φ is satisfied in some well-founded adorned

quasimodel (f,R, τ) for φ. There is a moment w ∈W such that φ is in all types in f(w).T .
Let u be an arbitrary moment. By definition, f(u) is a realizable state candidate. It follows

that the first-order sentence αf(u), defined as in Lemma 46, is satisfiable. By the Löwenheim-
Skolem theorem [39], there exists a first-order structure Du = (Du, ·Du) over the signature
σsurr with countable domain Du that satisfies αf(u) and hence also realizes f(u) (see proof of
Lemma 46). That is,

f(u).T =
{
tDu(a) | a ∈ Du

}
f(u).T con(c) = tDu(cDu) , for all c ∈ con[φ] .

Remember from Remark 43 that the set of types f(u).T defines an equivalence relation and
thus partitions the domain Du. Clearly, each equivalence class

Du[t] =
{
a ∈ Du | t = tDu(a)

}
is of cardinality at most ℵ0. See Figure 3. Take a cardinal κ ≥ ℵ0. We will construct a model
with domain E defined as

E = R × κ =
{

(r, ξ) | r ∈ R and ξ ∈ κ
}
.

It is clear that E is of cardinality κ. The challenge now is how to deal with the fact that we
have first-order structures of different domains. We will construct a family of appropriate left-
total, injective, and right-total relations {Ru}u∈N from the domains {Du}u∈N to E . By virtue
of Lemma 54, we will then get a family of first-order structures {Eu}u∈W , with Eu = (E , ·Eu),
that realize the quasistates and that all share the same domain. Bear also in mind that the
constants have to be rigidly interpreted, so these relations have to be carefully defined.

Fix a type t in f(u).T and observe that Du[t] may contain the interpretation of some constants.
Let C be the set of these constants and D the set of their interpretations, i.e.

C =
{
c ∈ C | cDu ∈ Du[t]

}
D =

{
d ∈ Du[t] | there is c ∈ C s.t. d = cDu

}
.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 43

Du[t] •
cDu

1 •
cDu

3cDu
2 • • • •

π−1
u,t

κ •
ξc1

OO

•
ξc2

JJ����������������
•
ξc3

OO

•

TT))))))))))))))))
•

OO

•

JJ����������������
•

OO

•

TT))))))))))))))))
•

OO

•

TT))))))))))))))))
•

OO

•

UU****************
. . .

Figure 4. A left-total, injective, and right-total relation πu,t from Du[t] to κ.

Du Ru E = R × κ

Du[t1] ◦ //______

��/
/

/
/

/
/

/
/

/
/

/
/

/
/ ◦ {r1} × κ

Du[t2] • //

''OOOOOOOOOOOO

��>>>>>>>>>>>>>>> • {r2} × κ

• {r3} × κ

• {r4} × κ

◦ {r5} × κ

...

Dv Rv E = R × κ

Dv[t1] ◦ //______

��.
.

.
.

.
.

.
.

.
.

.
.

.
. ◦ {r1} × κ

Dv[t2] •

��>>>>>>>>>>>>>>> ? {r2} × κ

Dv[t3] ?

777w7w7w7w7w7w7w
� {r3} × κ

Dv[t4] �

77

• {r4} × κ

◦ {r5} × κ

...

Dw Rw E = R × κ

Dw[t1] ◦

��/
/

/
/

/
/

/
/

/
/

/
/

/
/ • {r1} × κ

Dw[t2] •

77pppppppppppp //

��>>>>>>>>>>>>>>> • {r2} × κ

Dw[t3] ? ///o/o/o/o/o/o ? {r3} × κ

• {r4} × κ

◦ {r5} × κ

...

Figure 5. Constructing piecewise the relation Ru from Du to E .

Without loss of generality we can assume that the constants that the signature contains are
only those that appear in φ, i.e. C = con[φ]. We fix an injection that maps each constant c ∈ C
to a distinct ξc ∈ κ. We define a left-total, injective, and right-total relation πu,t from Du[t] to
κ or, equivalently, a surjective function π−1

u,t from κ to Du[t] as follows.

44 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

− For every constant c in C, π−1
u,t (ξc) = cDu .

− Observe that κ′ = κ \ {ξc | c ∈ C} is of cardinality κ, which means that it has “much more”
elements than Du[t]. So, we can map each element in κ′ to some element in Du[t] and arrange
that every element in Du[t] is mapped to.

See Figure 4 for an illustration of the idea.
Each type in f(u).T has a run that goes through it and all runs go through some type in

f(u).T at time u. Hence, to each type in f(u).T we associate the non-empty set of runs that
go through it at u. So, we define a family of functions {runsu}u∈N as follows.

runsu : f(u).T → ℘ (R) runsu(t) =
{
r ∈ R | r(u) = t

}
For the example of Figure 3 we would have runsu(t1) = {r1, r5, . . .} (we put the dots because
we obviously have not drawn all the runs in the figure) and runsu(t2) = {r2, r3, r4, . . .}. Let us
state three obvious facts about these mappings.

t 6= t′ =⇒ runsu(t) ∩ runsu(t′) = ∅
⋃

t∈f(u).T

runsu(t) = R E = R × κ =
⋃

t∈f(u).T

[
runsu(t)× κ

]
We define the left-total, injective, and right-total relations Ru,t ⊆ Du[t] ×

[
runsu(t) × κ

]
, and

the relation Ru ⊆ Du × E as

dRu,t(r, ξ)
def⇐⇒ r ∈ runsu(t) and (d, ξ) ∈ πu,t Ru =

⋃
t∈f(u).T

Ru,t

It is easy to see that Ru is a left-total, injective, and right-total relation from Du to E .
Now, we define a family of first-order structures {Eu}u∈N over the signature σsurr that have

the same domain E . The interpretation function ·Eu is defined so that it satisfies the following.

(i) (b1, . . . , bn) ∈ PEu ⇐⇒ (R−1
u (b1), . . . , R−1

u (bn)) ∈ PDu ,
(ii) pEu = pDu ,

(iii) cEu = (rc, ξc), which implies that cDuRuc
Eu , for all c ∈ con[φ]. Notice that constants are

interpreted rigidly.

Observe that the conditions of Lemma 54 for the first-order structures Du and Eu are met. We
proceed to show that tEu(b) = tDu(R−1

u (b)). Let ψ ∈ cl1[φ]. We have that

ψ ∈ tEu(b) ⇐⇒ Eu, z 7→ b |= [ψ]z
Lemma 54⇐⇒ Cu, z 7→ R−1

u (b) |= [ψ]z ⇐⇒ ψ ∈ tDu(R−1
u (b)) .

It is easy to show that Eu realizes f(u).

• Let t be a type in f(u).T . Since f(u) is realized by Du, there is a ∈ Du such that t = tDu(a).
Ru is left-total, so there is b ∈ E such that aRub. It follows that tEu(b) = tDu(R−1

u (b)) =
tDu(a) = t.
• Let b ∈ E . Then, tEu(b) = tDu(R−1

u (b)). Since R−1
u (b) ∈ Du and Du realizes f(u), we get that

tDu(R−1
u (b)) is in f(u).T .

• Let c ∈ con[φ]. Du realizes f(u) and hence f(u).T con(c) = tDu(cDu). Observe that cDuRuc
Eu ,

which implies that tEu(cEu) = tDu(R−1
u (cEu)) = tDu(cDu) = f(u).T con(c).

Observe the following properties for ψ ∈ cl1[φ].

(1) ψ ∈ r(u) =⇒ for all ξ ∈ κ, Eu, z 7→ (r, ξ) |= [ψ]z.
Suppose that ψ ∈ r(u). Let t = r(u), ξ ∈ κ, and a = π−1

u,t (ξ) ∈ Du[t]. Then, t =
r(u) = tDu(a), r ∈ runsu(t), and aRu,t(r, ξ). We have that Du, z 7→ a |= [ψ]z and hence
Eu, z 7→ (r, ξ) |= [ψ]z.

(2) Eu, z 7→ (r, ξ) |= [ψ]z =⇒ ψ ∈ r(u).
Suppose that Eu, z 7→ (r, ξ) |= [ψ]z. Let a = R−1

u (r, ξ) and t = tDu(a), which means that
aRu(r, ξ) and r ∈ runsu(t). It follows that Du, z 7→ a |= [ψ]z and hence ψ ∈ tDu(a) = r(u).

Consider now the first-order temporal structure M =
(
〈N, <〉, E , I

)
, where Iw = Ew = (E , ·Ew).

Iw interprets the symbols of σsurr, which includes the symbols of σ.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 45

First, let us introduce a new set of occurrences that also includes fp-sentences from cl[φ] that
have more than one free individual variable. We define

Occ(E) =
{

(ψ, h, u) | u ∈ N, ψ ∈ cl[φ], h : fvars[ψ]→ R × κ, Eu, h |= ψ
}
.

It is easy to see that for every occurrence (ψ, r, u) in Occ(m), where ψ has one free individual
variable, say x, there are corresponding occurrences (ψ, {x 7→ (r, ξ)}, u) in Occ(E) for every
ξ ∈ κ. For all occurrences (ψ, r, u)r∈R , where ψ is a dom-sentence, we have only one occurrence
(ψ, ∅, u) in Occ(E).

Now, we have to extend the choice function τ . The extended choice function picks a disjunct
for each disjunction occurrence. Moreover, it picks for an existentially quantified formula a pair
(r, ξ) for the variable that the quantifer binds. Consider an occurrence (ψ1∨ψ2, h, u) in Occ(E).

− If (ψ1 ∨ ψ2) is a dom-sentence, then take any run r ∈ R (it does not matter which one we
take) and define τ(ψ1 ∨ ψ2, ∅, u) = τ(ψ1 ∨ ψ2, r, u).

− If (ψ1∨ψ2) has one free individual variable, say x, then τ(ψ1∨ψ2, h, u) = τ(ψ1∨ψ2, h(x).r, u).
We write h(x).r to denote r when h(x) = (r, ξ).

− If (ψ1 ∨ ψ2) has more than one free individual variable, then Eu, h |= ψ1 ∨ ψ2 = ψ1 ∨ ψ2. So,
for at least one i in {1, 2}, Eu, hi |= ψi, where hi is the restriction of h to fvars[ψi]. We define
that τ picks ψi. Notice that if both ψ1, ψ2 are true, it does not matter which one we choose.
The regeneration of least fixpoint fp-sentences does not involve formulas with more than one
free variable.

Consider an occurrence (∃xψ, h, u) in Occ(E). This means that Eu, h |= ∃xψ = ∃xψ. So, there
is at least one (r, ξ) ∈ E such that Eu, h ∪ {x 7→ (r, ξ)} |= ψ. Pick any of these (r, ξ) (the
regeneration of least fixpoint fp-sentences does not involve existentially quantified formulas)
and define τ(∃xψ, h, u) = (r, ξ).

We define the derivation relation `E,τ on Occ(E) as follows.

(1) If (ψ1∧ψ2, h, u) ∈ Occ(E), then ψ1∧ψ2, h, u `E,τ ψ1, h1, u and ψ1∧ψ2, h, u `E,τ ψ2, h2, u,
where h1 (h2) is the restriction of h to fvars[ψ1] (fvars[ψ2]).

(2) If (ψ1 ∨ ψ2, h, u) ∈ Occ(E), then ψ1 ∨ ψ2, h, u `E,τ ψi, hi, u, where ψi = τ(ψ1 ∨ ψ2, h, u)
and hi is the restriction of h to fvars[ψi].

(3) If (∀xψ, h, u) ∈ Occ(E), then ∀xψ, h, u `E,τ ψ, h ∪ {x 7→ (r, ξ)}, u, for all r ∈ R and all
ξ ∈ κ.

(4) If (∃xψ, h, u) ∈ Occ(E), then ∃xψ, h, u `E,τ ψ, h ∪ {x 7→ (r, ξ)}, u, where (r, ξ) =
τ(∃xψ, h, u).

(5) If (#ψ, h, u) ∈ Occ(E), then #ψ, h, u `E,τ ψ, h, u+ 1.
(6) If (ψ, h, u) ∈ Occ(E), then u > 0 (by definition) and ψ, h, u `E,τ ψ, h, u− 1.
(7) If (�ψ, h, u) ∈ Occ(E) and u > 0, then �ψ, h, u `E,τ ψ, h, u− 1.
(8) If (µXψ, h, u) ∈ Occ(E), then µXψ, h, u `E,τ [

...
ψ]{µXψ/X}, h, u.

(9) If (νXψ, h, u) ∈ Occ(E), then νXψ, h, u `E,τ [
...
ψ]{νXψ/X}, h, u.

The transitive closure of `E,τ is denoted by `+
E,τ and its reflexive transitive closure by `∗E,τ . We

have already mentioned that the derivation sequence of a least fixpoint fp-sentence regeneration
does not involve formulas with more than one free variable nor quantified formulas. This is
because of the monodic restrictions. Consequently, we could just as well define the regeneration
relations using the derivation relation `E,τ instead of `m,τ .

Consider some least fixpoint fp-sentence µXψX that is in cl1[φ] and some h : fvars[µXψX]→
R×κ. By monodicity of µXψX , h is either empty or a singleton. The regeneration relation RE,τ

h,X

is defined as: (u, v) ∈ RE,τ
h,X iff there is a finite sequence (ψ1, h1, u1), (ψ2, h2, u2), . . . , (ψk, hk, uk)

of occurrences in Occ(E) such that

• ψ1 = µXψX , h1 = h, and u1 = u,
• ψk = µXψX , hk = h, and uk = v,
• ψi, hi, ui `E,τ ψi+1, hi+1, ui+1 for all i ∈ {1, . . . , k − 1},
• µXψX is a sub-fp-sentence of ψi for all i ∈ {1, . . . , k}.

46 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

It is easy to see that all these relations are converse well-founded. Define the relation RE,τ
X on

the set
{(h, u) | u ∈ N, h : fvars[µXψX]→ R × κ}

as
(h1, u1)RE,τ

X (h2, u2) def⇐⇒ h1 = h2 = h and (u, v) ∈ RE,τ
h,X

and observe that it is converse well-founded. From now on, we will drop the superscript and
write just RX to mean RE,τ

X . We can assign to each occurrence of µXψX in Occ(E) an ordinal
as follows. Define

UX =
{

(h, u) | (µXψX , h, u) ∈ Occ(E)
}

Bα = UX \
⋃
β<α

Aβ Aα =
{

(h, u) ∈ Bα | (h, u) is RX(Bα)-maximal
}
.

We write RX(B) to mean the restriction of RX to B ⊆ UX . It is easy to see that α 6= β =⇒
Aα∩Aβ = ∅. For contradiction, assume that there are ordinals α 6= β (without loss of generality
α < β) and a pair (h, u) ∈ UX such that (h, u) ∈ Aα and (h, u) ∈ Aβ. So, (h, u) ∈ Bβ, which
implies that (h, u) /∈ Aα. Contradiction.

Claim 57. For any pair (h, u) ∈ UX , there is an ordinal α such that (h, u) ∈ Aα.

Proof. We proceed by well-founded induction on the converse well-founded relation RX . Let
(h, u) ∈ UX and assume that the property holds for every RX -successor of (h, u). That is,
(h, u)RX(h′, v) implies that there is an ordinal β(h′, v) such that (h′, v) ∈ Aβ(h′,v). Assume to the
contrary that there is no ordinal α such that (h, u) ∈ Aα. Let α = sup{β(h′, v) | (h, u)RX(h′, v)}
and notice that (α + 1) is strictly greater than all ordinals in {β(h′, v) | (h, u)RX(h′, v)}. So,
no RX -successor of (h, u) is in Bα+1 = UX \

⋃
β<α+1Aα, but (h, u) is in Bα+1. That is, (h, u)

is RX(Bα+1)-maximal and hence (h, u) ∈ Aα+1. Contradiction. �

Claim 58. Let (h, u) ∈ UX be such that (h, u) ∈ Aα. Then, all RX -successors of (h, u) are in⋃
β<αAβ.

Proof. Since (h, u) ∈ Aα, (h, u) ∈ Bα and (h, u) is RX(Bα)-maximal. This means that no
RX -successor of (h, u) is in Bα, because from (h, u)RX(g, v) and (g, v) ∈ Bα we would get that
(h, u)RX(Bα)(g, v), which is a contradiction. It follows that all RX -successors of (h, u) are in⋃
β<αAβ. �

From the previous discussion and Claim 57 we deduce that the family of sets {Aα}Ord

partitions UX and we can define the function fX : UX → Ord as

fX(h, u) = [the unique ordinal α for which (h, u) ∈ Aα] + 1 .

All the values of fX are successor ordinals. An immediate consequence of Claim 58 is that for
any (h, u), (g, v) ∈ UX ,

(h, u)RX(g, v) =⇒ fX(h, u) > fX(g, v) .

To each occurrence (ψ, h, u) in Occ(E) we associate a µ-annotation aψ,h,u : µ-vars[φ] → Ord
for ψ, defined as

aψ,h,u(X) = sup
{
fX(g, v) | ψ, h, u `∗m,τ µXψX , g, v

}
.

Clearly, these annotations are well-ordered by <φ. Immediately from the definition we deduce
that
− If (ψ = ψ1 ∧ψ2, h, u) ∈ Occ(E), then aψ1,h1,u ≤φ aψ,h,u and aψ2,h2,u ≤φ aψ,h,u, where h1 (h2)

is the restriction of h to fvars[ψ1] (fvars[ψ2]).
− If (ψ = ψ1 ∨ ψ2, h, u) ∈ Occ(E), then aψ,h,u = aψ′,h′,u, where ψ′ = τ(ψ, h, u) and h′ is the

restriction of h to fvars[φ′].
− If (ψ = ∀xψ1, h, u) ∈ Occ(E), then for all r ∈ R and all ξ ∈ κ, aψ1,h′,u ≤φ aψ,h,u, where
h′ = h ∪ {x 7→ (r, ξ)}.

− If (ψ = ∃xψ1, h, u) ∈ Occ(E), then aψ,h,u = aψ1,h′,u, where h′ = h ∪ {x 7→ τ(ψ, h, u)}.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 47

− If (ψ = #ψ1, h, u) ∈ Occ(E), then aψ,h,u = aψ1,h,u+1.
− If (ψ = ψ1, h, u) ∈ Occ(E), then u > 0 and aψ,h,u = aψ1,h,u−1.
− If (ψ = �ψ1, h, u) ∈ Occ(E) and u > 0, then aψ,h,u = aψ1,h,u−1.
− If (ψ = µXψX , h, u) ∈ Occ(E), then aψ,h,u(Y) = aψ′,h,u(Y) for Y 6= X and aψ,h,u(X) >
aψ′,h,u(X), where ψ′ = [

...
ψX]{µXψX/X}.

aψ,h,u(X) = sup
{
fX(h′, v) | µXψX , h, u `∗E,τ µXψX , h′, v

}
︸ ︷︷ ︸

A

aψ′,h,u(X) = sup
{
fX(h′, v) | [

...
ψX]{µXψX/X}, h, u `∗E,τ µXψX , h′, v

}
︸ ︷︷ ︸

B

It is easy to see that B ⊆ A and fX(h, u) ∈ A. We show that fX(h, u) is strictly greater
than all ordinals in B. Let β ∈ B. There is (g, w) ∈ UX such that β = fX(g, w) and
[

...
ψX]{µXψX/X}, h, u `∗E,τ µXψX , g, w. It follows that µXψX , h, u `+

E,τ µXψX , g, w, which
means that (g, w) is a RX -successor of (h, u). Therefore, fX(h, u) > fX(g, w) = β. Immedi-
ately, we deduce that supA > supB.

− If (ψ = νXψ1, h, u) ∈ Occ(E), then aψ,h,u = a
[
...
ψ1]{ψ/X},h,u.

We define the well-founded order < on the set of occurrences Occ(E) as

(ψ, h, u) < (ψ′, h′, u′) def⇐⇒
aψ,h,u <φ aψ′,h′,u′ or [aψ,h,u = aψ′,h′,u′ and (ψ is a strict subformula of ψ′)].

For contradiction, assume that there is an infinite descending chain of occurrences

(ψ0, h0, u0) > (ψ1, h1, u1) > (ψ2, h2, u2) > . . .

It is clear that for all i ∈ N, aψi,hi,ui ≥φ aψi+1,hi+1,ui+1
. Define

I = {i ∈ N | aψi,hi,ui >φ aψi+1,hi+1,ui+1
} .

If I is infinite, then we get an infinite <φ-descending chain of annotations, which is a contra-
diction. If I is finite, then there is k ∈ N such that |I| = k and we get an infinite chain of
formulas ψk+1, ψk+2, . . . such that for all i ∈ {k + 1, k + 2, . . .}, ψi+1 is a strict subformula of
ψi. Contradiction.

Claim 59. For any occurrence (ψ, h, u) ∈ Occ(E), M, h, u |= ψ.

Proof. The proof is by induction on the well-founded order < on Occ(E). Let (ψ, h, u) be an
occurrence in Occ(E) and assume that the property holds for all occurrences < (ψ, h, u).
• The cases ψ = p,¬p, P (t1, . . . , tn),¬P (t1, . . . , tn) are easy.
• ψ = (ψ1 ∧ ψ2). From (ψ, h, u) ∈ Occ(E) we get that Eu, h |= ψ1 ∧ ψ2 = ψ1 ∧ ψ2. Then,

Eu, h |= ψ1 and Eu, h |= ψ2. Let h1 (h2) be the restriction of h to fvars[ψ1] (fvars[ψ2]). It
follows that Eu, h1 |= ψ1 and Eu, h2 |= ψ2, which means that (ψ1, h1, u), (ψ2, h2, u) ∈ Occ(E).
From the inductive hypothesis, we have that M, h1, u |= ψ1 and M, h2, u |= ψ2. Therefore,
M, h, u |= ψ1 and M, h, u |= ψ2, which implies that M, h, u |= ψ1 ∧ ψ2 = ψ.
• The case ψ = (ψ1 ∨ ψ2) involves similar arguments to the ones used for the previous case.
• ψ = ∀xψ1. From (∀xψ1, h, u) ∈ Occ(E) we get that Eu, h |= ∀xψ1 = ∀xψ1. Let (r, ξ) be

an arbitrary element of E . It follows that Eu, h ∪ {x 7→ (r, ξ)} |= ψ1, which means that
(ψ1, h ∪ {x 7→ (r, ξ)}, u) is in Occ(E). The inductive hypothesis gives us that M, h ∪ {x 7→
(r, ξ)}, u |= ψ1. We deduce that M, h, u |= ∀xψ1 = ψ.
• ψ = ∃xψ1. From (∃xψ1, h, u) ∈ Occ(E), we get that Eu, h |= ∃xψ1 = ∃xψ1. There is

(r, ξ) ∈ E such that Eu, h ∪ {x 7→ (r, ξ)} |= ψ1, which means that (ψ1, h ∪ {x 7→ (r, ξ)}, u) is
in Occ(E). Notice that (ψ1, h ∪ {x 7→ (r, ξ)}, u) < (∃xψ1, h, u). By the inductive hypothesis,
M, h ∪ {x 7→ (r, ξ)}, u |= ψ1 and hence M, h, u |= ∃xψ1 = ψ.
• The cases ψ = #ψ1, ψ1,�ψ1 are similar to the next one.
• ψ = µXψX . Since ψ is monodic, it has either one or none free individual variables.

48 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

− If ψ is a dom-sentence, then from (µXψX , ∅, u) we get that Eu |= µXψX . It follows
that µXψX is in all types in f(u).T and hence [

...
ψX]{µXψX/X}, which is also a dom-

sentence, is in all types in f(u).T as well, i.e. Eu |= [
...
ψX]{µXψX/X}. Observe that

([
...
ψX]{µXψX/X}, ∅, u) < (µXψX , ∅, u) and by the inductive hypothesis, M, u |= [

...
ψX]{µXψX/X}.

Therefore, M, u |= µXψX .
− Suppose that ψ has one free individual variable, namely x. From (µXψX , h, u) ∈ Occ(E),

we get that Eu, h |= µXψX . It follows that µXψX is in r(u), where h(x) = (r, ξ). Hence,

[
...
ψX]{µXψX/X} is in r(u) as well. This implies that Eu, h |= [

...
ψX]{µXψX/X}. Observe

that ([
...
ψX]{µXψX/X}, h, u) < (µXψX , h, u) and by the inductive hypothesis, M, h, u |=

[
...
ψX]{µXψX/X}. Therefore, M, h, u |= µXψX .

• ψ = νXψ1. We define the derivation tree for (ψ, h, u), which is a Occ(E)-labeled tree. The
root of the tree has label (ψ, h, u). Consider an arbitrary node n with label (χ, g, v). For
every `E,τ -successor (χ′, g′, v′) of (χ, g, v), n has a child with label (χ′, g′, v′). Intuitively, the
derivation tree for (ψ, h, u) records all the possible `E,τ -derivations that start from (ψ, h, u).
There is a derivation sequence from (ψ, h, u) to any label (χ, g, v) of a node of the tree
and hence aχ,g,v ≤φ aψ,h,u. We prune the derivation tree at the nodes where the inductive
hypothesis can be applied to the label. So, for a leaf n of the pruned derivation tree with label
(χ, g, v), we have that (χ, g, v) < (ψ, h, u). Observe that the case of (χ, g, v) not having a
`E,τ -successor, i.e. when χ is an atomic fp-sentence or the negation of an atomic fp-sentence,
is covered by the inductive hypothesis. See Figure 6 for an example of a pruned derivation
tree. Notice that the tree is pruned as soon as a sub-fp-sentence of νXψX is encountered. This
implies that all fp-sentences that appear in non-leaf nodes have νXψX as sub-fp-sentence.

We will say that an occurrence (χ, g, v) is true under a first-order temporal structure M′

if M′, g, u |= ψ. It is false under M′ if it is not true under M′. We will also say that a node
of the derivation is true (false) under M′ if its label is true (false). Consider an arbitrary
non-leaf node n of the tree and observe that if all its children are true under M′, then n is
true under M′. Equivalently, if n is false under M′, then at least one child of n is false under
M′. Let us note that all the leaf nodes of the pruned derivation tree for (ψ, h, u) are true
under M.

The proof proceeds by contradiction. Assume that the root of the derivation tree is false
under M, i.e. M, h, u 6|= ψ. Then, the unique child n of the root is also false under M. That
is, M, h, u 6|= [

...
ψ1]{ψ/X}. Notice that n is not a leaf node, because then it would be true under

M. We can continue like this and construct an infinite sequence of labels following an infinite
branch of the pruned derivation tree, in which all labels are false under M. Note that in the
case of a conjunction or a universally quantified formula, if more than one children are false
under M, we choose one with the <φ-least νφ-signature under M. Observe that there is no
least fixpoint sentence in this sequence, because if there was one, say (µXψX , g, v), then the
next occurrence would be ([

...
ψX]{µXψX/X}, g, v) and we could apply the inductive hypothesis.

But, in order to have an infinite derivation sequence we must be going infinitely often through
fixpoint fp-sentences or else the sequence would terminate at some atomic fp-sentence or the
negation of an atomic fp-sentence. Consider the set of greatest fixpoint fp-sentences that
appear infinitely often in s (there may be more than one) {νX1ψX1 , . . . , νXkψXk} and pick
the one, say νY ψY , that binds the <-least fixpoint variable, i.e. Y < X1, . . . , Y < Xk. There
may be more greatest fixpoint fp-sentences that appear in s, but they will stop appearing
from a point on. After that point, find the first appearance of νY ψY in s. Starting from
there, every time we go through νY ψY , νφ-signature strictly decreases (this can be shown
will similar arguments to the ones used in Theorem 52 having Proposition 33 in mind) and
hence we get an infinite <φ-descending chain of νφ-signatures, which is a contradiction. �

From (φ, ∅, w) ∈ Occ(E) and the above claim, we get that M, w |= φ and hence φ is satisfiable.
�

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 49

χ1 = νX[µY (∀yRxy ∨ Y) ∧ νZ(X ∧#Z)], x 7→ (r, ξ), u

µY (∀yRxy ∨ Y) ∧ νZ ′(χ1 ∧#Z ′), x 7→ (r, ξ), u

ddddddddddddddddddddddd

ZZZZZZZZZZZZZZZZZZZZZZZ

µY (∀yRxy ∨ Y), x 7→ (r, ξ), u χ2 = νZ ′(χ1 ∧#Z ′), x 7→ (r, ξ), u

χ1 ∧#χ2, x 7→ (r, ξ), u

iiiiiiiiiiii

UUUUUUUUUUUU

χ1, x 7→ (r, ξ), u #χ2, x 7→ (r, ξ), u

... χ2, x 7→ (r, ξ), u+ 1

χ1 ∧#χ2, x 7→ (r, ξ), u+ 1

iiiiiiiiiiii

UUUUUUUUUUUU

χ1, x 7→ (r, ξ), u+ 1 #χ2, x 7→ (r, ξ), u+ 1

... χ2, x 7→ (r, ξ), u+ 1

...

Figure 6. Pruned derivation tree.

6.5. Finite satisfiability & satisfaction in finitary quasimodels. First of all, let us observe
that finite domains give rise to different logics. Let 2 mean ‘at every moment’ and H mean
‘always in the past’. Easily, we see that both these temporal connectives can be expressed with
ν, #, and �.

Hφ ≡ νX(�φ ∧�X) 2φ ≡= νX(�φ ∧�X)︸ ︷︷ ︸
Hφ

∨φ ∨ νX(#φ ∧#X)︸ ︷︷ ︸
Gφ

Consider the formula φ = 2∃x(Qx ∧ H¬Qx) (the example is taken from [32]). We verify that
φ is satisfied in the temporal structure M with domain N that interprets Q as QIu = {u}. It is
not, however, finitely satisfiable.

Theorem 60. Let φ be a FOTLpnf
1µν [σ]-sentence. Then, φ is finitely satisfiable if and only if

there is a well-founded adorned finitary quasimodel for φ, in which φ is satisfied.

Proof. Fix a FOTLpnf
1µν [σ]-sentence φ. The ⇒ direction is easy. The construction of Theorem 52

yields a well-founded adorned finitary quasimodel. The ⇐ direction requires a minor modi-
fication of the argument. Suppose that φ is satisfied in some well-founded adorned finitary
quasimodel m = (f,R, τ) for φ. There is a family of finite σsurr-structures {Du = (Du, ·Du)}u∈N
such that Du realizes f(u). Since there are finitely many realizable state candidates, we can as-
sume without loss of generality that the quasistates are realized by finitely many σsurr-structures.
It follows that the set

{∣∣Du[t]

∣∣ | u ∈ N, t ∈ f(u)
}

is finite and hence it has a maximum element,
namely M . We define the finite set

E = R ×M =
{

(r, ξ) | r ∈ R and ξ ∈M
}
.

Observe that, for any u ∈ N, we can define a left-total, injective, and right-total relation
Ru ⊆ D×E and a σsurr-structure Eu = (E , ·Eu) like in Theorem 56 so that Eu realizes f(u). We

50 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

can arrange that the constants are interpreted rigidly. The proof from this point on proceeds
exactly as in Theorem 56. �

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 51

7. Complexity

Consider a formula φ of propositional temporal logic with no fixpoint operators. Employing
combinatorial arguments, a pre-model for φ can be chopped down to an ultimately periodic one,
which can be viewed as a finite object. This is the approach taken in [49]. So, the existence
of a pre-model in which φ is satisfied can be checked with a non-deterministic algorithm that
guesses the types for an ultimately periodic pre-model and checks that the temporal constraints
are satisfied. Alternatively, the pre-model can be viewed as an ω-word over the set of all types
for φ. Then, a Büchi automaton can be constructed that accepts exactly those pre-models in
which φ is satisfied [59]. Thus, satisfiability is reduced to nonemptiness of a Büchi automaton.
The latter approach extends elegantly to the case of propositional temporal logic with fixpoint
operators [58]. The authors in [32] extend the technique of [49] to quasimodels and show how
a quasimodel can be chopped down to an appropriate ultimately periodic one.

We have opted here for the automata-theoretic approach, since it abstracts away much com-
binatorial thinking. Both for the arbitrary domain case and for the finite domain case the idea
is the same: Given a sentence φ, we describe an automaton Aφ that takes as input an infinite
sequence of state candidates for φ and accepts if and only if this sequence can be extended to a
well-founded (finitary) quasimodel in which φ is satisfied. Checking (finite) satisfiability for φ
is then reduced to checking nonemptiness for Aφ. We note that the algorithm for the first-order
part is plugged in the algorithm for nonemptiness.

7.1. Arbitrary domain. Vardi shows in [58] that, given a propositional temporal sentence φ
with fixpoints, a Büchi automaton can be constructed that accepts exactly the well-founded
adorned pre-models in which φ is satisfied. Moreover, the number of states of this automaton
is singly exponential in the size of φ. This result extends in our case for sequences of types.
That is, we can construct a ‘Vardi automaton’ (call it Ar) that accepts exactly those sequences
of types that are temporally consistent and well-founded (potentially well-founded, to be more
accurate).

We want to construct an automaton Aφ that accepts sequences of state candidates that
can be made into appropriate quasimodels for φ. Any information about runs is missing from
such sequences. So, the difficult part is checking that each type at each moment is hit be a
well-founded run. It seems appropriate to use an alternating automaton that launches a new
process for each type at each moment in order to perform exhaustively this check. It turns out,
however, that we need more information than what is available from the state candidates. For
that reason, we “decorate” each type at each moment with a subset of the states of Ar. A state
q is in the decoration of a type t ∈ f(u).T if there is a finite sequence in

∏
v∈[0,u] f(v).T and

a computation of Ar on that sequence that ends at state q. Informally, we can think of these
decorations as “paused simulations” of computations of Ar. Any possible computation of Ar
on any possible finite sequence of types in f is considered. This information would then enable
the alternating automaton to function correctly. It guesses a paused simulation, i.e. a state of
Ar from the decoration, and resumes the simulation of Ar guessing at each step the type to
follow. We also define another automaton that takes as input a decorated sequence of state
candidates and performs all the rest of the necessary checks: whether the decoration is as it
should, satisfaction of φ, realizability, etc.

Fix a FOTLpnf
1µν-sentence φ. Recall that Types(φ) is the set of types for φ, StateC(φ) is the set

of states candidates for φ, and Real(φ) is the set of realizable state candidates for φ. The size
of Types(φ) is exponential in the size of φ and the sizes of StateC(φ) and Real(φ) are doubly
exponential in the size of φ.

From Theorem 52 and Theorem 56, we have that φ is satisfiable if and only if there is an
infinite word f ∈ StateC(φ)ω such that the following hold.

− For every u ∈ N, f(u) is a realizable state candidate (hence f is a state function for φ).
− There is w ∈ N such that φ is in all types in f(w).T
− Every type at every moment is hit by a well-founded run.
− For any c ∈ con[φ], the function rc, defined as rc(u) = f(u).T con(c), is a well-founded run.

52 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

We will construct a Büchi automaton A that accepts the ω-language

L(A) = {f ∈ StateC(φ)ω | f can be extended to a well-founded quasimodel that satisfies φ} .

Clearly, φ is satisfiable if and only if L(A) is not empty.

Definition 61 (suitability, type-sequence, consistency, well-foundedness, potential well-found-
edness). Let φ be a FOTLpnf

1µν-sentence and t1, t2 be types for φ.

− We say that the pair (t1, t2) is suitable if for any ψ,

#ψ ∈ t1 =⇒ ψ ∈ t2 ψ ∈ t2 =⇒ ψ ∈ t1 �ψ ∈ t2 =⇒ ψ ∈ t1 .

− An infinite word r over Types(φ) is a type-sequence for φ.
− We say that a type-sequence r is consistent if r(0) contains all �-fp-sentences in cl1[φ] and

for all u ∈ N, the pair 〈r(u), r(u+ 1)〉 is suitable.
− Let τ be a choice function for a consistent type-sequence r. The pair (r, τ) is a consistent

adorned type-sequence for φ.
− We say that a consistent adorned type-sequence (r, τ) is a well-founded if the regeneration

relations for all least fixpoint fp-sentences in cl1[φ] are converse well-founded.
− We say that a consistent type-sequence r is potentially well-founded if there is a choice

function τ such that (r, τ) is a well-founded consistent adorned type-sequence for φ.

Let us construct an automaton Ar = (Qr,Types(φ), q0
r , δr, Fr) that accepts potentially well-

founded consistent type-sequences for φ, i.e the the ω-language

L(Ar) = {r ∈ Types(φ)ω | r is a potentially well-founded consistent type-sequence for φ} .

Consider the Büchi automaton A′r that accepts well-founded consistent adorned type-sequences
for φ. Let t be a type for φ. Define Tt to be the set of functions that map each disjunction
(ψ1 ∨ψ2) in t to a disjunct ψi that is in t, and T =

⋃
t∈Types(φ) Tt. It is obvious that an adorned

type-sequence can be represented as an infinite word ρ over Types(φ) × T , where ρ(u).τ is a
choice function for ρ(u).t for all u ∈ N.

L(A′r) = {ρ ∈ (Types(φ)× T)ω | ρ is a well-founded consistent adorned type-sequence for φ}

From results of Vardi in [58], we have that the number of states of A′r is exponential in the size
of φ. Since the size of the alphabet is at most

[(φ)× 2× 2× · · · × 2︸ ︷︷ ︸
|cl1[φ]| times

= [(φ)× 2|cl1[φ]|

and hence exponential in the size of φ, the entire description of A′r needs only exponential space.
Its construction is effective and the algorithm runs in EXPSPACE. Ar accepts the projection of
L(A′r) on the alphabet Types(φ) simply by guessing the choice functions.

Let f be a state function for φ, u be a moment, and t be a type in f(u).T . We want to
check whether there exists a function r in

∏
v∈N f(v).T that goes throught t at u, i.e. r(u) = t,

and that is consistent and potentially well-founded. If we could somehow guess this function
r, then we could have the automaton Ar compute on r and decide whether r is consistent and
potentially well-founded. Consider the set of all possible finite prefixes

∏
v∈[0,u] f(v).T and the

set of all possible infinite suffixes
∏
v∈[u+1,∞) f(v).T .

− Suppose that there is a consistent and potentially well-founded r in
∏
v∈N f(v).T such that

r(u) = t. Then, there is an accepting computation of Ar on r.

q0
r

r(0) // p0
r

r(1) // . . .
r(u−1) // pu−1

r

r(u)=t // pu
r

r(u+1) // pu+1
r

r(u+2) // . . .

That is, final states appear infinitely often in the sequence of states q0
r , p

0
r , p

1
r , p

2
r , . . . Equiv-

alently, final states appear infinitely often in the sequence pu+1
r , pu+2

r , pu+3
r , . . . Extend the

transition function δr of Ar to δ̂r : Qr × Types(φ)? → ℘ (Qr) so that δ̂r(q, r) gives the set

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 53

of states the automaton Ar could be in after computing on the finite word r. An inductive
definition for δ̂r is the following.

δ̂r(q, ε) = {q} δ̂r(q, ρt) =
⋃

p∈δ̂r(q,ρ)

δr(p, t)

It is clear that pur ∈ δ̂r(q0
r , r(0)r(1) . . . r(u)).

− Consider all the sequences in
∏
v∈[0,u] f(v).T that end at t ∈ f(u).T . The set of states the

automaton Ar could be in after computing on any of these finite sequences is

π(u, t) =
{
δ̂r(q0

r , ρ) | ρ ∈
∏

v∈[0,u]

f(v).T and ρ(u) = t
}
.

Suppose that there is a state pur ∈ π(u, t) and a computation of Ar on an infinite sequence
r2 in

∏
v∈[u+1,∞) f(v).T starting from pur that is accepting. There is a finite sequence r1 in∏

v∈[0,u] f(v).T such that there is a computation of Ar, starting from its initial state, that
ends at state pur . The sequence r = r1 ∪ r2 is then a potentially well-founded consistent run
in f .

The above discussion shows that if we know at any moment u and at any type t ∈ f(u).T
the set of states π(u, t), then we can guess a state q in π(u, t) and start a computation of Ar
from q guessing at each moment the next type Ar should read. We verify that the computation
is accepting and claim that there is a potentially well-founded consistent run in f that goes
throught t at u. So, we “decorate” a type t in a quasistate f(u) with a set f(u).π(t) ⊆ Qr that
is equal to π(u, t). The decoration can be defined inductively as follows.

f(0).π(t) = δr(q0
r , t) f(u+ 1).π(t) =

⋃
t′∈f(u).T

{ ⋃
q∈f(u).π(t′)

δr(q, t)
}

(1)

For a state function f , equation (1) defines a unique decoration.

Definition 62 (decorated state candidate, decorated state function). Let φ be a FOTLpnf
1µν-

sentence and A = (Q,Types(φ), q0, δ, F) be a Büchi automaton.
− An A-decorated state candidate for φ is a triple (T, T con , π), where (T, T con) is a state can-

didate for φ and π : T → ℘ (Q).
− An A-decorated state candidate (T, T con , π) is called realizable if (T, T con) is realizable.
− An A-decorated state function for φ is a function f that maps each moment u ∈ N to an
A-decorated realizable state candidate f(u) = (Tu, T con

u , πu). We will write Tu = f(u).T ,
T con = f(u).T con , and πu = f(u).π.

− We say that φ is satisfied in an A-decorated state function f if there is u ∈ N such that φ is
in all types in f(u).T .

− We say that the an A-decorated state function f is correctly decorated if its decoration satisfies
equation (1) (put δ where δr).

Let DStateC(φ) be the set of all Ar-decorated state candidates. Observe that there are at most

\(φ) = 2[(φ) × [(φ)× [(φ)× · · · × [(φ)︸ ︷︷ ︸
|con[φ]| times

× 2|Qr| × 2|Qr| × · · · × 2|Qr|︸ ︷︷ ︸
[(φ) times

= 2[(φ) × [(φ)|con[φ]| × 2|Qr|×[(φ)

of them. That is, |DStateC(φ)| is doubly exponential in the size of φ. We construct now a Büchi
automaton A1 that accepts the ω-language

L(A1) = {f ∈ DStateC(φ)ω | f is a correctly Ar-decorated state function that satisfies φ} .
A1 needs to remember the entire previous Ar-decorated state candidate in order to check the
correctness of the decoration. Satisfaction of φ is checked by guessing the moment where φ is
satisfied. The set of states of A1 is defined as

Q1 = {q0, qF } ∪
(
{q1, qφ, q2} × DStateC(φ)

)
.

54 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

q0 is the initial state, qF is the fail state, q1 signifies that we should be checking just for real-
izability and decoration correctness, qφ that we should be checking for realizability, decoration
correctness and verify that φ appears in all types of the current state candidate, and q2 that
we have already verified the satisfaction of φ and that from now on we will only be checking
realizability and decoration correctness. It is clear that |Q1| is doubly exponential in the size of
φ. The transition function for A1 is defined as

δ1(q0,C) =

{
{(q1,C), (qφ,C)}, if C is realizable and its decoration correct
{qF }, otherwise

δ1(qF ,C) = {qF }

δ1(〈q1,C〉 ,C′) =

{
{(q1,C

′), (qφ,C′)}, if C′ is realizable and its decoration correct
{qF }, otherwise

δ1(〈qφ,C〉 ,C′) =

{
{(q2,C

′)}, if C′ is realizable, its decoration correct, and it satisfies φ
{qF }, otherwise

δ1(〈q2,C〉 ,C′) =

{
{(q2,C

′)}, if C′ is realizable and its decoration correct
{qF }, otherwise

The set of final states is F1 = {q2} × DStateC(φ).
Supposing that we are given a correctly Ar-decorated state function f , we can easily check

whether it can be extended to a well-founded quasimodel with an alternating Büchi automaton.
The idea is that at every moment u and at every type t ∈ f(u).T we pick an Ar-state from
the decoration f(u).π(t) and launch a new process that continues the simulation of Ar on some
run that it guesses nondeterministically. Note that for each constant c ∈ con[φ], we have to
verify that the sequence rc, defined as rc(u) = f(u).T con(c), is a potentially well-founded run.
We define the alternating Büchi automaton A2 = (Q2,DStateC(φ), q0, δ2, F2), which accepts the
ω-language L(A2), for which it holds that for any f ∈ L(A1),

f ∈ L(A2) ⇐⇒ f can be extended to a well-founded quasimodel .

We have to introduce states for the “main” process that launches all the rest, for the processes
that search for potentially well-founded runs, and for the processes that check the runs for the
constants. So, we define

Q2 = {q0, q1} ∪Qr ∪ (con[φ]×Qr) .

The main process involves states q0 and q1. The transition function for these states is defined
as

δ2(q0,C) =
∧

c∈con[φ]

{ ∨
qr∈C.π(tc)
tc=C.T con (c)

(c, qr)

}
∧
∧
t∈C.T

{ ∨
qr∈C.π(t)

qr

}
∧ q1

δ2(q1,C) =
∧
t∈C.T

{ ∨
qr∈C.π(t)

qr

}
∧ q1 .

Observe that the processes for constants are launched from the initial state q0. The processes
for the types are launched both from q0 and q1. Consider now a process for a type. When
presented with the next Ar-decorated state candidate, it guesses the type it should continue
on and also guesses the next Ar-state from the transition function δr (remember that Ar is
nondeterministic). That is,

δ2(qr,C) =
∨
t∈C.T

∨
q′r∈δr(qr,t)

q′r .

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 55

A process for a constant c does not have to guess the next type. It reads the next type from
C.T con(c). So, the transition function is defined as

δ2(〈c, qr〉 ,C) =
∨

q′r∈δr(qr,C.T con (c))

(c, q′r) .

Notice that we need not check the suitability of the next type. This is taken care of by the
automaton Ar, which checks for temporal consistency as well as for potential well-foundedness.
The set of final states is F2 = Fr ∪ {q1}, i.e. the final states of the automaton Ar that each
process simulates and the state q1 so that the branch of the main process is accepting as well.

Let us see now why L(A2) satisfies the desired property. Let f be in L(A1). That is, f
is a correctly Ar-decorated state function that satisfies φ. Suppose that f is also in L(A2).
Consider the computation tree of the alternating automaton A2 on f . Take a moment u and a
type t in f(u).T . The process that starts from this type corresponds to an infinite branch of the
computation tree. This branch is a computation of Ar starting from some state pur in f(u).π(t).

pur
tu+1∈f(u+1).T // pu+1

r

tu+2∈f(u+2).T // pu+2
r

tu+3∈f(u+3).T // pu+3
r

tu+4∈f(u+4).T // . . .

The types tu+1, tu+2, tu+3, . . . are selected nondeterministically and the computation is accept-
ing, i.e. there is at least one accepting state in Fr that appears infinitely often. Since pur is in
f(u).π(t) and the decoration has been verified to be correct, we get that there is a sequence
of types t0, t1, . . . , tu = t with tv ∈ f(v).T for all v ∈ {0, . . . , u}, such that the automaton Ar
computes as follows.

q0
r

t0∈f(0).T // p0
r ∈ f(0).π(t0)

t1∈f(1).T // p1
r ∈ f(1).π(t1)

t2∈f(2).T // . . .

. . .
tu−1∈f(u−1).T // pu−1

r ∈ f(u− 1).π(tu−1)
tu∈f(u).T // pur ∈ f(u).π(tu)

Immediately, we see that the sequence r = t0, t1, t2, . . . is a type-sequence that is accepted by
Ar and hence it is a potentially well-founded run in f that goes through type t at u. So, there
is a choice function τr for r such that (r, τr) is well-founded. Similarly, we argue for the runs
for the constants. Take the set R of these runs for each type and each moment and also the
runs for the constants. The choice function τ for the entire quasimodel is defined in the obvious
way from {τr}r∈R . Clearly, (f,R, τ) is a well-founded quasimodel for φ. For the converse, we
assume that there is a well-founded quasimodel (f,R, τ) based on f . Then, each process makes
the necessary nondeterministic choices so that it simulates an accepting computation of Ar.

Observe that |Q2| is exponential in the size of φ. From A2, we can construct a language-
equivalent nondeterministic automaton A′2 with an exponential blow-up in the number of states
[44]. That is, the number of states of A′2 is doubly exponential in the size of φ. With a simple
quadratic construction [9], we get the automaton A′ that accepts the language

L(A′) = L(A1) ∩ L(A′2) = L(A1) ∩ L(A2) =

{f ∈ DStateC(φ)ω | f can be extended to a well-founded quasimodel that satisfies φ} .
The projection of L(A′) on StateC(φ) is accepted by the automaton A, which guesses the
decorations. The number of states of A is doubly exponential in the size of φ.

Theorem 63. Let F be a sublanguage of FOTLpnf
1µν .

• Suppose that there is an algorithm which, given a state candidate C for a F-sentence, can
decide whether C is realizable using exponential space in the size of φ. Then, the satisfiability
problem for F-sentences is in EXPSPACE.
• Suppose that there is an algorithm which, given a state candidate C for a F-sentence, can

decide whether C is realizable using doubly exponential time in the size of φ. Then, the
satisfiability problem for F-sentences is in 2EXPTIME.

Proof. We present a nondeterministic algorithm. Fix a F-sentence φ. Within exponential
space we construct the automaton Ar, that accepts potentially well-founded consistent type-
sequences for φ. Consider the automaton A over the alphabet StateC(φ) defined as in the

56 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

preceding discussion. φ is satisfiable if and only if L(A) is nonempty. We check non-emptiness
in the usual way: find a path from the initial state q0 of A to some accepting state qY and
then a path from qY back to qY . A is too big to be constructed within exponential space,
so we construct parts of it on-the-fly. We find the next state in a path by guessing some
state and then verifying that it is indeed a successor of the current state. This check involves
guessing a state candidate and running the algorithm for realizability. If checking for realizability
requires exponential space, then the described algorithm is in NEXPSPACE, which is equal to
EXPSPACE [48]. If checking for realizability requires doubly exponential time, then observe
that a nondeterministic algorithm is an alternating algorithm. Alternating exponential space
is equal to doubly exponential time, i.e. AEXPSPACE = 2EXPTIME [8]. Hence, the described
algorithm is in 2EXPTIME. �

7.2. Finite Domain. The finite domain case is significantly more involved than the arbitrary
domain case. First, we show a “quasimodel-theoretic” proposition that reveals the defining
characteristics of a well-founded finitary quasimodel. It immediately becomes obvious that we
have to extend the decoration technique used in the previous section, because the “processes”
that perform the checks on runs need more information to function correctly.

Suppose that φ is satisfied in some well-founded finitary quasimodel m = (f,R, τ). Every
quasistate f(u) is realized by some finite σsurr-structure and R is finite.

Remember that the Büchi automaton Ar, as defined in Section 7.1, accepts potentially well-
founded consistent type-sequences for φ. Fix a run r ∈ R. Clearly, r is potentially well-founded
and hence there is a computation of Ar on r

q0
r
r(0)−−→ p0

r(1)−−→ p1
r(2)−−→ p2

r(3)−−→ p3
r(4)−−→ . . .

that is accepting, i.e. accepting states appear infinitely often. Let sr be this accepting compu-
tation on r (starting from p0) and define

ρr : N→ Types(φ)×Qr ρr(u) = 〈r(u), sr(u)〉

We will write ρr(u).t = r(u) and ρr(u).q = sr(u). We also define the function g which maps
each moment u to the set {〈r, r(u), ρr(u)〉 | r ∈ R}. That is, g associates to each moment u a
function that maps each run r ∈ R to the pair 〈r(u), sr(u)〉. Observe that g(u) = g(v) implies
that

f(u).T =
{
r(u) | r ∈ R

}
=
{
g(u)(r).t | r ∈ R

}
=
{
g(v)(r).t | r ∈ R

}
= {r(v) | r ∈ R} = f(v).T

f(u).T con(c) = rc(u) = g(u)(rc).t = g(v)(rc).t = rc(v) = f(v).T con(c) , for all c ∈ con[φ]

and hence f(u) = f(v). Since there are finitely many runs in R, g can take only finitely many
values.

By satisfaction of φ, we get that there is a moment w such that φ is in all types in f(w).T .
After w, we can wait until all values of g that appear finitely many times have finished appearing.
Call this moment I. This means that every value g(u), for u ≥ I, appears infinitely many times
in the interval [I,∞). Since there are only finitely many runs, we can wait until a final state
appears in the computations {sr}r∈R of Ar on all runs and then wait a bit longer until the value
g(I) reappears. Call this moment J . See Figure 7. The following hold.
(1) For every moment u ∈ [0, J − 1] and every type t ∈ f(u).T , there is a finite sequence r in∏

v∈[0,J−1] f(v).T such that r(u) = t and there is a computation

q0
r
r(0)−−→ p0

r(1)−−→ . . .
r(I)−−→ pI

r(I+1)−−−−→ pI+1
r(I+2)−−−−→ . . .

r(J−1)−−−−→ pJ−1

of Ar on r such that a final state is in {pI , . . . , pJ−1} and pJ−1
r(I)−→ pI .

(2) For every constant c ∈ con[φ], there is a computation

q0
r
rc(0)−−−→ p0

rc(1)−−−→ . . .
rc(I)−−−→ pI

rc(I+1)−−−−−→ pI+1
rc(I+2)−−−−−→ . . .

rc(J−1)−−−−−→ pJ−1

of Ar on rc such that a final state is in {pI , . . . , pJ−1} and pJ−1
rc(I)−−−→ pI .

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 57

every value of g appears infinitely often //

w I J − 1 J

• • • • N//

φ g(I) g(J) = g(I)
oo

for every r ∈ R, there is
//

u ∈ [I, J − 1] s.t. ρr(u).q ∈ Fr

Figure 7. Satisfaction of φ in a well-founded finitary quasimodel.

Let us prove the first claim. Fix a moment u ∈ [0, J − 1] and a type t ∈ f(u).T . There is a run
r ∈ R such that r(u) = t. Consider the sequence {ρr(v) = 〈r(v), sr(v)〉}v∈N, which describes
the following computation of Ar on r.

q0
r
r(0)−−→ sr(0)

r(1)−−→ sr(1)
r(2)−−→ . . .

r(I)−−→ sr(I)
r(I+1)−−−−→ sr(I + 1)

r(I+2)−−−−→ . . .

r(J−1)−−−−→ sr(J − 1)
r(J)−−→ sr(J)

r(J+1)−−−−→ . . .

Observe that there is a final state in sr(I), . . . , sr(J − 1). From g(I) = g(J), it follows that
r(I) = r(J) and sr(J) = sr(I). So, we have that

sr(J − 1)
r(J)−−→ sr(J) =⇒ sr(J − 1)

r(I)−−→ sr(I) .

The restriction of r to [0, J − 1] satisfies all the conditions. With similar arguments we show
the second claim.

Proposition 64. Let φ be a FOTLpnf
1µν-sentence. Then, φ is satisfied in a well-founded finitary

quasimodel if and only if there exist two finite sequences f1, f2 of realizable state candidates
for φ of length I and (J − I) respectively such that the following hold (define (f1 ? f2) as the
concatenation of f1 and f2).
(1) There is a moment w ∈ [0, I) such that φ is in all types in f1(w).T .
(2) For every moment u ∈ [0, J − 1] and every type t ∈ (f1 ? f2)(u).T , there is finite sequence r

in
∏
v∈[0,J−1](f1 ? f2)(v).T and a computation

q0
r
r(0)−−→ p0

r(1)−−→ p1
r(2)−−→ . . .

r(I)−−→ pI
r(I+1)−−−−→ pI+1

r(I+2)−−−−→ . . .
r(J−1)−−−−→ pJ−1

of Ar on r such that a final state is in {pI , . . . , pJ−1} and pJ−1
r(I)−→ pI .

(3) For every constant c ∈ con[φ], there is a computation

q0
r
rc(0)−−−→ p0

rc(1)−−−→ p1
rc(2)−−−→ . . .

rc(I)−−−→ pI
rc(I+1)−−−−−→ pI+1

rc(I+2)−−−−−→ . . .
rc(J−1)−−−−−→ pJ−1

of Ar on rc, defined as rc(u) = (f1 ? f2)(u).T con(c) for u ∈ [0, J − 1], such that a final state

is in {pI , . . . , pJ−1} and pJ−1
rc(I)−→ pI .

Proof. We have already shown the ⇒ direction. For the ⇐ direction, define f = f1 ? f
ω
2 , i.e.

f(u) =

{
f1(u), if u < I;
f2((u− I) mod (J − I)), if u ≥ I.

It is clear that f is a state function for φ. We will show how to find potentially well-founded
runs for all the types at all the moments and for all the constants.
• Fix a moment u ∈ N and a type t ∈ f(u).T . If u < I, then f(u) = f1(u) = (f1 ? f2)(u). If
u ≥ I, then f(u) = f2((u− I) mod (J − I)) = (f1 ? f2)(I + (u− I) mod (J − I)). There is a
sequence r′ of length J in

∏
v∈[0,J)(f1 ? f2)(v).T that has the properties stated in (2). Let r1

58 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

be the restriction of r′ to [0, I) and r2 the restriction of r′ to [I, J). Define r = r1 ? r
ω
2 , i.e. r

is the sequence

r(0), r(1), . . . , r(I − 1), r(I), r(I + 1), . . . , r(J − 1)︸ ︷︷ ︸
period

, r(I), r(I + 1), . . . , r(J − 1)︸ ︷︷ ︸
period

, . . .

The following is a computation of Ar on r.

q0
r
r(0)−−→ p0

r(1)−−→ . . .
r(I−1)−−−−→ pI−1

r(I)−−→ pI
r(I+1)−−−−→ . . .

r(J−1)−−−−→ pJ−1︸ ︷︷ ︸
final state

r(I)−−→

pI
r(I+1)−−−−→ . . .

r(J−1)−−−−→ pJ−1︸ ︷︷ ︸
final state

r(I)−−→ pI
r(I+1)−−−−→ . . .

r(J−1)−−−−→ pJ−1︸ ︷︷ ︸
final state

r(I)−−→ . . .

Obviously, the computation is accepting and hence r is a potentially well-founded run in f .
• Fix a constant c ∈ con[φ]. Let r1

c be the restriction of rc to [0, I) and r2
c be the restriction of

rc to [I, J). As before, we show that rc = r1
c ? (r2

c)
ω is a potentially well-founded run in f .

Define R so as to contain all the above potentially well-founded runs. Observe that

R ⊆
{
r1 ? r

ω
2 | r1 is in

∏
v∈[0,I)

f(v).T and r2 is in
∏

v∈[I,J)

f(v).T
}

and, since
∏
v∈[0,I) f(v).T and

∏
v∈[I,J−1) f(v).T are finite, R is finite as well. �

We will introduce a slightly more complex decoration from the one used in Section 7.1.
Consider a sequence of state candidates f . We will “mark” the moment w, where φ is satisfied,
the moment I, where the periodic part starts, and the moment (J − 1), where the periodic part
ends. We do not need several marks to indicate these moments. Just one will suffice, since we
can assume without loss of generality that w < I < J − 1. For the moments in [0, I], we need
the decoration used in Section 7.1. That is, for each moment u ∈ [0, I] and each type t ∈ f(u).T
we have a decoration f(u).π(t), which a subset of Qr. A state q is in f(u).π(t) iff there is a
sequence r in

∏
v∈[0,u] f(v).T with r(u) = t and there is an Ar-computation

q0
r
r(0)−−→ p0

r(1)−−→ p1
r(2)−−→ . . .

r(u−1)−−−−→ pu−1
r(u)=t−−−−→ pu = q

on r that ends at state q. For the moments in [I+1, J−1], we need a more detailed decoration.
For each moment u ∈ [I + 1, J − 1] and each type t ∈ f(u).T we have a decoration f(u).λ(t),
which is a subset of Types(φ) × Qr × Qr × {1, 0} (observe that the size of this set is singly
exponetial in the size of φ). A quadruple (tI , qI , q, x) is in f(u).λ(t) iff qI ∈ f(I).π(tI) and there
is a sequence r in

∏
v∈[I+1,u] f(v).T with r(u) = t and an Ar-computation

. . .
tI−→ qI

r(I+1)−−−−→ pI+1
r(I+2)−−−−→ pI+2

r(I+3)−−−−→ . . .
r(u−1)−−−−→ pu−1

r(u)=t−−−−→ pu = q

such that x = 1 ⇐⇒ a final state is in {qI , . . . , qu}.

Definition 65. AnAr-decorated state candidate for φ is now defined as a quintuple (T, T con ,m, π, λ),
where (T, T con) is a state candidate for φ, m ∈ {?, } (? indicates that we have a mark, and

that we have no mark), π : T → ℘ (Qr), and λ : T → ℘ (Types(φ)×Qr ×Qr × {1, 0}). Let
DStateC(φ) be the set of all Ar-decorated state candidates. Observe that there are at most

\(φ) = 2[(φ) × [(φ)× · · · × [(φ)︸ ︷︷ ︸
|con[φ]| times

×2× 2|Qr| × · · · × 2|Qr|︸ ︷︷ ︸
[(φ) times

× 2[(φ)×|Qr|2×2 × · · · × 2[(φ)×|Qr|2×2︸ ︷︷ ︸
[(φ) times

= 2[(φ) × [(φ)|con[φ]| × 2× 2|Qr|×[(φ) × 2[(φ)×|Qr|2×2×[(φ)

of them. It is easy to see that |DStateC(φ)| is doubly exponential in the size of φ.
Let f be an infinite sequence in DStateC(φ)ω. We say that f is correctly decorated if the

following conditions hold.
• There are at least three ? marks. Let w, I, J−1 be the first three moments with w < I < J−1,

where marks appear.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 59

• We are interested in the correctness of the π decoration only at the interval [0, I]. So, we
require:

f(0).π(t) = δr(q0
r , t) f(u+ 1).π(t) =

⋃
t′∈f(u).T

{ ⋃
q∈f(u).π(t′)

δr(q, t)
}

for u ∈ [0, I). For the λ decoration we require:

f(I + 1).λ(t) =
⋃
tI∈

f(I).T

⋃
qI∈

f(I).π(tI)

{
(tI , qI , q, x) | p ∈ δr(qI , t), x = 1 ⇐⇒ (qI ∈ Fr ∨ q ∈ Fr)

}
f(u+ 1).λ(t) =

⋃
t′∈

f(u).T

⋃
(tI ,qI ,q,x)∈
f(u).λ(t′)

{
(tI , qI , p, y) | p ∈ δr(q, t), y = 1 ⇐⇒ (x = 1 ∨ p ∈ Fr)

}

for u ∈ [I + 1, J − 1).

We define a Büchi automaton A1 that accepts the ω-language

L(A1) = {f ∈ DStateC(φ)ω | f is a correctly Ar-decorated state function that satisfies φ} .

Consider the symbols {ϕ, I, J-1}. They mean that the automaton expects to see a mark for
the satisfaction of φ, the beginning of the periodic part, and the end of the periodic part
respectively. The symbols {q0

π, q
>0
π , qi+1

λ , q>i+1
λ } should be read as ‘checking π decoration at 0’,

‘checking π decoration in [1, I]’, ‘checking λ decoration at (I+1)’, and ‘checking λ decoration in
[I+2, J−1]’ respectively. For all the decoration checks, apart from the one at the very beginning
of the sequence, A1 needs to remember the entire previous Ar-decorated state candidate. The
set of states of A1 is defined as

Q1 =
{

(q0
π, ϕ), qF , qA

}
∪
[{

(q>0
π , ϕ), (q>0

π , I), (qi+1
λ , J-1), (q>i+1

λ , J-1)
}
× DStateC(φ)

]
.

(q0
π, ϕ) is the initial state of A1. It is clear that |Q1| is doubly exponential in the size of φ. The

transition function for A1 is defined as follows.

δ1(
〈
q0
π, ϕ

〉
,C) =

(q>0
π , ϕ,C), if C.m = , C is realizable and C.π is correct

(q>0
π , I,C), if C.m = ?, C is realizable, C.π is correct, and C satisfies φ

qF , otherwise

δ1(qF ,C) = {qF }

δ1(
〈
q>0
π , ϕ,C

〉
,C′) =

(q>0
π , ϕ,C′), if C′.m = , C′ is realizable and C′.π is correct

(q>0
π , I,C′), if C′.m = ?, C′ is realizable, C′.π is correct, and C′ satisfies φ

qF , otherwise

δ1(
〈
q>0
π , I,C

〉
,C′) =

(q>0
π , I,C′), if C′.m = , C′ is realizable and C′.π is correct

(qi+1
λ , J-1,C′), if C′.m = ?, C′ is realizable and C′.π is correct

qF , otherwise

δ1(
〈
qi+1
λ , J-1,C

〉
,C′) =

(q>i+1
λ , J-1,C′), if C′.m = , C′ is realizable and C′.λ is correct

qA, if C′.m = ?, C′ is realizable and C′.λ is correct
qF , otherwise

δ1(
〈
q>i+1
λ , J-1,C

〉
,C′) =

(q>i+1
λ , J-1,C′), if C′.m = , C′ is realizable and C′.λ is correct

qA, if C′.m = ?, C′ is realizable and C′.λ is correct
qF , otherwise

δ1(qA) = qA

The set of final states is F1 = {qA}.

60 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

We define the alternating Büchi automaton A2 = (Q2,DStateC(φ), (q0, ϕ), δ2, F2), which ac-
cepts the ω-language L(A2), for which it holds that for any f ∈ L(A1),

f ∈ L(A2) ⇐⇒ f can be extended to a well-founded finitary quasimodel .

The way the automaton works can be thought of as the execution of a “main” process that
launches a new process for each check that has to be performed to satisfy the conditions of
Proposition 64. That is, for each moment u and each type t ∈ f(u).T , a process is launched
that checks for the existence of an appropriate sequence in

∏
v∈[0,J) f(v).T that goes through t

at u. Moreover, a process is launched for each constant c that checks whether the sequence rc
is appropriate. The set of states of A2 is defined as

Q2 =
{

(q0, ϕ), (q1, ϕ), (q1, I), (q1, J-1), qF , qA
}
∪(

Qr × {ϕ, I}
)
∪
(
Types(φ)×Qr ×Qr × {1, 0}

)
∪(

{Check} × Types(φ)×Qr ×Qr × {1, 0}
)
∪(

con[φ]×Qr × {ϕ, I}
)
∪
(
con[φ]× Types(φ)×Qr ×Qr × {1, 0}

)
.

The main process involves the states (q0, ϕ), (q1, ϕ), (q1, I), and (q1, J-1). The transition function
for these states is defined as

δ2(〈q0, ϕ〉 ,C) =

∧
c∈con[φ]

{ ∨
q∈C.π(tc)

tc=C.T con (c)

(c, q, ϕ)

}
∧
∧
t∈C.T

{ ∨
q∈C.π(t)

(q, ϕ)

}
∧ (q1, ϕ), if C.m =

∧
c∈con[φ]

{ ∨
q∈C.π(tc)

tc=C.T con (c)

(c, q, I)

}
∧
∧
t∈C.T

{ ∨
q∈C.π(t)

(q, I)

}
∧ (q1, I), if C.m = ?

δ2(〈q1, ϕ〉 ,C) =

∧
t∈C.T

{ ∨
q∈C.π(t)

(q, ϕ)

}
∧ (q1, ϕ), if C.m =

∧
t∈C.T

{ ∨
q∈C.π(t)

(q, I)

}
∧ (q1, I), if C.m = ?

δ2(〈q1, I〉 ,C) =

∧
t∈C.T

{ ∨
q∈C.π(t)

(q, I)

}
∧ (q1, I), if C.m =

∧
tI∈C.T

{ ∨
qI∈C.π(tI)

〈tI , qI , qI , isFinal(qI)〉

}
∧ (q1, J-1), if C.m = ?

δ2(〈q1, J-1〉 ,C) =

∧
t∈C.T

{ ∨
(tI ,qI ,q,x)∈

C.λ(t)

(tI , qI , q, x)

}
∧ (q1, J-1), if C.m =

∧
t∈C.T

{ ∨
(tI ,qI ,q,x)∈

C.λ(t)

(Check, tI , qI , q, x)

}
, if C.m = ?

We define isFinal(q) = 1, whenever q ∈ Fr, and isFinal(q) = 0, whenever q /∈ Fr. The processes
for the constants are launched from the initial state (q0, ϕ). The processes for the types are
launched from (q0, ϕ), (q1, ϕ), (q1, I), (q1, J-1). Notice that depending on whether we are in the
periodic part or not, these processes are initialized differently.

A process for a type that is not in the periodic part yet needs to remember only the current
state of the Ar computation it is simulating. When it enters the periodic part it also needs to
remember the type (tI) and state (qI) it went through at moment I and whether it has seen
an Ar-accepting state in the interval [I, current-moment] (x = 1 if yes, x = 0 if no). This extra
information will be used when the mark for the end of the periodic mark is seen in order to

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 61

decide whether the process will accept or not. When presented with the next Ar-decorated
state candidate, the process guesses the type it should continue on and also guesses the next
Ar-state from the transition function δr.

δ2(〈q, ϕ〉 ,C) =

∨
t∈C.T

∨
q′∈δr(q,t)

(q′, ϕ), if C.m =∨
t∈C.T

∨
q′∈δr(q,t)

(q′, I), if C.m = ?

δ2(〈q, I〉 ,C) =

∨
t∈C.T

∨
q′∈δr(q,t)

(q′, I), if C.m =∨
tI∈C.T

∨
qI∈δr(q,tI)

〈tI , qI , qI , isFinal(qI)〉, if C.m = ?

δ2(〈tI , qI , q, x〉 ,C) =

∨
t∈C.T

∨
q′∈δr(q,t)

〈tI , qI , q′, hasFinal(x, q′)〉, if C.m =∨
t∈C.T

∨
q′∈δr(q,t)

〈Check, tI , qI , q
′, hasFinal(x, q′)〉, if C.m = ?

We define hasFinal(x, q) = 1, whenever x = 1 or q ∈ Fr, and hasFinal(x, q) = 0, whenever x = 0
and q /∈ Fr. When the end of the periodic part has been reached, we check whether the sequence
that the process has been following fulfills the required conditions. Observe that from this point
on the state candidates that come up are not taken into account for the transition table of the
automaton. The decision of whether the automaton accepts depends entirely on the marked
finite prefix.

δ2(〈Check, tI , qI , q, x〉,C) =

{
qA, if x = 1 and qI ∈ δr(q, tI)
qF , if x = 0 or qI /∈ δr(q, tI)

δ2(qA,C) = qA

δ2(qF ,C) = qF

A process for a constant c does not have to guess the next type. It reads the next type from
C.T con(c). So, the transition function is defined as follows.

δ2(〈c, q, ϕ〉 ,C) =

∨

q′∈δr(q,C.T con (c))

(c, q′, ϕ), if C.m =∨
q′∈δr(q,C.T con (c))

(c, q′, I), if C.m = ?

δ2(〈c, q, I〉 ,C) =

∨

q′∈δr(q,C.T con (c))

(c, q′, I), if C.m =∨
qI∈δr(q,C.T con (c))

(c,C.T con(c), qI , qI , isFinal(qI)), if C.m = ?

δ2(〈c, tI , qI , q, x〉,C) =

∨

q′∈δr(q,C.T con (c))

〈c, tI , qI , q′, hasFinal(x, q′)〉, if C.m =∨
q′∈δr(q,C.T con (c))

〈Check, tI , qI , q
′, hasFinal(x, q′)〉, if C.m = ?

The set of final states is F2 = {qA}.
It is easy to see that |Q2| is exponential in the size of φ. We then construct a nondeterministic

automaton A′2, which is language-equivalent to A2. This involves an exponential blow-up in the
number of states. So, the number of states of A′2 is doubly exponential in the size of φ. With a
quadratic construction, we get the automaton A′ that accepts the language

L(A′) = L(A1) ∩ L(A′2) = L(A1) ∩ L(A2) = {f ∈ DStateC(φ)ω |
f can be extended to a well-founded finitary quasimodel that satisfies φ} .

62 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

The projection of L(A′) on StateC(φ) is accepted by the automaton A, which guesses the
decorations. The number of states of A is doubly exponential in the size of φ.

Theorem 66. Let F be a sublanguage of FOTLpnf
1µν .

• Suppose that there is an algorithm which, given a state candidate C for a F-sentence, can
decide whether C is finitely realizable using exponential space in the size of φ. Then, the
finite satisfiability problem for F-sentences is in EXPSPACE.
• Suppose that there is an algorithm which, given a state candidate C for a F-sentence, can

decide whether C is finitely realizable using doubly exponential time in the size of φ. Then,
the finite satisfiability problem for F-sentences is in 2EXPTIME.

Proof. Similar to the proof of Theorem 63. �

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 63

8. Monodic packed fragment

Most of the decidability results for monodic fragments concern logics without equality. It is
known that even the simple monodic two-variable fragment with equality over the naturals is
not even recursively enumerable [12]. Hodkinson considers in [28] the monodic packed fragment
with Until and Since, which is a generalization of the packed fragment of first-order logic,
introduced in [41], and shows that it is decidable over the naturals, the integers, the rationals,
the class of all finite strict linear orders or the class of any first-order definable class of strict
linear orders. Following closely the presentation in [28], we discuss here the modifications of
the quasimodel technique required to extend our complexity results to the monodic packed case
over the naturals.

Remember that a crucial point in the proof of “well-founded quasimodel implies model”
(Theorem 56) is blowing-up the first-order structure Du that realizes the quasistate f(u) to a
first-order structure Eu that also realizes the quasistate f(u). This is necessary in order to to
get a family of structures {Eu}N that share the same domain and interpret constants rigidly
and thus construct the temporal model. The argument involves the use of Lemma 54, which
fails when we add equality to the language. We will proceed to see what further restrictions we
need to consider, in order to be able to prove a similar lemma when we include equality.

Let D = (D, ·D), E = (E , ·E) be σ-structures and R ⊆ D × E be an left-total, injective,
and right-total relation. As discussed in Remark 43, if we have aRb1, aRb2, and b1 6= b2, we
get that h = {(x, a), (y, a)}R{(x, b1), (y, b2)} = g, D, h |= x = y, and E, g |= x 6= y. So, we
should not allow the variable assignment g to have values that are in the same ∼R-class. We
say that a set B ⊆ E is R-thin if for every b1, b2 ∈ B with b1 6= b2, b1 6∼R b2. A variable
assignment g : V → E is R-thin if Range(g) (the range of g) is R-thin. Let c be a constant in the
signature and assume that cD = a, aRb1, aRb2, cE = b1, and b1 6= b2. Immediately, we see that
D, x 7→ a |= x = c and E, x 7→ b2 6|= x = c. It follows that we should also require that domain
elements in D that are interpretations of constants are not related to more than one element in
E . A similar restriction is required for function symbols as well. Assuming that a1Rb1, a2Rb2,
a = fD(a1, a2)RfE(b1, b2) = e1, aRe2, and e1 6= e2, we have that

D, {(x, a1), (y, a2), (z, a)} |= z = f(x, y)

E, {(x, b1), (y, b2), (z, e2)} 6|= z = f(x, y) .

So, every element in the range of the interpretation of some function symbol under D should be
related to exactly one element of E . With these restrictions, we are able to show the following.

Claim 67. Let D, E be first-order structures over σ and R ⊆ D × E be a left-total, injective,
and right-total relation. Assume that the conditions (i), (ii), (iii), (iv) of Lemma 54 hold as
well as the following.
(v) For any constant c, and any b1, b2 ∈ E , cDRb1 and cDRb2 implies that b1 = b2.

(vi) For any function symbol f , any a ∈ Range(f), and any b1, b2 ∈ E , aRb1 and aRb2 implies
that b1 = b2.

Define F to be the set of first-order formulas that contains the atomic formulas and is closed
under ¬,∧ (that is, we have no quantification). The following hold.
(1) For any variable assignments h : V → D, g : V → E , with hRg and g R-thin, and any terms

t1, t2, Jt1KD
h = Jt2KD

h ⇐⇒ Jt1KE
g = Jt2KE

g .
(2) For any φ ∈ F , and any variable assignments h : V → D, g : V → E , with hRg and g R-thin,

D, h |= φ ⇐⇒ E, g |= φ.

Proof. We show the first claim. Fix h, g, t1, t2. From Lemma 54, we have that Jt1KD
hRJt1KE

g and
Jt2KD

hRJt2KE
g . The ⇐ direction follows easily: Since R is injective, Jt1KE

g = Jt2KE
g implies that

Jt1KD
h = Jt2KD

h . For the ⇒ direction, we will have to examine all possible cases.
− x = y. Suppose that h(x) = h(y). Since h(x)Rg(x) and h(y)Rg(y), we have that g(x) ∼R
g(y). From R-thinness of g, we get that g(x) = g(y).

− x = c. Suppose that h(x) = cD. From cD = h(x)Rg(x) and cDRcE, we deduce that g(x) = cE.

64 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

R //

PD or PE
//

•
b1
//

b2((

a1

a2

��

•

��

��

��

•

��

��

��

•
e1
//

e2
((

e3

•

•

•

•
��

b1
//

b2
((

a1

a2

��

•
��

��

~~

~~

OO

��
• ee

��

��

��

•
e1
//

e2
((

e3

•

•

•

Figure 8. Pairs of first-order structures that satisfy the conditions of Lemma 54.

− x = f(t1, . . . , tm). Suppose that h(x) = fD(Jt1KD
h , . . . , JtmKD

h). We have that h(x) ∈
Range(fD), h(x)Rg(x) and fD(Jt1KD

h , . . . , JtmKD
h)RfE(Jt1KE

g , . . . , JtmKE
g). It follows that g(x) =

fE(Jt1KE
g , . . . , JtmKE

g).
− The cases c1 = c2, c = f(t1, . . . , tm), f1(t1, . . . , tm) = f2(τ1, . . . , τk) involve similar arguments.
We proceed by induction on φ for the second claim.
• The atomic case t1 = t2 is an easy consequence of the first claim. Fix h, g. We have that

D, h |= t1 = t2 ⇐⇒ Jt1KD
h = Jt2KD

h ⇐⇒ Jt1KE
g = Jt2KE

g ⇐⇒ E, g |= t1 = t2.
• The case φ = p is trivial.
• φ = P (t1, . . . , tn). Fix h, g. Easily, we get that D, h |= P (t1, . . . , tn) ⇐⇒ (Jt1KD

h , . . . , JtnK
D
h) ∈

PD ⇐⇒ (Jt1KE
g , . . . , JtnKE

g) ∈ PE ⇐⇒ E, g |= P (t1, . . . , tn).
• The cases φ = ¬φ1, (φ1 ∧ φ2) are easy. �

The difficult part is to deal with quantification. In Figure 8, we see two examples of pairs
of first-order structures (over a signature that has only one binary predicate symbol P) with
domains D = {a1, a2}, E = {b1, b2, e1, e2, e3}. For the first example, we have that

D 6|= ∃x∃y∃z(Pxz ∧ Pyz ∧ x 6= y ∧ y 6= z ∧ x 6= z)

E |= ∃x∃y∃z(Pxz ∧ Pyz ∧ x 6= y ∧ y 6= z ∧ x 6= z) .

Observe that a variable assignment that makes the formula

Pxz ∧ Pyz ∧ x 6= y ∧ y 6= z ∧ x 6= z

true under E is {(x, b1), (y, b2), (z, e1)}, which is clearly not R-thin. For the second example, we
have that

D 6|= ∃x∃y(Pxx ∧ Pyy ∧ Pxy ∧ x 6= y)

E |= ∃x∃y(Pxx ∧ Pyy ∧ Pxy ∧ x 6= y) .

Again, we notice that the variable assignment {(x, b1), (y, b2)} which makes the formula

Pxx ∧ Pyy ∧ Pxy ∧ x 6= y

true under E is not R-thin. We want to enforce that any formula of the form ∃x1 . . . ∃xkφ is
true under E, g if and only if φ is true under E, g′ = g[x1 7→ e1, . . . , xk 7→ ek], where g′ is R-thin.
This motivates the following definition.

Definition 68 (the packed fragment of first-order logic [41]). We say that a formula φ packs a
finite set of variables {x1, . . . , xk} if

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 65

− fvars[φ] = {x1, . . . , xk},
− φ is a conjunction of atomic formulas (including equalities) or existentially quantified atomic

formulas, and
− any two distinct variables in {x1, . . . , xk} occur free in some conjunct of φ.
We say that φ is a packing guard if φ packs fvars[φ]. The packed fragment is the smallest set
PFOL of first-order formulas that satisfies the following conditions.
• PFOL contains all atomic FOL-formulas, including equalities.
• PFOL is closed under ¬ and ∧.
• (packed quantification) If φ is a PFOL-formula, γ is a packing guard, fvars[φ] ⊆ fvars[γ],

and x1, . . . , xn are individual variables, then ∃x̄(γ ∧ φ) is a PFOL-formula. ∃x̄ abbreviates
∃x1 . . . ∃xn. We say that γ is the guard of ∃x̄(γ ∧ φ).

The idea is that the guards together with some additional restrictions on the interpretations
of the predicate symbols under E will give us the desired R-thinness of the variable assignments.
We require that for any n-ary predicate symbol P , the interpretation PE relates elements of E
that form an R-thin set. That is, for any e1, . . . , en ∈ E , PE(e1, . . . , en) implies that {e1, . . . , en}
is an R-thin set. We strengthen Claim 67 to include all packed formulas.

Lemma 69. Let D = (D, ·D), E = (E , ·E) be first-order σ-structures and R ⊆ D × E be a left-
total, injective, and right-total relation. Assume that the conditions (ii), (iii), (iv) of Lemma 54,
and the conditions (v), (vi) of Claim 67 hold. We replace condition (i) of Lemma 54 by the
following.
(vii) For any predicate symbol P ∈ P with n = ar[P] and any (b1, . . . , bn) ∈ En,

(b1, . . . , bn) ∈ PE ⇐⇒ {b1, . . . , bn} is R-thin & (R−1(b1), . . . , R−1(bn)) ∈ PD .

For any PFOL[σ]-formula φ, and any individual variable assignments h : fvars[φ] → D, g :
fvars[φ]→ E , if hRg and g is R-thin, then D, h |= φ ⇐⇒ E, g |= φ.

Proof. Fix D,E, R. The proof proceeds by induction on φ.
• φ = P (t1, . . . , tn). Fix h, g with hRg and g R-thin. Suppose that D, h |= P (t1, . . . , tn), which

means that (Jt1KD
h , . . . , JtnK

D
h) ∈ PD. We know that Jt1KD

hRJt1KE
g , . . . , JtnKD

hRJtnKE
g . Observe

that {Jt1KE
g , . . . , JtnKE

g} is R-thin: for any terms t1, t2, Jt1KE
g ∼R Jt2KE

g implies that Jt1KE
g = Jt2KE

g ,
as we verify by considering all the possible cases. It follows that (Jt1KE

g , . . . , JtnKE
g) ∈ PE and

hence E, g |= P (t1, . . . , tn). The converse is very straightforward.
• The atomic case φ = p is trivial and the case t1 = t2 is dealt with as in Claim 67.
• The cases φ = ¬φ1, (φ1 ∧ φ2) are easy.
• φ = ∃x1 . . . ∃xn(γ ∧ φ1). Fix h, g with hRg and g R-thin. Without loss of generality, we can

assume that {x1, . . . , xn} ⊆ fvars[γ].
Suppose that D, h |= φ. There are a1, . . . , an ∈ D such that D, h′ = h[x1 7→ a1, . . . , xn 7→

an] |= γ ∧ φ1. We will define g′ so that it agrees with g on fvars[φ], h′Rg′, and the values for
x1, . . . , xn are chosen in a way that does not destroy R-thinness. Let f : Range(h)→ Range(g)
be defined as f = {〈h(x), g(x)〉 | x ∈ V}. By R-thinness of g, f is a function and Range(f)
is R-thin. Extend f to f ′ with Domain(f ′) = Range(h) ∪ {a1, . . . , an} so that Range(f ′) is
R-thin: take a ∈ {a1, . . . , an} \Domain(f), pick any b with aRb, and put f ′(a) = b. Then, we
can define g′ as g′(x) = f ′(h′(x)) for all x ∈ fvars[γ]. It is easy to verify that E, g′ |= γ. From
the inductive hypothesis, we get that E, g′ |= φ1. Therefore, E, g′ |= γ ∧ φ1 and E, g |= φ.

Conversely, assume that E, g |= φ, where g is R-thin. There are e1, . . . , en ∈ E such that
E, g′ = g[x1 7→ e1, . . . , xn 7→ en] |= γ ∧ φ1. We show that g′ is R-thin. For contradiction,
assume that there are x, y ∈ fvars[γ] such that g′(x) 6= g′(y) and g′(x) ∼R g′(y). There is
a conjunct of γ in which both x, y appear free. If the conjunct is the equality x = y, then
g′(x) = g′(y), which is a contradiction. If it is of the form P (. . . , x, . . . , y, . . .), then we get a
contradiction by the R-thinness of {. . . , g′(x), . . . , g′(y), . . .}. Even for quantified conjuncts of
the form ∃z̄P (. . . , x, . . . , y, . . .), the same argument applies. Define h′(x) = R−1(g′(x)) for all
x ∈ fvars[γ] and observe that h′ agrees with h on fvars[φ]. Easily, we get that D, h′ |= γ. The
inductives hypothesis gives us that D, h′ |= φ1. Immediately, we deduce that D, h |= φ. �

66 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

Definition 70 (packing ∃-guard, packing ∀-guard, PFOTLµν , PFOTLpnf
µν , PFOTL1µν , PFOTLpnf

1µν).
Let σ = (P,P0,F = ∅, C, ar) be a signature with no function symbols. We say that φ is a packing
∃-guard if it is a packing guard. Dually, we define packing ∀-guards. A formula γ is said to be
a packing ∀-guard if it is a disjunction of negated atomic formulas (including inequalities) and
universally quantified negated atomic formulas such that any two distinct variables in fvars[γ]
occur free in some disjunct of φ.

The packed fragment of first-order temporal logic with fixpoint operators is the smallest set
PFOTLµν that satisfies the following conditions.

• PFOTLµν includes P0 and the set of fixpoint variables X .
• For any predicate symbol P , if n = ar[P] and t1, . . . , tn are σ-terms, then P (t1, . . . , tn) ∈
PFOTLµν .
• If t1, t2 are σ-terms, then t1 = t2 is in PFOTLµν .
• For any unary operator ◦ ∈ {¬,#, ,�}, if φ ∈ PFOTLµν , then ◦φ ∈ PFOTLµν .
• For any binary operator ⊗ ∈ {∧,∨}, if φ1, φ2 ∈ PFOTLµν , then (φ1 ⊗ φ2) ∈ PFOTLµν .
• (existential packed quantification) If φ is a PFOTLµν-formula, γ is a packing ∃-guard, fvars[φ] ⊆

fvars[γ], and x1, . . . , xn are individual variables, then ∃x̄(γ ∧ φ) is a PFOTLµν-formula.
• (universal packed quantification) If φ is a PFOTLµν-formula, γ is a packing ∀-guard, fvars[φ] ⊆

fvars[γ], and x1, . . . , xn are individual variables, then ∀x̄(γ ∨ φ) is a PFOTLµν-formula.
• For any fixpoint operator f ∈ {µ, ν}, if X is a fixpoint variable, φ ∈ PFOTLµν , and all free

occurrences of X in φ are positive, then fXφ ∈ PFOTLµν .

PFOTLpnf
µν is the set of PFOTLµν-formulas in positive normal form. PFOTL1µν is the set of

monodic PFOTLµν-formulas and PFOTLpnf
1µν the set of monodic PFOTLpnf

µν -formulas.

Notice that a PFOTLµν-formula φ with fvars[φ] = {x1, . . . , xk} is satisfiable if and only if the
PFOTLµν-dom-sentence ∃x1 . . . ∃xk(Qx1 . . . xk ∧ φ) is satisfiable, where Q is a k-ary predicate
symbol that does not appear in φ. It is clear that PFOTLµν , PFOTLpnf

µν , PFOTL1µν , PFOTLpnf
1µν

are closed under cl[·].

Definition 71 (type, constant type). A type for a PFOTLpnf
1µν [σ]-sentence φ is a subset t of

C1[φ] = cl1[φ] ∪
{
x = c, x 6= c | c ∈ con[φ]

}
that satisfies the following conditions.

(1) For any ψ ∈ C1[φ], ψ ∈ t ⇐⇒ neg[φ] /∈ t.
(2) For any (ψ1 ∧ ψ2) ∈ C1[φ], (ψ1 ∧ ψ2) ∈ t ⇐⇒ ψ1 ∈ t and ψ2 ∈ t.
(3) For any (ψ1 ∨ ψ2) ∈ C1[φ], (ψ1 ∨ ψ2) ∈ t ⇐⇒ ψ1 ∈ t or ψ2 ∈ t.
(4) For any µXψ ∈ C1[φ], µXψ ∈ t ⇐⇒ [

...
ψ]{µXψ/X} ∈ t.

(5) For any νXψ ∈ C1[φ], νXψ ∈ t ⇐⇒ [
...
ψ]{νXψ/X} ∈ t.

We denote by Types(φ) the set of all types for φ. Clearly, Types(φ) is a subset of the powerset
of C1[φ]. Since the size of C1[φ] is linear in the size of φ, we infer that there are exponentially
many types in the size of φ. A type t for φ is said to be a constant type for c if x = c ∈ t. We
also say that t is a constant type if there is a constant c such that t is a constant type for c.

Definition 72 (state candidate, realizable state candidate). Let φ be a PFOTLpnf
1µν [σ]-sentence.

A state candidate for φ is a set of types for φ. We denote by StateC(φ) the set of all state
candidates for φ. There are doubly exponentially many of them in the size of φ. We say that
the first-order structure D over σsurr realizes a state candidate T for φ if T =

{
tD(a) | a ∈ D

}
.

A state candidate is said to be (finitely) realizable iff there exists a (finite) first-order structure
that realizes it. We denote by Real(φ) the set of all realizable state candidates for φ.

Let T be a state candidate for φ that is realized by D = (D, ·D). It is easy to see that for
every constant type t in T ,

∣∣D[t]

∣∣ = 1. Let c be a constant that appears in φ. Observe that
x = c belongs to exactly one type in T .

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 67

Definition 73 (state function, run). Let φ be a PFOTLpnf
1µν [σ]-sentence. A state function for

φ is a function that maps each u ∈ N to a realizable state candidate for φ. Let f be a state
function for φ. A run r in f is a function in

∏
u∈N f(u) such that the following hold.

• For every #ψ ∈ C1[φ] and every u ∈ N, #ψ ∈ r(u) ⇐⇒ ψ ∈ r(u+ 1).
• For every ψ ∈ C1[φ] and every u ∈ N, ψ ∈ r(u) ⇐⇒ u > 0 and ψ ∈ r(u− 1).
• For every �ψ ∈ C1[φ] and every u ∈ N, �ψ ∈ r(u) ⇐⇒ u = 0 or [u > 0 and
ψ ∈ r(u− 1)].
• For every constant c ∈ con[φ] and every u, v ∈ N, x = c ∈ r(u) ⇐⇒ x = c ∈ r(v).

We say that a run r is a constant run for c if x = c ∈ r(u) for some (for all) u ∈ N. A run r is
a constant run if there is a constant c such that r is a constant run for c.

Notice that there is only one run that goes through a constant type. Let f be a state function
and t be a type in f(u) with x = c in t. Assume for contradiction that there are runs r1, r2

such that r1(u) = r2(u) = t and r1 6= r2. This means that there is a moment v ∈ N such that
r1(v) 6= r2(v), x = c ∈ r1(v), and x = c ∈ r2(v). But, we have already established that x = c
belongs to exactly one type in f(v). Contradiction. So, a constant run (say, for a constant c)
follows all the types that contain x = c.

Another useful remark is that constant runs are essential for “holding the interpretations of
constants together” across time. Let f be a state function and Du be a σsurr-structure that
realizes f(u). Suppose that at moment u, the constants c1, . . . , ck are all interpreted as a single
domain element, say a ∈ Du. Clearly, tu = tDu(a) contains {x = c1, . . . , x = ck}. There is a run
r such that r(u) = tu. Let v be an arbitrary moment. By definition of runs, x = ci ∈ r(v) for
all i = 1, . . . , k. It follows that c1, . . . , ck are interpreted as a single domain element by Dv.

Definition 74 (quasimodel). Let φ be a PFOTLpnf
1µν-sentence, f be a state function for φ, and

R be a set of runs in f . The pair m = (f,R) is a quasimodel for φ if for any u ∈ N and any
t ∈ f(u), there is r ∈ R such that r(u) = t.

Theorem 75. Let φ be a PFOTLpnf
1µν [σ]-sentence. Then, φ is satisfiable if and only if there is

a well-founded adorned quasimodel for φ, in which φ is satisfied.

Proof. The⇒ direction is straightforward. Conversely, suppose that φ is satisfied at moment w
in some well-founded adorned quasimodel m = (f,R, τ) for φ. Every quasistate f(u) is realized
by some σsurr-structure Du = (Du, ·Du). There are only finitely many realizable candidates,
and hence we can assume that {Du | u ∈ N} is finite. Let κ be a cardinal that exceeds the
cardinality of every Du and Rc be the set of constant runs in R. We will construct a model
with domain

E = Rc ∪
[
(R \Rc)× κ

]
.

Let u ∈ N and t be a type in f(u). If t is a constant type, then Du[t] = {a} for some a ∈ Du.
Define Ru,t = {(a, r)}, where r is the unique run that goes throught t at u. If t is not a constant
type, then take any surjection πu,t from κ to Du[t] (κ is bigger than Du[t]) and define

aRu,t(r, ξ)
def⇐⇒ r(u) = t and πu,t(ξ) = a .

Let Ru =
⋃
t∈f(u)Ru,t and observe that Ru ⊆ Du × E is a left-total, injective, and right-total

relation.
We define a family of σsurr-structures {Eu}u∈N so that the conditions of Lemma 69 are satis-

fied. It follows that the quasistates are realized by structures that share the same domain. The
constants are interpreted rigidly. The rest of the proof proceeds like in Theorem 56. �

Theorem 76. Let φ be a PFOTLpnf
1µν [σ]-sentence. Then, φ is finitely satisfiable if and only if

there is a well-founded adorned finitary quasimodel for φ, in which φ is satisfied.

Proof. A trivial modification of the proof for Theorem 75. �

Theorem 77.
• The (finite) satisfiability problem for PFOTLpnf

1µν [σ]-sentences is complete for 2EXPTIME.

68 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

• The (finite) satisfiability problem for PFOTLpnf
1µν [σ]-sentences with a bounded number of vari-

ables or with predicate symbols of bounded arity is complete for EXPSPACE.

Proof. The automata-theoretic arguments of Section 7 transfer directly to the monodic packed
case. The packed fragment of first-order logic is known to have the finite model property
[27, 31]. Its satisfiability problem is complete for 2EXPTIME [22]. In the bounded-variable or
bounded-arity case it is complete for EXPSPACE [22]. �

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 69

9. Monodic Guarded Fragments with Time-Fixpoints and Domain-Fixpoints

The guarded fragment was introduced by Andréka, Németi, and van Benthem in [2] as a
natural fragment of first-order logic that extends the modal fragment (the image of modal
formulas through the standard translation) and inherits nice properties of modal logic, such as
Beth definability, decidability, finite model property. It consists of the first-order formulas in
which quantification is relativized appropriately to atomic formulas. The guarded fragment was
generalized to the loosely guarded fragment by van Benthem so that quantifiers are appropriately
relativized to conjunctions of atomic formulas [57]. Let us note that the standard translation
of an Until formula falls outside the guarded fragment, but is in the loosely guarded fragment.
Marx further extended the loosely guarded fragment to the packed fragment, in which the guards
for the quantifiers are more general [41]. The clique-garded fragment of Grädel, introduced in
[21], is a syntactic variant of the packed fragment.

The guarded fragments were introduced in an attempt to explain the good behaviour of modal
logics, and indeed they turn out to have some nice properties, one of which is decidability within
doubly exponential time. The extension of modal logic with fixpoint operators, namely the µ-
calculus, is known to be decidable within exponential time [14, 15]. The same is also known
for the extension of µ-calculus with backward modalities [60]. We are naturally led to ask the
question of what happens if we extend the guarded fragments with fixpoint operators. Grädel
and Walukiewicz addressed this question in [24], where it is shown the satisfiability problems for
both the guarded fixpoint fragment (µGF) and the loosely guarded fixpoint fragment (µLGF)
are complete for 2EXPTIME. Moreover, if we restrict the formulas to those that have a bounded
number of variables, then the satisfiability problem becomes EXPTIME-complete.

In this section we will consider monodic guarded fragments with fixpoint operators both on
the time dimension (µ and ν) and on the domain dimension (only µ). We will extend the
technique presented in Section 8 in order to get a “temporal model iff well-founded quasimodel”
theorem. The automata-theoretic techniques used so far will then apply immediately and give
us upper complexity bounds.

First, we will consider the extension of full first-order logic with least and greatest fixpoint
operators and we will show a simple lemma for a satisfiability reduction class, in which fixpoint
formulas are “guarded” by atomic formulas. We note that when placing these guards it is
essential that the formula is in positive normal form.

Definition 78 (FO with equality + least and greatest fixpoints). Let σ = (P,P0,F , C, ar) be a
first-order signature, V be a countably infinite set of individual variables. We introduce a set of
relation variables Z =

⋃
k∈NZk, where Zk is a countably infinite set of k-ary relation variables

for every k ∈ N. We define FOLpos
µν [σ] as the smallest set that satisfies the following conditions.

• FOLpos
µν [σ] contains P0 and {¬p | p ∈ P0}.

• If t1, t2 are σ-terms, then t1 = t2 and t1 6= t2 are in FOLpos
µν [σ].

• If P is a n-ary predicate symbol in P and t1, . . . , tn are σ-terms, then P (t1, . . . , tn) and
¬P (t1, . . . , tn) are in FOLpos

µν [σ].
• If Z is a n-ary relation variable and t1, . . . , tn are σ-terms, then Z(t1, . . . , tn) and ¬Z(t1, . . . , tn)

are in FOLpos
µν [σ].

• FOLpos
µν [σ] is closed under ∧, ∨, existential and universal quantification.

• (unguarded fixpoints) If φ ∈ FOLpos
µν [σ], Z is a n-ary relation variable, x1, . . . , xn are individ-

ual variables, fvars[φ] ⊆ {x1, . . . , xn}, and all free occurrences of Z in φ are positive, then
µZx1 . . . xn.φ and νZx1 . . . xn.φ are in FOLpos

µν [σ].

A dom-fp-sentence is a formula with no free relation variables. A dom-sentence is a formula
with no free individual variables. A sentence is a formula that is both a dom-fp-sentence and a
dom-sentence.

Definition 79 (truth). Let D = (D, ·D) be a σ-structure, h : V → D be an individual variable
assignment, and η be a relation variable assignment, i.e. a function that maps a relation variable
Z to a n-ary relation on D, where n is the arity of Z. We define the truth relation inductively

70 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

as follows.

D, h, η |= Z(t1, . . . , tn) ⇐⇒ (Jt1KD
h , . . . , JtnK

D
h) ∈ η(Z)

D, h, η |= µZx1 . . . xn.φ ⇐⇒ 〈h(x1), . . . , h(xn)〉 is in the least fixpoint of φM
h,η

D, h, η |= νZx1 . . . xn.φ ⇐⇒ 〈h(x1), . . . , h(xn)〉 is in the greatest fixpoint of φM
h,η

where φM
h,η : ℘ (Dn)→ ℘ (Dn) is defined as

φM
h,η(S) =

{
(a1, . . . , an) ∈ Dn | D, {(x1, a1), . . . , (xn, an)}, η[Z 7→ S] |= φ

}
.

Truth for the rest of the cases is defined in the obvious way. As in Proposition 4, we can show
that semantics is well-defined.

Since free relation variables are exactly like predicate symbols as far as truth in concerned, for
every FOLpos

µν [σ]-formula we can easily construct an equisatisfiable FOLpos
µν [σ]-dom-fp-sentence.

Definition 80 (guards for fixpoint formulas, FOLpos
µνg). Fix a first-order signature σ. We expand

σ to σg, which contains additionally a new predicate symbol Qφ for every FOLpos
µν [σ]-formula φ

of the form µ
νZx1 . . . xn.ψ. We define the function guardµν inductively as follows.

guardµν [φ] = φ , for any atomic or negated atomic φ

guardµν [φ1 ⊗ φ2] = guardµν [φ1]⊗ guardµν [φ2] , for ⊗ ∈ {∧,∨}
guardµν [Qxφ] = Qxguardµν [φ] , for Q ∈ {∃,∀}

guardµν [fZx1 . . . xn.φ] = fZx1 . . . xn.(QfZx1...xn.φx1 . . . xn ∧ guardµν [φ]) , for f ∈ {µ, ν}

We define FOLpos
µνg[σ] (the g in the subscript stands for ‘guarded fixpoint formulas’) as the

smallest set that satisfies the following.
• FOLpos

µνg[σ] contains the atomic formulas, including equalities, as well as their negations.
• FOLpos

µνg[σ] is closed under ∧,∨, existential and universal quantification.
• (guarded fixpoints) If φ ∈ FOLpos

µνg[σ], Z is a n-ary relation variable, x1, . . . , xn are individual
variables, fvars[φ] ⊆ {x1, . . . , xn}, Q is a n-ary predicate symbol in σ, and all free occurrences
of Z in φ are positive, then µZx1 . . . xn.(Qx1 . . . xn ∧ φ) and νZx1 . . . xn.(Qx1 . . . xn ∧ φ) are
in FOLpos

µνg[σ].

It is clear that for any FOLpos
µν [σ]-formula φ, guardµν [φ] is in FOLpos

µνg[σg].

Claim 81. Let φ be a FOLpos
µν [σ]-formula, and D = (D, ·D) be a σ-structure. We define the

σg-structure E = (D, ·E), where ·E extends ·D as QE
φ = Dn for any φ of the form µ

νZx1 . . . xn.ψ.
Then, for any individual variable assignment h, and any relation variable assignment η,

D, h, η |= φ =⇒ E, h, η |= guardµν [φ] .

Proof. By induction on φ.
• The atomic cases p, t1 = t2, P (t1, . . . , tn), Z(t1, . . . , tn) as well as the negated atomic cases
¬p, t1 6= t2,¬P (t1, . . . , tn),¬Z(t1, . . . , tn) are all straightforward.
• The cases φ = (φ1 ∧ φ2), (φ1 ∨ φ2),∃xφ1, ∀xφ1 are easy.
• φ = µZx1 . . . xn.φ1. Fix D and define E as described. Fix h, η and suppose that D, h, η |= φ.

We have that

guardµν [µZx1 . . . xn.φ1] = µZx1 . . . xn.(Qφx1 . . . xn ∧ guardµν [φ1]) .

Define x̄ = (x1, . . . , xn), ā = (a1, . . . , an), x̄ 7→ ā = {(x1, a1), . . . , (xn, an)}, and the functions

f1(S) =
{
ā ∈ Dn | D, x̄ 7→ ā, η[Z 7→ S] |= φ1

}
f2(S) =

{
ā ∈ Dn | E, x̄ 7→ ā, η[Z 7→ S] |= Qφx1 . . . xn ∧ guardµν [φ1]

}
= QE

φ ∩
{
ā ∈ Dn | E, x̄ 7→ ā, η[Z 7→ S] |= guardµν [φ1]

}
=
{
ā ∈ Dn | E, x̄ 7→ ā, η[Z 7→ S] |= guardµν [φ1]

}

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 71

The inductive hypothesis gives us that f1(S) ⊆ f2(S) for all S ⊆ Dn, which implies that
lfp(f1) ⊆ lfp(f2). From 〈h(x1), . . . , h(xn)〉 ∈ lfp(f1), we get that 〈h(x1), . . . , h(xn)〉 ∈ lfp(f2)
and hence E, h, η |= guardµν [φ].
• The case φ = νZx1 . . . xn.φ1 is similar to the previous one. �

Claim 82. Let φ be a FOLpos
µν [σ]-formula. For any σg-structure D = (D, ·D), any individual

variable assignment h, and any relation variable assignment η,

D, h, η |= guardµν [φ] =⇒ D, h, η |= φ .

Proof. By induction on φ.
• The base cases are trivial and the cases φ = (φ1 ∧ φ2), (φ1 ∨ φ2),∃xφ1, ∀xφ1 are easy.
• φ = µZx1 . . . xn.φ1. Fix D, h, η and suppose that

D, h, η |= guardµν [φ] = µZx1 . . . xn.(Qφx1 . . . xn ∧ guardµν [φ1]) .

We define the funtions

f1(S) =
{
ā ∈ Dn | D, x̄ 7→ ā, η[Z 7→ S] |= Qφx1 . . . xn ∧ guardµν [φ1]

}
= QD

φ ∩
{
ā ∈ Dn | D, x̄ 7→ ā, η[Z 7→ S] |= guardµν [φ1]

}︸ ︷︷ ︸
f ′1(S)

f2(S) =
{
ā ∈ Dn | D, x̄ 7→ ā, η[Z 7→ S] |= φ1

}
and observe that, by the inductive hypothesis, f ′1(S) ⊆ f2(S) for all S ⊆ Dn. It follows that
f1(S) ⊆ f2(S) for all S ⊆ Dn. Hence, lfp(f1) ⊆ lfp(f2) and we are done.
• The case φ = νZx1 . . . xn.φ1 is dealt with similar arguments. �

Lemma 83. Let φ be a FOLpos
µν [σ]-formula. Then, φ is equisatisfiable to guardµν [φ].

Proof. An immediate consequence of Claim 81 and Claim 82. �

The idea behind the introduction of these guards for fixpoint formulas is that they will allow
us to extend Lemma 69 when we add to the packed fragment “guarded” least fixpoint formulas.
In the case of greatest fixpoints, this technique does not work. Similarly to the packing guards,
these least fixpoint guards will enforce the R-thinness of the domain tuples in the least fixpoints.

Definition 84 (packed fragment + unguarded least fixpoints, packed fragment + guarded least
fixpoints). Fix a first-order signature σ. We define PFOLpos

µ [σ] as the smallest set that satisfies
the following.
• PFOLpos

µ [σ] contains atomic formulas, including equalities, as well as their negations.
• PFOLpos

µ [σ] is closed ∧,∨, existential packed quantification, and universal packed quantifica-
tion.
• (unguarded least fixpoints) If φ ∈ PFOLpos

µ [σ], Z is a n-ary relation variable, x1, . . . , xn are
individual variables, fvars[φ] ⊆ {x1, . . . , xn}, and all free occurrences of Z in φ are positive,
then µZx1 . . . xn.φ is in PFOLpos

µ [σ].
PFOLpos

µg [σ] is defined as the smallest set that satisfies the following.
• PFOLpos

µg [σ] contains atomic formulas, including equalities, as well as their negations.
• PFOLpos

µg [σ] is closed ∧,∨, existential packed quantification, and universal packed quantifica-
tion.
• (guarded least fixpoints) If φ ∈ PFOLpos

µg [σ], Z is a n-ary relation variable, x1, . . . , xn are
individual variables, fvars[φ] ⊆ {x1, . . . , xn}, Q is a n-ary predicate symbol, and all free
occurrences of Z in φ are positive, then µZx1 . . . xn.(Qx1 . . . xn ∧ φ) is in PFOLpos

µg [σ].
It is obvious that for any φ ∈ PFOLpos

µ [σ], guardµν [φ] ∈ PFOLpos
µg [σ].

Lemma 85. Let D = (D, ·D), E = (E , ·E) be σ-structures and R ⊆ D × E be a left-total,
injective, and right-total relation. Assume that the conditions (ii), (iii), (iv) of Lemma 54, and
the conditions (v), (vi) of Claim 67 hold. We replace condition (i) of Lemma 54 by condition
(vii) of Lemma 69. For any PFOLpos

µg [σ]-formula φ, any individual variable assignments h :

72 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

fvars[φ] → D, g : fvars[φ] → E , with hRg and g R-thin, and any relation variable assignments
η : Z →

⋃
k∈N ℘

(
Dk
)

and θ : Z →
⋃
k∈N ℘

(
Ek
)

with ηRtθ,

D, h, η |= φ ⇐⇒ E, g, θ |= φ .

We write ηRtθ to mean that for any n-ary relation variable Z, θ(Z) = Rt(η(Z)). For S ⊆ Dn,
we define

Rt(S) def=
{

(b1, . . . , bn) ∈ En | {b1, . . . , bn} is R-thin & 〈R−1(b1), . . . , R−1(bn)〉 is in S
}
.

We will also say that b̄ = (b1, . . . , bn) is R-thin, whenever {b1, . . . , bn} is R-thin and that āRb̄,
whenever aiRbi for all i = 1, . . . , n.

Proof. Fix D,E, R. The proof proceeds by induction on φ.
• The atomic cases, including the case Z(t1, . . . , tn), are handled as in Lemma 69. The property

follows immediately for the negated atomic cases.
• The cases φ = (φ1 ∧ φ2), (φ1 ∨ φ2) are easy.
• For the cases of existential and universal packed quantification, we argue as in Lemma 69.
• φ = µZx1 . . . xn.(Qx1 . . . xn ∧ φ1). Fix h, g with hRg, g R-thin and η, θ with ηRtθ. Define

f1(S) =
{
ā ∈ Dn | D, x̄ 7→ ā, η[Z 7→ S] |= Qx1 . . . xn ∧ φ1

}
f2(S) =

{
b̄ ∈ En | E, x̄ 7→ b̄, θ[Z 7→ S] |= Qx1 . . . xn ∧ φ1

}
Let S be an arbitrary subset of Dn. We argue that Rt(f1(S)) = f2(Rt(S)). Let b̄ ∈ Rt(f1(S)).
Then, b̄ is R-thin and ā = 〈R−1(b1), . . . , R−1(bn)〉 is in f1(S). It follows that

D, x̄ 7→ ā, η[Z 7→ S] |= Qx1 . . . xn ∧ φ1 ,

which implies that ā ∈ QD and D, x̄ 7→ ā, η[Z 7→ S] |= φ1. By definition of ·E, b̄ ∈ QE and
hence E, x̄ 7→ b̄, θ[Z 7→ Rt(S)] |= Qx1 . . . xn. Observe that (x̄ 7→ ā)R(x̄ 7→ b̄), (x̄ 7→ b̄) is R-
thin, and η[Z 7→ S]Rtθ[Z 7→ Rt(S)]. By the inductive hypothesis, E, x̄ 7→ b̄, θ[Z 7→ Rt(S)] |=
φ1. We deduce that b̄ ∈ f2(Rt(S)). For the converse, suppose that b̄ ∈ f2(Rt(S)). We have
that

E, x̄ 7→ b̄, θ[Z 7→ Rt(S)] |= Qx1 . . . xn ∧ φ1 ,

from which it follows that b̄ ∈ QE and E, x̄ 7→ b̄, θ[Z 7→ Rt(S)] |= φ1. Notice that b̄ is R-thin
and that ā ∈ QD, where ā = 〈R−1(b1), . . . , R−1(bn)〉. The inductive hypothesis gives us that
D, x̄ 7→ ā, η[Z 7→ S] |= φ1 and hence ā ∈ f1(S). Immediately, we get that b̄ ∈ Rt(f1(S)).

By an easy well-founded induction, we infer that Rt(µα(f1)) = µα(f2) for any ordinal α.
Basis: Rt(µ0(f1)) = Rt(∅) = ∅ = µ0(f2). Step:

Rt(µα(f1)) = Rt

⋃
β<α

µβ(f1)

 =
⋃
β<α

Rt(µβ(f1))
ind. hyp.

=
⋃
β<α

µβ(f2) = µα(f2) .

As an immediate consequence, we get that

Rt(lfp(f1)) = Rt

(⋃
α∈Ord

µα(f1)

)
=

⋃
α∈Ord

Rt(µα(f1)) =
⋃

α∈Ord

µα(f2) = lfp(f2) .

Let ā = 〈h(x1), . . . , h(xn)〉 and b̄ = 〈g(x1), . . . , g(xn)〉. From R-thinness of g, we get that b̄
is R-thin. Suppose that D, h, η |= φ. Then, ā ∈ lfp(f1) and hence b̄ ∈ Rt(lfp(f1)) = lfp(f2).
It follows that E, g, θ |= φ. Conversely, suppose that E, g, θ |= φ. We get that b̄ ∈ lfp(f2) =
Rt(lfp(f1)) and therefore ā ∈ lfp(f1). This means that D, h, η |= φ. �

Remark 86 (what goes wrong with greatest fixpoints?). Let us try to see where exactly the
proof breaks down if we consider guarded greatest fixpoints as well. The induction of Lemma 85
would include the case φ = νZx1 . . . xn.(Qx1 . . . xn ∧ φ1).

First, we observe that the function Rt is injective. Let S1, S2 be two arbitrary subsets
of Dn with Rt(S1) = Rt(S2). Let ā = (a1, . . . , an) be an arbitrary element of S1. Among
a1, . . . , an there may be some elements repeating. For any a ∈ {a1, . . . , an} take b ∈ E such
that aRb (there is at least one such element, since R is left-total) and put f(a) = b. Define

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 73

b̄ = (b1, . . . , bn) = 〈f(a1), . . . , f(an)〉 and notice that b̄ is R-thin and that āRb̄. So, b̄ is in Rt(S1)
and hence in Rt(S2). It follows that ā is in S2. We have established that S1 ⊆ S2. By symmetry,
S1 = S2. Since Rt is injective, we have the property Rt(

⋂
i∈I Ai) =

⋂
i∈I Rt(Ai).

Fix h, g with hRg, g R-thin and η, θ with ηRtθ. Define f1(S), f2(S) as in the least fixpoint
case. We have that Rt(f1(S)) = f2(Rt(S)) for any S ⊆ Dn. We argue now that for any ordinal
α, Rt(να(f1)) = να(f2). Every works fine for the induction step:

Rt(να(f1)) = Rt

⋂
β<α

νβ(f1)

 =
⋂
β<α

Rt(νβ(f1))
ind. hyp.

=
⋂
β<α

νβ(f2) = να(f2) .

The argument collapses for the base case: Rt(ν0(f1)) = Rt(Dn) is not necessarily equal to
ν0(f2) = En. The only thing we can show is that gfp(f1) ⊆ gfp(f2).

Now we are ready to introduce the formulas of ‘packed first-order logic with least fixpoints
+ temporal logic with least and greatest fixpoints’, namely PFOLµTLpos

µν . We also consider a
reduction class for satisfiability of PFOLµTLpos

µν -formulas, i.e. the formulas of ‘packed first-order
logic with guarded least fixpoints + temporal logic with least and greatest fixpoints’, namely
PFOLµgTLpos

µν .

Definition 87 (PFOLµTLpos
µν , PFOLµgTLpos

µν). Fix a first-order signature σ = (P,P0,F =
∅, C, ar) with no function symbols. We define PFOLµTLpos

µν [σ] as the smallest set that satis-
fies the following.
• PFOLµTLpos

µν [σ] includes P0, {¬p | p ∈ P0}, the set of (temporal) fixpoint variables X , and
{¬X | X ∈ X}.
• If t1, t2 are σ-terms, then t1 = t2 and t1 6= t2 are in PFOLµTLpos

µν [σ].
• For any n-ary predicate symbol P in σ, if t1, . . . , tn are σ-terms, then P (t1, . . . , tn) and
¬P (t1, . . . , tn) are in PFOLµTLpos

µν [σ].
• For any n-ary relation fixpoint variable Z ∈ Z, if t1, . . . , tn are σ-terms, then Z(t1, . . . , tn)

and ¬Z(t1, . . . , tn) are in PFOLµTLpos
µν [σ].

• PFOLµTLpos
µν [σ] is closed under ∧, ∨, existential packed quantification, and universal packed

quantification.
• (unguarded domain-side least fixpoints) If φ ∈ PFOLµTLpos

µν [σ], Z is a n-ary relation variable,
x1, . . . , xn are individual variables, fvars[φ] ⊆ {x1, . . . , xn}, and all free occurrences of Z in φ
are positive, then µZx1 . . . xn.φ is in PFOLµTLpos

µν [σ].
• PFOLµTLpos

µν is closed under the temporal connectives #, ,�.
• (temporal fixpoints) If φ ∈ PFOLµTLpos

µν [σ], X is a (temporal) fixpoint variable, and all free
occurrences of X in φ are positive, then µXφ and νXφ are in PFOLµTLpos

µν [σ].

PFOLµgTLpos
µν [σ] is defined similarly. Just replace the ‘unguarded domain-side least fixpoints’

rule by the following.
• (guarded domain-side least fixpoints) If φ ∈ PFOLµgTLpos

µν [σ], Z is a n-ary relation variable,
x1, . . . , xn are individual variables, fvars[φ] ⊆ {x1, . . . , xn}, Q is a n-ary predicate symbol
in σ, and all free occurrences of Z in φ are positive, then µZx1 . . . xn.(Qx1 . . . xn ∧ φ) is in
PFOLµgTLpos

µν [σ].
It is clear that PFOLµgTLpos

µν ⊆ PFOLµTLpos
µν . Semantics is defined as one would expect. Follow-

ing our usual convention, we denote by PFOLµTLpnf
µν the set of PFOLµTLpos

µν -formulas in positive
normal form and by PFOLµgTLpnf

µν the set of PFOLµgTLpos
µν -formulas in positive normal form.

Lemma 83 easily extends to PFOLµTLpos
µν , which means that PFOLµgTLpos

µν is a reduction class
for satisfiability of PFOLµTLpos

µν -formulas.
Since we have now three different types of variables, it is useful to introduce some more

terminology for sentences. A dom-sentence is a formula with no free individual variables. A
dom-fp-sentence is a formula with no free relation variables. A time-fp-sentence is a formula
with no free temporal fixpoint variables. A sentence is a formula with no free variables of any
type. It should be obvious how, given a formula, we can construct an equisatisfiable sentence.

74 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

Definition 88 (monodicity, PFOLµTLpos
1µν , PFOLµTLpos

1µν). We will strengthen the monodicity
requirement, so that domain-fixpoint formulas are purely non-temporal. The idea is that the
evaluation of a domain-fixpoint is done entirely in the structure of a single moment. So, the set
of monodic PFOLµTLpos

µν -formulas, PFOLµTLpos
1µν , is defined as the subset of PFOLµTLpos

µν that
satisfies the usual monodicity conditions and additionally
• (domain-fixpoint monodicity requirement) Any domain-fixpoint subformula µZx1 . . . xn.φ is

purely non-temporal, i.e. φ contains no temporal operators and no temporal fixpoint variables.
Similarly, we define the set of monodic PFOLµgTLpos

µν -formulas, PFOLµgTLpos
1µν . The sets of

formulas PFOLµTLpnf
1µν , PFOLµgTLpnf

1µν are defined in the obvious way.

We start with a PFOLµgTLpnf
1µν-sentence φ that contains no function symbols. Extending the

analysis of Section 8 is rather straightforward. Types, state candidates, runs, state functions,
and quasimodels are defined in the same way. We get the “temporal model iff well-founded
quasimodel” theorem using the same construction as in Theorem 75 by virtue of Lemma 85.
Just observe that monodicity ensures that domain-side fixpoint formulas are treated as base
cases in the crucial induction that establishes that formula occurrences in the quasimodel are
satisfied at the respective moment and domain element.

Theorem 89. Let φ be a PFOLµgTLpnf
1µν-sentence. Then, φ is (finitely) satisfiable if and only if

there is a well-founded adorned (finitary) quasimodel for φ, in which φ is satisfied.

Theorem 90.
(1) The satisfiability problem for monodic ‘guarded first-order logic with least fixpoints + tem-

poral logic with least and greatest fixpoints’ over the naturals is complete for 2EXPTIME.
(2) The satisfiability problem for monodic ‘loosely guarded first-order logic with least fix-

points + temporal logic with least and greatest fixpoints’ over the naturals is complete
for 2EXPTIME.

(3) The satisfiability problem for monodic ‘bounded-variable or bounded-arity guarded first-
order logic with least fixpoints + temporal logic with least and greatest fixpoints’ over the
naturals is complete for EXPSPACE.

(4) The satisfiability problem for monodic ‘bounded-variable or bounded-arity loosely guarded
first-order logic with least fixpoints + temporal logic with least and greatest fixpoints’ over
the naturals is complete for EXPSPACE.

Proof. The automata-theoretic arguments of Section 7.1 with trivial modifications apply here
as well. We will only discuss (1). The rest of the claims are shown similarly. The non-temporal
part is contained in the guarded fixpoint logic (with least and greatest fixpoints) of Grädel and
Walukiewicz [24], which is in 2EXPTIME. We proceed to argue as in Theorem 63. Completeness
is an immediate consequence of the fact that even guarded first-order logic (with no fixpoints)
is complete for 2EXPTIME. �

The most important question we leave here open is whether greatest fixpoints can be handled.
The technique we use in Lemma 85 is based on placing atomic guards at least fixpoint formulas in
order to enforce thinness of the fixpoints. It does not seem to extend at all to greatest fixpoints,
since they are “evaluated from above”. That is, the first evaluation involves all possible tuples
over the domain and hence we cannot control which tuples eventually end up in the fixpoint.

It would also be interesting to examine if we can relax the monodicity restriction on domain-
fixpoints. Remember that the regeneration of temporal fixpoints is restricted on a single run,
by requiring that ∃/∀-subformulas have no free temporal fixpoint variables. The analogue of
this for domain-fixpoints would be that temporal #/ /�/µ/ν-subformulas have no free relation
variables. Thus, a domain-fixpoint is regenerated at the same moment even though it may have
some temporal operators in it. We leave open the question of whether this weaker monodicity
condition allows us to obtain similar results.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 75

10. Applications on Temporal Description Logics

The field of knowledge representation is concerned with methods for describing a “domain
of discourse” (an “application domain”) as well as for designing intelligent systems that are
able to find implicit consequences of the explicitly described knowledge. Description logics
emerged in the context of network-based knowledge representation systems after the realization
that semantics can be given to network-based representations, such as semantic networks and
frames, using first-order logic. For these specialized structures, however, only certain fragments
of first-order logic are required, which are more computationally manageable.

The notion of concepts is central in the study of description logics. Informally, a concept is
a property held by some individuals of the domain. Alternatively, a concept can be viewed as
the set of the invididuals that hold it. There are also relationships between individuals, which
are modeled as binary relations. For example, the relation isMotherOf relates two individuals
x, y if x is the mother of y. With the language of description logics we can express statements
such as ‘if x is a mother, then x is a woman’ and ‘if x is the mother of y, then y is a child
of x’. A terminology is a collection of statements of this sort, that defines the concepts of the
domain we want to model. Assertions for specific individuals are also considered, such as ‘Mary
is a mother’, ‘John is the grandfather of George’. A terminology together with a collection of
assertions for individuals is called knowledge base.

Several reasoning tasks are of interest. The basic inference on concepts is subsumption
checking, that is ‘is concept D more general than concept C?’. For example, ‘is every woman
a mother?’. Subsumption is trivially reducible to satisfiability, as will be made apparent later,
when satisfiability is defined. An important reasoning task for knowledge bases is consistency
checking, which informally is about determining whether the information in the knowledge base
is self-conflicting.

Temporal description logics have arisen in an effort to incorporate time in the formalisms of
description logics. There is a bewildering variety of available choices when designing a temporal
description logic. We refer the reader to the surveys [3, 40]. Our interest in temporal description
logics stems from the fact that many of these logics can be embedded in the monodic fragments
studied here. Thus, decidability and complexity results can be obtained directly as corollaries.
In [16] an EXPSPACE-completeness result for a temporal description logic is claimed, but given
without a proof.

We begin by introducing a simple (non-temporal) description logic, called ALC, in order
to prepare the way for the more involved setting of temporal description logics, which are
presented immediately after. We conclude with a reduction of the (finite) satisfiability problem
for a temporal description logic with fixpoints to the (finite) satisfiability problem for a monodic
fragment. We apply our results to obtain tight complexity results.

10.1. A Simple Description Logic. We present the syntax and semantics of ALC. Fix a set
NC = {A0, A1, . . .} of atomic concepts and a set NR = {r0, r1, . . .} of atomic roles. Define the
alphabet Σ = NC ∪NR ∪ {¬,u, ∃, (,)}.

Definition 91 (ALC). ALC is defined as the smallest subset of Σ? that satisfies the following
conditions.

• ALC contains NC .
• If C ∈ ALC, then ¬C ∈ ALC.
• If C1, C2 ∈ ALC, then (C1 u C2) ∈ ALC.
• If C ∈ ALC and r ∈ NR, then ∃r.C ∈ ALC.

When we want to make explicit the sets of atomic concepts and atomic roles, we will write
ALC[NC , NR] instead of ALC. An element of ALC is called an ALC-concept (or just concept).
We will use the usual parenthesis elimination convetions when no confusion arises.

Definition 92 (ALC semantics). We define semantics over an interpretation I = (∆I, ·I),
where ∆I is a nonempty set called the domain of I, and ·I is a function, called the interpretation
function, that maps each atomic concept A to a subset AI ⊆ ∆I and each atomic role r to a

76 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

subset rI ⊆ ∆I ×∆I. We extend ·I to [·]I inductively as follows.

[A]I = AI [¬C]I = ∆I \ [C]I

[r]I = rI [C1 u C2]I = [C1]I ∩ [C2]I

[∃r.C]I = {x ∈ ∆I | there is y ∈ ∆I s.t. (x, y) ∈ rI and y ∈ [C]I}

We say that an interpretation I satisfies an ALC-concept C or that I is a model of C if [C]I 6= ∅.
An ALC-concept C is satisfiable if there is an interpretation that satisfies it.

We define the abbreviations ⊥ = (C u ¬C), > = ¬⊥, (C1 t C2) = ¬(¬C1 u ¬C2) and
∀r.C = ¬∃r.¬C. It is easy to see that

[⊥]I = ∅ [>]I = ∆I

[C1 t C2]I = [C1]I ∪ [C2]I

[∀r.C]I = {x ∈ ∆I | for any y ∈ ∆I, (x, y) ∈ rI =⇒ y ∈ [C]I} .

Definition 93 (ALC-TBox). An ALC-concept inclusion axiom is a pair C
.
v D, where C,D

are ALC-concepts. An ALC-TBox is a finite set of ALC-concept inclusion axioms.
An intepretation I is said to satisfy a concept inclusion axiom if [C]I ⊆ [D]I. An interpre-

tation I satisfies (is a model of) a TBox if it satisfies all the concept inclusion axioms in the
TBox. A TBox is satisfiable if there is an interpretation that satisfies it.

Definition 94 (ALC-ABox). Fix a set NI of individual names. We extend the interpretation
functions so that they map each individual name to an element of the domain. An ALC-concept
assertion is a pair C(a), where C is an ALC-concept and a is an individual name. A role
assertion is a pair r(a, b), where r is a role and a, b are individual names. An ALC-ABox is a
finite set of ALC-concept and role assertions.

We say that an interpretation I satisfies a concept assertion if aI ∈ [C]I. It satisfies a role
assertion if (aI, bI) ∈ rI. We say that an interpretation I satisfies (is a model of) an ABox if it
satisfies all the assertions in the ABox. An ABox is consistent if there is an interpretation that
satisfies it.

We can easily reduce concept satisfiability to ABox satisfiability. Take any individual name
a. A concept C is satisfiable if and only if the ABox A = {C(a)} is satisfiable.

A knowledge base is a pair K = (A, T), where A is an ABox and T is a TBox.

Definition 95 (translation into first-order logic). We define the translation of an ALC-concept
to a first-order formula over the signature that contains the unary predicate symbols NC and
the binary predicate symbols NR.

STxy[A] = A(x) STxy[C uD] = STxy[C] ∧ STxy[D]

STxy[¬C] = ¬STxy[C] STxy[∃r.C] = ∃y(r(x, y) ∧ STyx[C])

It is clear that the translation STxy[C] of any ALC-concept C has exactly one free variable,
namely x. We will also write STx[C] to mean any STxy[C] for y 6= x.

Similarly, we can translate ALC-concept inclusion axioms, ALC-TBoxes, and ALC-ABoxes
into first-order sentences.

ST[C
.
v D] = ∀x(STx[C]→ STx[D])

ST[T] =
∧

C
.
vD∈T

ST[C
.
v D]

ST[C(a)] = [STx[C]]{a/x}
ST[r(a, b)] = r(a, b)

ST[A] =
∧

C(a)∈A

ST[C(a)] ∧
∧

r(a,b)∈A

ST[r(a, b)]

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 77

Remark 96. With an easy induction, we show that for every ALC-concept C, and every
d ∈ ∆I, d ∈ [C]I ⇐⇒ I, x 7→ d |= STx[C]. It follows that

I satisfies C ⇐⇒ there is d ∈ ∆I s.t. I, x 7→ d |= STx[C].

It is also very straightforward to prove the following equivalences.

I satisfies C
.
v D ⇐⇒ I |= ST[C

.
v D] I satisfies C(a) ⇐⇒ I |= ST[C(a)]

I satisfies T ⇐⇒ I |= ST[T] I satisfies r(a, b) ⇐⇒ I |= ST[r(a, b)]

I satisfies A ⇐⇒ I |= ST[A]

I satisfies C w.r.t. T ⇐⇒ I |= ST[T] and there is d ∈ ∆I s.t. I, x 7→ d |= STx[C]

I satisfies A w.r.t. T ⇐⇒ I |= ST[T] ∧ ST[A]

It follows that the satisfiability and consistency problem of this description logic can be reduced
to the satisfiability problem of first-order logic.

10.2. Temporalizing Description Logics. There several options available when temporal-
izing a description logic. One may allow temporal operators to be applied to concepts, roles,
TBoxes, ABoxes, or any combination of those. We will only consider linear-time temporal oper-
ators, such as #, , F (sometime in the future), P (sometime in the past), U (until), S (since),
2 (at all moments), 3 (at some time), etc.

Definition 97 (temporal concepts). Let CL be a non-temporal concept language that we want
to enrich with linear-time temporal operators. The augmented set of concepts is denoted by
CLops , where ops is the set of temporal operators we include in the language. We will write, for
example, ALCUS to mean the set of concepts that are built using the usual operators of ALC
and the temporal operators U and S . Semantics for CLops -concepts is defined over a temporal
interpretation I = (∆I, ·I), where ·I maps each atomic concept A to a subset AI ⊆ N×∆I and
each atomic r role to a subset rI ⊆ N×∆I×∆I. Let us see, for example, how we would extend
the interpretation function to ALCUS -concepts.

[∃r.C]I =
{

(u, x) ∈ N×∆I | there is y ∈ ∆I s.t. (u, x, y) ∈ [r]I and (u, y) ∈ [C]I
}

[CU D]I =
{

(u, x) ∈ N×∆I | there is v ∈ N s.t. u < v,

(v, x) ∈ [D]I, and (w, x) ∈ [C]I for all w ∈ (u, v)
}

[CSD]I =
{

(u, x) ∈ N×∆I | there is v ∈ N s.t. v < u,

(v, x) ∈ [D]I, and (w, x) ∈ [C]I for all w ∈ (v, u)
}

The atomic cases and the cases of the Boolean operators are defined as for ALC-concepts.

If C,D are CLops -concepts, then C
.
v D is a CLops -concept inclusion axiom. An CLops -TBox

(non-temporal) is a finite set of CLops -concept inclusion axioms. If C is a CLops -concept and a
is an individual name, then C(a) is a CLops-concept assertion. An CLops -ABox (non-temporal)
is a finite set of CLops -concept assertions and of role assertions.

Definition 98. Let CL be a non-temporal concept language, and ops a set of linear-time
temporal operators.
− An interpretation I satisfies a CLops -concept C at a moment u if there is a point x in ∆I

such that (u, x) ∈ [C]I.
− A CLops -concept C is satisfiable if there is an interpretation I and a moment u such that I

satisfies C at u.
− An interpretation I satisfies a CLops -concept inclusion axiom C

.
v D if [C]I ⊆ [D]I.

− An interpretation I satisfies a CLops -TBox if it satisfies all the inclusion axioms in it.
− A CLops -TBox T is satisfiable if there is an interpretation that satisfies it.
− An interpretation I satisfies a CLops-concept C w.r.t. a CLops-TBox T if I satisfies T and

also satisfies C at some moment.

78 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

− A CLops -concept C is satisfiable w.r.t. a CLops-TBox T if there an interpretation that satisfies
C w.r.t. T .

− An interpretation I satisfies a CLops -concept assertion C(a) at a moment u if (u, aI) ∈ [C]I.
− An interpretation I satisfies a role assertion r(a, b) at moment u if (u, aI, bI) ∈ rI.
− An interpretation I satisfies a CLops -ABox at a moment u if it satisfies all the assertions in

it at u.
− A CLops -ABox is consistent if there is an interpretation that satisfies it at some moment.
− A CLops -ABox A is consistent w.r.t. a CLops-TBox T if there is an interpretation I that

satisfies T and there is also a moment u such that I satisfies A at u.

Definition 99 (translation to first-order temporal logic). Let CL be a non-temporal concept
language and ops be a set of temporal operators. We extend the translation of CL-concepts so
that CLops is covered. For example,

STxy[CU D] = STxy[C]U STxy[D] STxy[CSD] = STxy[C]S STxy[D] .

We translate CLops -TBoxes and CLops -ABoxes as in Definition 95 with the only difference being

ST[C
.
v D] = 2∀x(STx[C]→ STx[D]) .

That is, for CLops -TBoxes we also have universal quantification over time.

Remark 100. Let C be a CLops -concept and I a temporal interpretation. For any moment u
and any domain element d, (u, d) ∈ [C]I ⇐⇒ I, x 7→ d, u |= STx[C]. A temporal interpretation
I = (∆I, ·I) can be seen as a first-order temporal structure I = (〈N, <〉 ,∆I, I), where

AIu =
{
d | (u, d) ∈ [A]I

}
rIu =

{
(d1, d2) | (u, d1, d2) ∈ [r]I

}
aIu = aI .

When we allow the application of temporal operators to concept inclusions, we speak of
temporal TBoxes.

Definition 101 (temporal TBoxes). Let CL be a (temporal or non-temporal) concept language
and ops a set of temporal operators. We define the set of CL-ops-TBoxes as the smallest set
that satisfies the following conditions.

• If C,D are CL-concepts, then C
.
v D is a CL-ops-TBox.

• If φ is a CL-ops-TBox, then ¬φ is a CL-ops-TBox.
• If φ, ψ are CL-ops-TBoxes, then (φ ∧ ψ) is a CL-ops-TBox.
• For any unary operator ◦ ∈ ops, if φ is a CL-ops-TBox, then ◦φ is a CL-ops-TBox.
• For any binary operator ⊗ ∈ ops, if φ, ψ are CL-ops-TBoxes, then (φ ⊗ ψ) is a CL-ops-

TBox.
The above definition allows us to choose independently the temporal operators that will be
applied on concepts and the temporal operators that are applied on TBoxes. For example, we
can have a ALCFP-US -TBox.

We define truth of a CL-ops-TBox under an interpretation I at a moment u inductively as
follows.

I, u |= C
.
v D ⇐⇒ for all x ∈ ∆I, (u, x) ∈ [C]I =⇒ (u, x) ∈ [D]I

I, u |= ¬φ ⇐⇒ I, u 6|= φ

I, u |= (φ ∧ ψ) ⇐⇒ I, u |= φ and I, u |= ψ

For CL-ops-TBoxes that start with a temporal operator, truth is defined in the obvious way. If,
for example, ops were equal to {U ,S }, we would have

I, u |= (φU ψ) ⇐⇒ there is v ∈ N s.t. u < v, I, v |= ψ, and I, w |= φ for all w ∈ (u, v)

I, u |= (φSψ) ⇐⇒ there is v ∈ N s.t. v < u, I, v |= ψ, and I, w |= φ for all w ∈ (v, u) .

Definition 102. Let CL be a temporal or non-temporal concept language and ops a set of
temporal operators.
− We say that the intepretation I satisfies the CL-ops-TBox φ at moment u, if I, u |= φ.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 79

− A CL-ops-TBox φ is said to be satisfiable if there is an interpretation I and a moment u such
that I satisfies φ at u.

− An interpretation I satisfies a CL-concept C w.r.t. a CL-ops-TBox φ at a moment u if I
satisfies both C and φ at u.

− A CL-concept C is said to be satisfiable w.r.t. a CL-ops-TBox φ if there is an interpretation
I and a moment u such that I satisfies C w.r.t. φ at u.

Observe that non-temporal TBoxes are interpreted globally, in the sense that the inclusions
have to hold at every moment. Temporal TBoxes, on the other hand, are interpreted locally at
every moment of time.

It is easy to see that a non-temporal CL-TBox T is satisfied by an interpretation I if and only
if the (temporal) CL-2-TBox

φ = 2
∧

C
.
vD∈T

C
.
v D

is satisfied by I at some (at all) moment(s).
A CL-concept C is satisfiable w.r.t. a CL-ops-TBox φ if and only if ¬(C

.
v ⊥)∧φ is satisfiable.

Definition 103 (temporal ABoxes). Let CL be a (temporal or non-temporal) concept language
and ops a set of temporal operators. We define the set of CL-ops-ABoxes as the smallest set
that satisfies the following conditions.

• If C is a CL-concept and a is an individual name, then C(a) is a CL-ops-ABox.
• If r is a role and a, b are individual names, then r(a, b) is a CL-ops-ABox.
• If φ is a CL-ops-ABox, then ¬φ is a CL-ops-ABox.
• If φ, ψ are CL-ops-ABoxes, then (φ ∧ ψ) is a CL-ops-ABox.
• For any unary operator ◦ ∈ ops, if φ is a CL-ops-ABox, then ◦φ is a CL-ops-ABox.
• For any binary operator ⊗ ∈ ops, if φ, ψ are CL-ops-ABoxes, then (φ ⊗ ψ) is a CL-ops-

ABox.
Again, we observe that the definition allows us to choose independently the temporal operators
for the concepts and the temporal operators for the ABoxes. For example, we can have a
ALCUS -F#P -ABox.

Truth of a CL-ops-ABox under an interpretation I at a moment u is defined as for temporal
TBoxes. The base cases are defined as one would expect:

I, u |= C(a) ⇐⇒ (u, aI) ∈ [C]I I, u |= r(a, b) ⇐⇒ (u, aI, bI) ∈ rI .

Definition 104. Let CL be a (temporal or non-temporal) concept language and ops, ops1, ops2

be sets of temporal operators.
− An interpretation I satisfies the CL-ops-ABox φ at moment u if I, u |= φ.
− A CL-ops-ABox φ is consistent if there is an interpretation I and a moment u such that I

satisfies φ at u.
− A CL-ops-ABox φ is consistent w.r.t. a CL-TBox T if there is an interpretation I that satisfies
T and there is also a moment u such that I satisfies φ at u.

− A CL-ops1-ABox φ is consistent w.r.t. a CL-ops2-TBox ψ if there is an interpretation I and
a moment u such that I satisfies both φ and ψ at u.

Definition 105 (temporal knowledge bases). We generalize temporal TBoxes and temporal
ABoxes, so that axioms, concept assertions, and role assertions are treated as atoms that can
be combined with Boolean and temporal operators.

Let CL be a (temporal or non-temporal) concept language and ops a set of temporal opera-
tors. We define the set of CL-ops-formulas (we will use the terms formula and knowledge base
interchangeably) to be the smallest set that satisfies the following.

• If C,D are CL-concepts, then C
.
v D is an atomic CL-ops-formula.

• If C is a CL-concept and a is an individual name, then C(a) is a CL-ops-formula.
• If r is a role and a, b are individual names, then r(a, b) is a CL-ops-formula.
• If φ is a CL-ops-formula, then ¬φ is a CL-ops-formula.

80 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

• If φ, ψ are CL-ops-formulas, then (φ ∧ ψ) is a CL-ops-formula.
• For any unary operator ◦ ∈ ops, if φ is a CL-ops-formula, then ◦φ is a CL-ops-formula.
• For any binary operator ⊗ ∈ ops, if φ, ψ are CL-ops-formulas, then (φ⊗ψ) is a CL-ops-

formula.
Truth is defined as for temporal TBoxes and temporal ABoxes. An interpretation I satisfies a
temporal knowledge base φ at a moment u if I, u |= φ. A temporal knowledge base is said to
be consistent if there is an interpretation that satisfies it at some moment.

Theorem 106. Let CL be the concept language that involves only the constructors ¬ and u.
The satisfiability problem for CLG-G-TBoxes is EXPSPACE-hard. The same holds for the finite
satisfiability problem. [30]

Proof. CLG-G-TBoxes are expressive enough to encode the 2n-corridor tiling problem, which is
known to be EXPSPACE-complete for n encoded in unary. �

10.3. Temporal Description Logics with Fixpoint Operators. We can use the complexity
results obtained in Section 7 to get immediately upper complexity bounds for various temporal
description logics with fixpoint operators. First, we will show how we augment ALC with
fixpoint operators.

Definition 107 (ALCµ-concepts,ALCµ-µ-formulas). Fix a set NC = {A1, A2, . . .} of atomic
concepts, a set NR = {r1, r2, . . .} of atomic roles, a set X = {X1, X2, . . .} of concept fixpoint
variables, a set Y = {Y1, Y2, . . .} of formula fixpoint variables, and a set NI = {a1, a2, . . .} of
individual names. The following grammar generates the set of ALCµ-concepts.

C,D ::= A | X | ¬C | (C uD) | ∃r.C | #C | C | µX.C
For a concept µX.C, we have the restriction that the free occurrences of the concept fixpoint
variable X in C are only positive. Given a temporal interpretation I, which maps each concept
fixpoint variable to a subset of N×∆I, we define

[#C]I =
{

(v, d) ∈ N×∆I | (v + 1, d) ∈ [C]I
}

[C]I =
{

(v, d) ∈ N×∆I | v > 0 and (v − 1, d) ∈ [C]I
}

[µX.C]I = the least fixpoint of the function f(S) = [C]I[X 7→S] .

The set of ALCµ-µ-formulas is defined by the grammar

φ, ψ ::= C
.
v D | Y | ¬φ | (φ ∧ ψ) | #φ | ψ | µY.φ ,

where C,D are ALCµ-concepts. As before, we require that for a formula µY.φ, the free occur-
rences of the formula fixpoint variable Y in φ are positive. Given a temporal interpretation I
and a fixpoint variable assignment g : Y → ℘ (N), we define

I, g, u |= Y ⇐⇒ u ∈ g(Y)

I, g, u |= #φ ⇐⇒ I, g, u+ 1 |= φ

I, g, u |= φ ⇐⇒ u > 0 and I, g, u− 1 |= φ

I, g, u |= µY.φ ⇐⇒ u ∈ lfp(f), where f(S) = {v ∈ N | I, g[Y 7→ S], v |= φ}
An ALCµ-µ-sentence is a ALCµ-µ-formula with no free occurrences of fixpoint variables.

Definition 108 (monodic concepts). We define the set ALC1µ of monodic ALCµ-concepts as
the subset of ALC1µ in which we do not allow any concept fixpoint variables to occur free in the
scope of ∃. Observe that in ALC1µ-µ-formulas, there is not the risk of having a formula fixpoint
variable occur in the scope of quantification, since we only have implicit universal quantification
in inclusion axioms.

Theorem 109.
• The satisfiabiliy problem for ALC1µ-µ-sentences is EXPSPACE-complete.
• The finite satisfiability problem for ALC1µ-µ-sentences is EXPSPACE-complete.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 81

Proof. Consider the translation of a ALC1µ-µ-formula in first-order temporal logic. The first-
order part of the translation is clearly in the two-variable fragment of first-order logic, the
satisfiability problem of which is in NEXPTIME [23], which is contained in EXPSPACE. The
first claim follows from Theorem 63 and Theorem 106. For the second claim, we note that the
two-variable fragment has the finite model property [45]. �

82 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

11. Conclusion

In the case of full first-order linear-time temporal logic, which is the combination of a RE-
complete logic with a PSPACE-complete logic, practical applications are hopeless due to its high
undecidability (more specifically Σ1

1-completeness). The monodic restriction manages to bring
down several monodic fragments to the class of recursive languages. Some monodic fragments
over the naturals are even in exponential space. The question naturally arises as to how far this
idea can be pushed to get more expressivity.

A major part of our work here is devoted to showing that we can extend the temporal
part with fixpoint operators and still keep appropriately restricted monodic fragments over the
naturals within exponential space (Theorem 63). The same result is shown for the problem of
finite satisfiability (Theorem 66). We also obtain upper complexity bounds — 2EXPTIME and
EXPSPACE for the bounded-variable or bounded-arity case — for the monodic packed fragment
with temporal fixpoint operators over the naturals (Theorem 77). 2EXPTIME-completeness (and
EXPSPACE-completeness respectively) follows immediately. We then proceed to add domain-
side least fixpoint operators to monodic guarded fragments over the naturals that already have
temporal fixpoint operators and show similar complexity results (Theorem 90).

An interesting question is whether decidability is preserved if we relax the monodic restriction.
By requiring that any subformula beginning with a quantifier has no free fixpoint variables, we
do not allow any “moving from one run to another” while evaluating fixpoints. Can we loosen
this requirement and still stay in the realm of the decidable?

In a different direction, one might want to consider branching time logics. There exist decid-
ability results for monodic CTL? [33, 5], but the complexity of these decidable fragments is not
known yet.

The case of dense time is also interesting. For rational time, we know that the monodic
fragments of first-order temporal logic with fixpoint operators and decidable first-order parts
are decidable [13], but there are no complexity results. For real time, there are no decidability
results for such monodic fragments, even without considering temporal fixpoint operators.

An important question left open in Section 9 is whether we can also add greatest domain-side
fixpoints to monodic guarded fragments. It is also worth investigating whether the monodicity
restriction for domain-side fixpoints can be weakened.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 83

References

[1] Mart́ın Abadi. The power of temporal proofs. Theoretical Computer Science, 65(1):35–83, 1989.
[2] Hajnal Andréka, Istaán Németi, and Johan van Benthem. Modal languages and bounded fragments of

predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998.
[3] Alessandro Artale and Enrico Franconi. A survey of temporal extensions of description logics. Annals of

Mathematics and Artificial Intelligence, 30(1–4):171–210, 2000.
[4] Behnam Banieqbal and Howard Barringer. Temporal logic with fixed points. In Temporal Logic in Specifi-

cation, volume 389 of Lecture Notes in Computer Science, pages 62–74, 1989.
[5] Sebastian Bauer, Ian Hodkinson, Frank Wolter, and Michael Zakharyaschev. On non-local propositional and

weak monodic quantified CTL?. Journal of Logic and Computation, 14(1):3–22, 2004.
[6] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Springer, 1997.
[7] J. Richard Büchi. On a decision method in restricted second-order arithmetic. In Logic, Methodology, and

Philosophy of Science: Proceedings of the 1960 International Congress, Stanford, CA, 1962. Stanford Uni-
versity Press.

[8] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of the Association for
Computing Machinery, 28(1):114–133, 1981.

[9] Yaacov Choueka. Theories of automata on ω-tapes: A simplified approach. Journal of Computer and System
Sciences, 8(2):117–141, 1974.

[10] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using branching-time
temporal logic. Lecture Notes in Computer Science, 131:52–71, 1982.

[11] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems
using temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244–
263, 1986.

[12] Anatoli Degtyarev, Michael Fisher, and Alexei Lisitsa. Equality and monodic first-order logic. Studia Logica,
72:147–156, 2002.

[13] Olivier Delande. Decidable fragments of fixed point extensions of monodic temporal logic. Master’s thesis,
Imperial College London, 2006.

[14] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of programs (extended
abstract). In Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pages 328–337,
1988.

[15] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of programs. SIAM
Journal on Computing, 29(1):132–158, 1999.

[16] Enrico Franconi and David Toman. Fixpoint extensions of temporal description logics. In Proceedings of the
2003 International Workshop on Description Logics (DL2003), 2003.

[17] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal analysis of fairness. In
Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
163–173, 1980.

[18] Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal Logic: Mathematical Foundations and Com-
putational Aspects. Volume 1. Oxford Logic Guides. Clarendon Press, 1994.

[19] Dov M. Gabbay, Mark A. Reynolds, and Marcelo Finger. Temporal Logic: Mathematical Foundations and
Computational Aspects. Volume 2. Oxford Logic Guides. Clarendon Press, 2000.

[20] James W. Garson. Handbook of Philosophical Logic: Volume 3, chapter ‘Quantification in Modal Logic’.
Springer, 2nd edition, 2001.

[21] Erich Grädel. Decision procedures for guarded logics. In Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), Lecture Notes in Computer Science, pages 31–51. Springer, 1999.

[22] Erich Grädel. On the restraining power of guards. The Journal of Symbolic Logic, 64(4):1719–1742, 1999.
[23] Erich Grädel, Phokion G Kolaitis, and Moshe Y. Vardi. On the decision problem for two-variable first-order

logic. The Bulletin of Symbolic Logic, 3(1):53–69, 1997.
[24] Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In Proceedings of the 14th Symposium on

Logic in Computer Science, pages 45–54, 1999.
[25] David Harel. Effective transformations on infinite trees, with applications to high undecidability, dominoes,

and fairness. Journal of the Association for Computing Machinery, 33(1):224–248, 1986.
[26] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576–

580,583, 1969.
[27] Ian Hodkinson. Loosely guarded fragment of first-order logic has the finite model property. Studia Logica,

70(2):205–240, 2002.
[28] Ian Hodkinson. Monodic packed fragment with equality is decidable. Studia Logica, 72(2):145–309, 2002.
[29] Ian Hodkinson. Complexity of monodic guarded fragments over linear and real time. Annals of Pure and

Applied Logic, 138:94–125, 2006.
[30] Ian Hodkinson, Roman Kontchakov, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. On the com-

putational complexity of decidable fragments of first-order linear temporal logics. In Proceedings of the 10th

International Symposium on Temporal Representation and Reasoning and Fourth International Conference
on Temporal Logic (TIME-ICTL’03), pages 91–98, 2003.

84 KONSTANTINOS MAMOURAS SUPERVISED BY PROF. IAN HODKINSON

[31] Ian Hodkinson and Martin Otto. Finite conformal hypergraph covers and Gaifman cliques in finite structures.
The Bulletin of Symbolic Logic, 9(3):387–405, 2003.

[32] Ian Hodkinson, Frank Wolter, and Michael Zakharyaschev. Decidable fragments of first-order temporal logics.
Annals of Pure and Applied Logic, 106(1–3):85–134, 2000.

[33] Ian Hodkinson, Frank Wolter, and Michael Zakharyaschev. Decidable and undecidable fragments of first-
order branching temporal logics. In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, pages 393–402, 2002.

[34] Walter Hussak. Decidable cases of first-order temporal logic with functions. Studia Logica, 88:247–261, 2008.
[35] Hans Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles,

1968.
[36] Dexter Kozen. Results on the propositional µ-calculus. In Proceedings of the 9th Colloquium on Automata,

Languages and Programming, volume 140 of Lecture Notes In Computer Science, pages 348–359, 1982.
[37] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, 27(3):333–354, 1983.
[38] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Extended temporal logic revisited. In Proceedings

of the 12th International Conference on Concurrency (CONCUR 2001), volume 2154 of Lecture Notes in
Computer Science, pages 519–535. Springer-Verlag, 2001.

[39] Leopold Löwenheim. Über Möglichkeiten im Relativkalkül. Mathematische Annalen, 76(4):447–470, 1915.
[40] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal description logics: A survey. In Pro-

ceedings of the 15th International Symposium on Temporal Representation and Reasoning (TIME’08), pages
3–14, 2008.

[41] Maarten Marx. Tolerance logic. Journal of Logic, Language and Information, 10(2):353–374, 2001.
[42] Stephan Merz. Decidability and incompleteness results for first-order temporal logics of linear time. Journal

of Applied Non-classical Logics, 2(2), 1992.
[43] Albert R. Meyer. Weak monadic second-order theory of successor is not elementary recursive. In Proceedings

of the Logic Colloquium, volume 453 of Lecture Notes in Mathematics, pages 132–154. Springer-Verlag, 1975.
[44] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on ω-words. Theoretical Computer Science,

32(3):321–330, 1984.
[45] M. Mortimer. On languages with two variables. Zeitschrift für mathemathische Logik und Grundlagen der

Mathematik, 21(1):135–140, 1975.
[46] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations

of Computer Science, pages 46–57, 1977.
[47] V. R. Pratt. A decidable mu-calculus: Preliminary report. In Proceedings of the 22nd Annual Symposium

on Foundations of Computer Science (SFCS ’81), pages 421–427, 1981.
[48] Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities. Journal of

Computer and System Sciences, 4(2):177–192, 1970.
[49] A. P. Sistla and Clarke E. M. The complexity of propositional linear temporal logics. Journal of the Asso-

ciation for Computing Machinery, 32(3):733–749, 1985.
[50] A. Prasad Sistla. Theoretical Issues in the Design and Verification of Distributed Systems. PhD thesis,

Harvard, 1983.
[51] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation problem for Büchi automata

with applications to temporal logic. Theoretical Computer Science, 49(2–3):217–237, 1987.
[52] Larry Joseph Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic. PhD thesis,

Massachusetts Institute of Technology, 1974.
[53] Robert S. Streett and E. Allen Emerson. An automata theoretic decision procedure for the propositional

mu-calculus. Information and Computation, 81(3):249–264, 1989.
[54] Andrzej Szalas. Concerning the semantic consequence relation in first-order temporal logic. Theoretical Com-

puter Science, 47:329–334, 1986.
[55] Andrzej Szalas and Leszek Holdenderski. Incompleteness of first-order temporal logic with until. Theoretical

Computer Science, 57(2–3):317–325, 1988.
[56] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics,

5(2):285–309, 1955.
[57] Johan van Benthem. Dynamic bits and pieces. Technical report, Institute for Logic, Language and Compu-

tation, 1997.
[58] Moshe Y. Vardi. A temporal fixpoint calculus (extended abstract). In Proceedings of the 15th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 250–259, San Diego, Cali-
fornia, United States, 1988.

[59] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency, volume
1043 of Lecture Notes in Computer Science, pages 238–266, 1996.

[60] Moshe Y. Vardi. Reasoning about the past with two-way automata. In Proceedings of the 25th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’98), volume 1443 of Lecture Notes in
Computer Science, pages 628–647. Springer, 1998.

[61] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Information and Computation,
115(1):1–37, 1994.

FIRST-ORDER TEMPORAL LOGIC WITH FIXPOINT OPERATORS OVER THE NATURAL NUMBERS 85

[62] Pierre Wolper. Temporal logic can be more expressive. In Proceedings of the 22nd Annual Symposium on
Foundations of Computer Science (SFCS ’81), pages 340–348, 1981.

[63] Pierre Wolper. Temporal logic can be more expressive. Information and Control, 56(1–2):72–99, 1983.
[64] Frank Wolter and Michael Zakharyaschev. Axiomatizing the monodic fragment of first-order logic. Annals

of Pure and Applied Logic, 118(1–2):133–145, 2002.

