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Abstract—A progress measure for a parity game is a labeling
s(·) of the vertices of the game that witnesses winning strategies
for the players: Player 0 (Even) and Player 1 (Odd). We give a
natural definition of a canonical progress measure for a parity
game G directly, without translating into the µ-calculus. The
label s(u) of a vertex u is defined to be the value of an infinitely-
played game played on the graph of G.

In order to show the existence of these values, we introduce a
finitely-played version of the game of duration at most n(n+1)/2
moves, where n is the number of vertices. We show that the values
for the finitely-played version are the same as the values for the
infinitely-played version. This result also implies the existence
of optimal strategies for both players (in the infinitely-played
version) that use memory of size O(nn(n+1)/2).

Without loss of generality we restrict attention to parity games
in which Player 0 has a winning strategy from every vertex. We
show that Player 0 has a memoryless strategy that ensures the
canonical progress measure everywhere. For Player 1, optimal
strategies are more complex. We consider the special case of 1-
solitaire games, i.e. games where only Player 1 has non-trivial
moves. For 1-solitaire games, we show that Player 1 must have
memory of size Ω(n) in order to ensure the canonical progress
measure. This lower bound extends, of course, to the general
case. Moreover, for 1-solitaire games we show that Player 1 has
optimal strategies that use memory of size O(n). For the general
case, we do not have a matching upper bound for the size of the
memory. We improve upon the upper bound previously stated:
Player 1 has optimal strategies with memory of size O(nn).

Our results imply that the canonical progress measure for a
parity game G records optimal strategies for Player 0. The same
does not seem to be the case, however, for Player 1. We consider
this an indication that verifying canonical progress measures for
parity games is not easier than finding them.

I. INTRODUCTION

A parity game involves two players, Player 0 (or Even)
and Player 1 (or Odd). It is played on a directed graph whose
vertices are labeled with natural numbers called priorities. The
vertices are partitioned into those that belong to Player 0 (0-
vertices) and those that belong to Player 1 (1-vertices). A play
starts at some vertex where a token is placed. At every step,
the player who owns the vertex with the token moves the token
to a successor vertex. Thus, an infinite sequence of vertices is
formed. Player 0 wins the play if the maximum priority that
appears infinitely often is even, otherwise Player 1 wins.

Parity games are memorylessly determined, i.e. for every
vertex u some player σ has a memoryless strategy fσ s.t. every
play that starts from u with Player σ playing according to fσ is
won by Player σ. The winning region of Player 0 is the set of
vertices from which Player 0 has a winning strategy. Solving
parity games amounts to finding the winning region of Player
0. By determinacy, the rest of the vertices are the winning

region of Player 1. The decision version of the problem is:
Given a parity game G and a vertex u, does Player 0 have
a winning strategy from u? Memoryless determinacy implies
that the problem lies in NP∩coNP [1]. Jurdziński has shown
that the problem is even contained in UP ∩ coUP [2].

The importance of finding fast algorithms for solving parity
games lies in its polynomial-time equivalence to the problem
of model checking the µ-calculus [3], [4]. Despite efforts
of the community no polynomial-time algorithm is known
for solving parity games. One line of research for designing
algorithms for parity games involves the notion of progress
measure [5]. Progress measures, introduced by Klarlund and
Kozen in [6] where they are called Rabin measures, are annota-
tions of graphs that record progress towards the satisfaction of
Rabin conditions. Streett and Emerson used a similar notion,
which they called signature [7], to study the µ-calculus.

A progress measure for a parity game is a labelling of
the vertices of the game that witnesses winning strategies for
the players and hence also the winning regions. The progress
measure records progress towards the satisfaction of the parity
condition. Walukiewicz considers canonical signature assign-
ments for parity games [8], which are defined by translating
the existence of a winning strategy into the µ-calculus and then
using the notion of signature by Emerson and Streett [7]. Our
definition of the canonical progress measure for a parity game
is similar, but does not involve the µ-calculus. The canonical
progress measure is unique and records winning strategies
for the players that are “good” in the sense of minimizing
the progress measure. The progress measure is defined as a
labelling s(·) of the vertices so that for a vertex u, s(u) is
the value of a game of infinite duration. This is well-defined,
because s(u) is shown to be both the least outcome that Player
0 can ensure and the greatest outcome that Player 1 can ensure.
This result is also relevant to addressing a question raised
by Jurdziński in [2]: Are canonical progress measures unique
succinct certificates for parity games? We do not resolve this
question here, but we believe that our results provide an
indication for a negative answer.

We feel that studying canonical progress measures is im-
portant in furthering our understanding of parity games. This
is because finding the winning regions, winning strategies, as
well as finding some progress measure for a parity game are all
equally hard problems. Finding the canonical progress measure
is at least as hard. It amounts to finding “good” winning
strategies in a precise sense.



II. SUMMARY OF RESULTS

We define the outcome of an infinite play won by Player 0
(Player 1) to be a function that maps each odd (even) priority
to a natural number. We call such a function a 0-signature
(1-signature). Consider the lexicographic ordering of these
functions, where larger priorities are more significant. Player
0 wants to minimize the outcome and Player 1 to maximize
it. We show that for a vertex u both players have strategies
that ensure the same outcome s(u) for plays starting from u.
In order to show this, we consider a finitely-played version of
the game of duration ≤ n(n+1)/2, where n is the number of
vertices. In the finitely-played version, a play ends as soon as
a cycle is formed after the first occurrence of the maximum
priority that has appeared so far. We say that s(u) is the value
of u. The values for the finitely-played version are the same
as the values for the infinitely-played version. We show this
fact using a technique similar to the one used by Ehrenfeucht
and Mycielski in [9], where a similar result is established for
mean-payoff games. A corollary is that in the infinitely-played
version the players have optimal strategies that use memory of
size O(nn(n+1)/2). The canonical progress measure is defined
to be the value assignment s(·).

Without loss of generality we study parity games in which
Player 0 has a winning strategy from every vertex. First, we
establish that Player 0 has a memoryless strategy f0 such that
for every vertex u, f0 ensures outcome ≤ s(u) from u. We
show an even stronger result: The canonical progress measure
records all memoryless strategies that ensure the measure from
every vertex.

We also study optimal strategies for Player 1. For the
simpler case of 1-solitaire games, i.e. games where only Player
1 has non-trivial moves, we show that optimal strategies for
Player 1 need memory of size at least Ω(n). Moreover, optimal
strategies can be constructed that use memory of size at most
O(n). In order to construct optimal strategies we introduce
the notions of extended outcome and extended value. These
notions formalize the idea that Player 1 tries to maximize the
outcome in as few steps as possible.

For general parity games, the linear lower bound for the size
of the memory also applies. We do not have a matching upper
bound. We improve, however, upon the O(nn(n+1)/2) upper
bound we stated previously. We show that Player 1 has optimal
strategies that use memory of size at most O(nn). Again,
constructing these optimal strategies involves the notions of
extended outcome and extended value.

III. CONCLUSION

Let G be a parity game and W0, W1 be the winning
regions of Player 0 and 1 respectively. Our results for optimal
strategies (in general games) are summarized in the following
diagram:

W0 W1

optimal 0-strategy: memoryless optimal 1-strategy: memoryless

optimal 1-strategy:
Ω(n) ≤ |M | ≤ O(nn)

optimal 0-strategy:
Ω(n) ≤ |M | ≤ O(nn)

We conjecture that there exist optimal 1-strategies for G[W0]
(and hence also optimal 0-strategies for G[W1]) with memory
of size at most O(n), where G[W ] denotes the restriction of
G to W .

The decision version of the problem of finding the canonical
progress measure of a parity game is the following: Given
a game G, a vertex u, and a 0-signature t, is it the case
that s(u) ≤ t? Call this problem CANONICAL. We have
preliminary results showing that if the above conjecture is true,
then CANONICAL lies in NP ∩ coNP.

Let G be a game in which Player 0 wins from every
vertex. We have shown that the canonical progress measure
records all possible memoryless 0-strategies that ensure the
measure. It does not seem, however, that we can read optimal
1-strategies off from the measure. We take this as an indication
that verifying canonical progress measures is not easier than
finding them, since we might still need to guess an optimal
1-strategy.
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