
Not Just an Empty Threat: Subgame-Perfect
Equilibrium in Repeated Games Played by

Computationally Bounded Players

Joseph Y. Halpern, Rafael Pass, and Lior Seeman

Cornell University

Abstract. We study the problem of finding a subgame-perfect equilibrium in re-
peated games. In earlier work [Halpern, Pass and Seeman 2014], we showed how
to efficiently find an (approximate) Nash equilibrium if assuming that players are
computationally bounded (and making standard cryptographic hardness assump-
tions); in contrast, as demonstrated in the work of Borgs et al. [2010], unless
we restrict to computationally bounded players, the problem is PPAD-hard. But
it is well-known that for extensive-form games (such as repeated games), Nash
equilibrium is a weak solution concept. In this work, we define and study an ap-
propriate notion of a subgame-perfect equilibrium for computationally bounded
players, and show how to efficiently find such an equilibrium in repeated games
(again, making standard cryptographic hardness assumptions). Our algorithm
works not only for games with a finite number of players, but also for constant-
degree graphical games.

1 Introduction

Computing a Nash equilibrium (NE) (or even an ε-NE) in a (one-shot) game with only
two players is believed to be computationally intractable (formally, it is PPAD-Hard) [3,
4]. However, in real life, games are often played repeatedly. In infinitely repeated games,
the Folk Theorem (see [14] for a review), which shows that the set of NE is large, gives
hopes that it might be easier to find one. In two-player repeated games, Littman and
Stone [13] show that this is indeed the case, and describe an efficient algorithm for
finding a NE, which uses the ideas of the folk theorem. Unfortunately, Borgs et al. [2]
show that if the game has three or more players, then even in the infinitely repeated
version it is PPAD-Hard to find even an ε-NE for an inverse-polynomial ε.

If we take seriously the importance of being able to find an ε-NE efficiently, it is
partly because we have computationally bounded players in mind. But then it seems
reasonable to see what happens if we assume that the players in the game are them-
selves computationally bounded. As we show in a recent paper [8], this makes a big
difference. Specifically, we show that if we assume that players are resource bounded,
which we model as probabilistic polynomial-time Turing machines (PPT TMs) with
memory, and restrict the equilibrium deviations strategies to those that can be imple-
mented by such players, then there exist an efficient algorithm for computing an ε-NE
in an infinitely repeated game. Our equilibrium strategy uses threats and punishment
much in the same way that they are used in the Folk Theorem. However, since the play-
ers are computationally bounded we can use cryptography (we assume the existence of

a secure public key encryption scheme) to secretly correlate the punishing players. This
allows us to overcome the difficulties raised by Borgs et al. [2].

While NE has some attractive features, it allows some unreasonable solutions. In
particular, the equilibrium might be obtained by what are arguably empty threats. This
actually happens in our solution (and in the basic version of the folk theorem). Specif-
ically, players are required to punish a deviating player, even though that might hurt
their payoff. Thus, if a deviation occurs, it might not be the best response of the players
to follow their strategy and punish; thus, such a punishment is actually an empty threat.

To deal with this (well known) problem, a number of refinements of NE have
been considered. The one typically used in dynamic games of perfect information is
subgame-perfect equilibrium, suggested by Selten [16]. A strategy profile is a subgame-
perfect equilibrium if it is a NE at every subgame of the original game. Informally, this
means that at any history of the game (even those that are not on any equilibrium path),
if all the players follow their strategy from that point on, then no player has an incen-
tive to deviate. In the context of repeated games where players’ moves are observed (so
that it is a game of perfect information), the folk theorem continues to hold even if the
solution concept used is subgame-perfect equilibrium [1, 5, 15].

In this paper, we show that we can efficiently compute a computational subgame-
perfect ε-equilibrium. (The “computational” here means that we restrict deviating play-
ers to using polynomial-time strategies.) There are a number of subtleties that arise in
making this precise. While we assume that all actions in the underlying repeated game
are observable, we allow our TMs to also have memory, which means their action does
not depend only on the public history. Like subgame-perfect equilibrium, we would
like our solution concept to capture the intuition that the strategies are in equilibrium
after any possible deviation. This means that in a computational subgame-perfect equi-
librium, at each history for player i, player i must make a (possibly approximate) best
response, no matter what his and the other players’ memory states are.

Another point of view is to say that the players do not in fact have perfect informa-
tion in our setting, since we allow the TMs to have memory that is not observed by the
other players, and thus the game should be understood as a game of imperfect informa-
tion. Subgame perfection is still defined in games of imperfect information, but in many
cases does not have much bite (see [12] for a discussion on this point). For the games
that we consider, subgame-perfect equilibrium typically reduces to NE. An arguably
more natural generalization of subgame-perfect equilibrium in imperfect-information
games would require that if an information set for player i off the equilibrium path is
reached, then player i’s strategy is a best response to the other players’ strategies no
matter how that information set is reached. This is quite a strong requirement. (see
[14][pp. 219–221] for a discussion of this issue); such equilibria do not in general exist
in games of imperfect information.1 In our setting, a “situation” includes the players’
state of memory; after a deviation, players have no idea how the state of memory of
other players may have changed. Thus, the nodes in a player’s information set are char-
acterized by the possible memory states of the other players. Since in a computational
subgame-perfect equilibrium, at each history for player i, player i must make a best

1 Indeed, that is part of why notions like sequential equilibrium [12] are typically considered in
games of imperfect information.

response no matter what the memory states of the other players are, it captures the
strong requirement mentioned before2. Despite this, we show that in a repeated game,
a computational subgame-perfect ε-eqilibrium exists and can be found efficiently.

To achieve this we use the same basic strategy as in [8]. However, to prove our
result, we need to overcome a significant hurdle. When using cryptographic protocols,
it is often the case (and, specifically is the case in the protocol used in [8]) that player
i chooses a secret (e.g., a secret key for a public-key encryption scheme) as the result
of some randomization, and then releases some public information which is a function
of it (e.g., a public key). After that public information has been released, another party
j typically has a profitable deviation by switching to the TM M that can break the
protocol—for every valid public information, there always exists some TM M that has
the secret “hardwired” into it (although there may not be an efficient way of finding
M given the information). We deal with this problem by doing what is often done in
practice: we do not use any key for too long, so that j cannot gain too much by knowing
any one key.

A second challenge we face is that in order to prove that our proposed strategies
are even an ε-NE, we would like to show that the payoff of the best response to this
strategy is not much greater than that of playing the strategy. However, since the set
of polynomial time TMs is not compact (for any polynomial time TM there is always
a better polynomial time TM that has just a slightly longer running time) this natural
approach fails. This instead leads us to characterize a class of TMs we can analyze,
and show that any other TM can be converted to a TM in this class that has at least
the same payoff. While such an argument might seem simple in the traditional setting,
since we only allow for polynomial time TMs, in our setting this turns out to require
a surprisingly delicate construction and analysis to make sure this converted TM does
indeed has the correct size and running time.

There are a few recent papers that investigate solution concepts for extensive-form
games involving computationally bounded player [11, 6, 7]; some of these focus on
cryptographic protocols [11, 6]. Kol and Naor [11] discuss refinements of NE in the
context of cryptographic protocols, but their solution concept requires only that on each
history on the equilibrium path, the strategies from that point on form a NE. Our re-
quirement is much stronger. Gradwohl, Livne and Rosen [6] also consider this scenario
and offer a solution concept different from ours; they try to define when an empty threat
occurs, and look for strategy profiles where no empty threats are made. Again, our so-
lution concept is much stronger.

The rest of this paper is organized as follows. In Section 2, we review the rele-
vant definitions from game theory; we review relevant definitions from cryptography
in the appendix. In Section 3, we define our notion of computational subgame-perfect
ε-equilibrium, and prove that it can be efficiently computed in repeated games.

2 Preliminaries

We briefly review some relevant material regarding games and subgame-perfect equi-
librium. This material largely repeats definitions from [8].

2 Which leads to a solution concept stronger than sequential equilibrium.

2.1 One-shot games

We define a gameG to be a triple ([c], A, ~u), where [c] = {1, . . . , c} is the set of players,
Ai is the set of possible actions for player i, A = A1 × . . . × Ac is the set of action
profiles, and ~u : A → Rc is the utility function (~ui(~a) is the utility of player i). A
(mixed) strategy σi for player i is a probability distribution over Ai, that is, an element
of ∆(Ai) (where, as usual, we denote by ∆(X) the set of probability distributions over
the set X). We use the standard notation ~x−i to denote vector ~x with its ith element
removed, and (x′, ~x−i) to denote ~x with its ith element replaced by x′.

Definition 1. (Nash Equilibrium) σ = (σ1, ..., σc) is an ε-NE of G if, for all players
i ∈ [c] and all actions a′i ∈ Ai, Eσ−i [ui(a

′
i,~a−i)] ≤ Eσ[ui(~a)] + ε.

A correlated strategy of a game G is an element σ ∈ ∆(A). It is a correlated equi-
librium if, for all players i, they have no temptation to play a different action, given that
the action profile was chosen according to σ. That is, for all players i for all ai ∈ Ai
such that σi(ai) > 0, Eσ|aiui(ai,~a−i) ≥ Eσ|aiui(a′i,~a−i).

Player i’s minimax value in a game G is the highest payoff i can guarantee himself
if the other players are trying to push his payoff as low as possible. We call the strategy
i plays in this case a minimax strategy for i; the strategy that the other players use is
i’s (correlated) punishment strategy. (Of course, there could be more than one minimax
strategy or punishment strategy for player i.) Note that a correlated punishment strategy
can be computed using linear programming.

Definition 2. Given a game G = ([c], A, ~u), the strategies ~σ−i ∈ ∆(A−i)
that minimize maxσ′∈∆(Ai)E(σ′,~σ−i)[ui(~a)] are the punishment strategies against
player i in G. If ~σ−i is a punishment strategy against player i, then mmi(G) =
maxa∈Ai E~σ−i

[ui(a, a−i)] is player i’s minimax value in G

To simplify the presentation, we assume all payoffs are normalized so that each
player’s minimax value is 0. Since, in an equilibrium, all players get at least their mini-
max value, this guarantees that all players get at least 0 in a NE.

2.2 Infinitely repeated games

Given a normal-form gameG, we define the repeated gameGt(δ) as the game in which
G is played repeatedly t times (in this context, G is called the stage game) and 1− δ
is the discount factor (see below). Let G∞(δ) be the game where G is played infinitely
many times. An infinite history h in this game is an infinite sequence 〈~a0,~a1, . . .〉 of
action profiles. Intuitively, we can think of ~at as the action profile played in the tth

stage game. We often omit the δ in G∞(δ) if it is not relevant to the discussion. Let
HG∞ be the set of all possible histories of G∞. For a history h ∈ HG∞ let G∞(h) the
subgame that starts at history h (after |h| one-shot games been played were all players
played according to h). We assume that G∞ is fully observable, in the sense that, after
each stage game, the players observe exactly what actions the other players played.

A (behavioral) strategy for player i in a repeated game is a function σ from histo-
ries of the games to ∆(Ai). Note that a profile ~σ induces a distribution ρ~σ on infinite

histories of play. Let ρt~σ denote the induced distribution on Ht, the set of histories of
length t. (If t = 0, we take H0 to consist of the unique history of length 0, namely 〈 〉.)
Player i’s utility if ~σ is played, denoted pi(~σ), is defined as follows:

pi(~σ) = δ

∞∑
t=0

(1− δ)t
∑

h∈Ht,~a∈A

ρt+1
~σ (h · ~a)[ui(~a)].

Thus, the discount factor is 1 − δ. Note that the initial δ is a normalization factor. It
guarantees that if ui(~a) ∈ [b1, b2] for all joint actions ~a in G, then i’s utility is in
[b1, b2], no matter which strategy profile ~σ is played.

In these game, a more robust solution concept is subgame-perfect equilibrium [16],
which requires that the strategies form an ε-NE at every history of the game.

Definition 3. A strategy profile ~σ = (σ1, ..., σc), is a subgame-perfect ε-equilibrium of
a repeated game G∞, if, for all players i ∈ [c], all histories h ∈ HG∞ where player i
moves, and all strategies σ′ for player i, phi ((σ′)h, ~σh−i) ≤ phi (~σh) + ε, where phi is the
utility function for player i in game G∞(h), and σh is the restriction of σ to G∞(h).

3 Computational subgame-perfect equilibrium

In this section we define our solution concept, and show that it can be computed effi-
ciently in a repeated game. We capture computational boundedness by considering only
(possibly probabilistic) polynomial time TMs, which at round t use only polynomial in
nt many steps to compute the next action, where n is the size of G (the max of the
number of actions and the number of players in G). The TM gets as input the history
of play so far and can also use internal memory that persists from round to round. A
strategy for player i is then a TM Mi. Given a strategy profile ~M , as above, we can
define the induced distribution ρ ~M and player i’s payoff pi(~M).

We would like to define a notion similar to subgame-perfect equilibrium, where
for all histories h in the game tree (even ones not on the equilibrium path), playing ~σ
restricted to the subtree starting at h forms a NE. This means that a player does not have
any incentive to deviate, no matter where he finds himself in the game tree.

As we suggested in the introduction, there are a number of issues that need to be
addressed in formalizing this intuition in our computational setting. First, since we con-
sider stateful TMs, there is more to a description of a situation than just the history;
we need to know the memory state of the TM. That is, if we take a history to be just a
sequence of actions, then the analogue of history for us is really a pair (h, ~m) consisting
of a sequence h of actions, and a profile of memory states, one for each player. Thus, to
be a computational subgame-perfect equilibrium the strategies should be a NE at every
history and no matter what the memory states are.

Since a player’s TM cannot observe the memory state of the other players’ TMs, the
computational game is best thought of as a game of imperfect information, where, in
a given history h where i moves, i’s information set consists of all situations where
the history is h and the states of memory of the other players are arbitrary. While
subgame-perfect equilibrium extends to imperfect information games it usually doesn’t
have much bite. In our setting it reduces to just a NE.

Instead, in games of imperfect information, the solution concept most commonly
used is sequential equilibrium [12]. A sequential equilibrium is a pair (~σ, µ) consisting
of a strategy profile ~σ and a belief system µ, where µ associates with each information
set I a probability µ(I) on the nodes in I . Intuitively, if I is an information set for
player i, µ(I) describes i’s beliefs about the likelihood of being in each of the nodes in
I . Then (~σ, µ) is a sequential equilibrium if, for each player i and each information set I
for player i, σi is a best response to ~σ−i given i’s beliefs µ(I). However, a common crit-
icism of this solution concept is that it is unclear what these beliefs should be and how
players create these beliefs. Instead, our notion of computational subgame-perfection
can be viewed as a strong version of a sequential equilibrium, where, for each player i
and each information set I for i, σi is a best response to ~σ−i conditional on reaching I
(up to ε) no matter what i’s beliefs are at I .

As a deviating TM can change its memory state in arbitrary ways, when we ar-
gue that a strategy profile is an ε-NE at a history, we must also consider all possible
states that the TM might start with at that history. Since there exists a deviation that
just rewrites the memory in the round just before the history we are considering, any
memory state (of polynomial length) is possible. Thus, in the computational setting, we
require that the TM’s strategies are an ε-NE at every history, no matter what the states
of the TMs are at that history. This solution concept is in the spirit of subgame-perfect
equilibrium, as we require that the strategies are a NE after every possible deviation,
although the player might not have complete information as to what the deviation is.

Intuitively, a profile ~M of TMs is a computational subgame-perfect equilibrium if
for all players i, all histories hwhere imoves, and all memory profiles ~m of the players,
there is no polynomial-time TM M̄ such that player i can gain more than ε by switching
fromMi to M̄ . Unfortunately, what we have just said is meaningless if we consider only
a single game. The notion of “polynomial-time TM” does not make sense for a single
game. To make it precise, we must consider an infinite sequence of games of increasing
size (just as was done in [8], although our current definition is more complicated since
we must consider memory states).

For a memory state m and a TM M let M(m), stand for running M with initial
memory state m. We use ~M(~m) to denote (M1(m1), . . . ,Mc(mc)). Let pG,δi (~M) de-
note player i’s payoff in G∞(δ) when ~M is played.

Definition 4. An infinite sequence of strategy profiles ~M1, ~M2, . . ., where
~Mk = (Mk

1 , ...,M
k
c), is a computational subgame-perfect ε-equilibrium of an

infinite sequence G∞1 , G
∞
2 , . . . of repeated games where the size of Gk is k, if, for all

players i ∈ [c], all sequences h1 ∈ HG∞1
, h2 ∈ HG∞2

, . . . of histories, all sequences
~m1, ~m2, . . . of polynomial-length memory-state profiles, where ~mk = (mk

1 , . . . ,m
k
c),

and all non-uniform PPT adversaries M̄ (polynomial in k and t, as discussed above),
there exists k0 such that, for all k ≥ k0,

p
G∞k (hk),δ
i (M̄(mk

i), ~Mk
−i(~m

k
−i)) ≤ p

G∞k (hk),δ
i (~Mk(~mk)) + ε(k).

We stress that our equilibrium notion considers only deviations that can be imple-
mented by polynomial-time TMs. This differs from the standard definition of NE (and
from the definition considered in [2]). But this difference is exactly what allows us to

use cryptographic techniques. It is also the reason that we need to consider a sequence
of games of growing sizes instead of a single game. We allow the deviation to be a
non-uniform PPT, which can be viewed as a sequence of TMs whose running time is
bounded by some common polynomial (see appendix for a formal definition).

3.1 Computing a subgame-perfect ε-NE

Let A0
i ⊂ Ai be a non-empty set and let A1

i = Ai \A0
i .3 A player can broadcast an m-

bit string by using his actions form rounds, by treating actions fromA0
i as 0 and actions

from A1
i as 1. Given a polynomial φ (with natural coefficients), let (Gen,Enc,Dec) be

a multi-message multi-key secure φ-bit (See appendix for the definition), if the security
parameter is k, the length of an encrypted message is z(k) for some polynomial z.
Let sq = (s1, s2 . . . , sm) be a fixed sequence of action profiles. Fix a polynomial-
time pseudorandom function ensemble {PS s : s ∈ {0, 1}∗} (see appendix for the
definition).

For a game G such that |G| = n, and a polynomial `, consider the following strat-
egy σNE ,`, and let ~MσNE,`

be the TM that implements this strategy. This strategy is
similar in spirit to that proposed in [8]; indeed, the first two phases are identical. Phase
1 explains what to do if no deviation occurs: play sq . Phase 2 gives the preliminaries of
what to do if a deviation does occur: roughly, compute a random seed that is shared with
all the non-deviating players. Phase 3 explains how to use the random seed to produce
a correlated punishment strategy that punishes the deviating player. The key difference
between the strategy here and that in [8] is that this punishment phase is played for only
`(n) rounds. After that, players return to phase 1. As we show, this limited punishment
is effective since it is not played long enough to make it an empty threat (if ` is chosen
appropriately). Phase 4 takes care of one minor issue: The fact that we can start in any
memory state means that a player might be called on to do something that, in fact, he
cannot do (because he doesn’t have the information required to do it). For example, he
might be called upon to play the correlated punishment strategy in a state where he has
forgotten the random seed, so he cannot play it. In this case, a default action is played.

1. Play according to sq (with wraparound) as long as all players played according to
sq in the previous round.

2. After detecting a deviation by player j 6= i in round t0:4

(a) Generate a pair (pki, ski) using Gen(1n). Store ski in memory and use the
next l(n) rounds to broadcast pki, as discussed above.

(b) If i = j + 1 (with wraparound), player i does the following:
– i records pkj′ for all players j′ /∈ {i, j};
– i generates a random n-bit seed seed ;

3 We assume that each player has at least two actions in G. This assumption is without loss of
generality—we can essentially ignore players for whom it does not hold.

4 If more than one player deviates while playing sq , the players punish the one with the smaller
index. The punished player plays his best response to what the other players are doing in this
phase.

– for each player j′ /∈ {i, j}, i computes m = Encpkj′ (seed), and uses the
next (c− 2)z(n) rounds to communicate these strings to the players other
than i and j (in some predefined order).

(c) If i 6= j + 1, player i does the following:
– i records the actions played by j+1 at time slots designated for i to retrieve
EncPki(seed);

– i decrypts to obtain seed , using Dec and ski.
3. Phase 2 ends after φ(n)+(c−2)z(n) rounds. The players other than j then compute

PS seed(t) and use it to determine which action profile to play according to the
distribution defined by a fixed (correlated) punishment strategy against j. Player j
plays his best response to the correlated punishment strategy throughout this phase.
After `(n) rounds, they return to phase 1, playing the sequence sq from the point
at which the deviation occurred (which can easily be inferred from the history).

4. If at any point less than or equal to φ(n) + (c − 2)z(n) time steps from the last
deviation from phase 1 the situation is incompatible with phase 2 as described
above (perhaps because further deviations have occurred), or at any point between
φ(n) + (c − 2)z(n) and φ(n) + (c − 2)z(n) + `(n) steps since the last deviation
from phase 1 the situation is incompatible with phase 3 as described above, play a
fixed action for the number of rounds left to complete phases 2 and 3 (i.e., up to
φ(n) + (c− 2)z(n) + `(n) steps from the last deviation from phase 1). Then return
to phase 1.

Note that with this strategy a deviation made during the punishment phase is not pun-
ished. Phase 2 and 3 are always played to their full length (which is fixed and predefined
by ` and z). We say that a history h is a phase 1 history if it is a history where an honest
player should play according to sq . History h is a phase 2 history if it is a history where
at most φ(n)+(c−2)z(n) rounds have passed since the last deviation from phase 1; h is
a phase 3 history if more than φ(n)+(c−2)z(n) but at most φ(n)+(c−2)z(n)+`(n)
rounds have passed since the last deviation from phase 1. No matter what happens in
phase 2 and 3, a history in which exactly φ(n) + (c− 2)z(n) + `(n) round have passed
since the last deviation from phase 1 is also a phase 1 history (even if the players deviate
from phase 2 and 3 in arbitrary ways). Thus, no matter how many deviations occur, we
can uniquely identify the phase of each round.

We next show that by selecting the right parameters, these strategies are easy to
compute and are a subgame-perfect ε-equilibrium for all inverse polynomials ε.

Definition 5. Let Ga,b,c,n be the set of all games with c players, at most n actions per
player, integral payoffs,5 maximum payoff a, and minimum payoff b.6

Our proof uses the following three lemmas proved in [8]. The first lemma shows
that, given a correlated strategy σ in a game G, players can get an average payoff that
is arbitrarily close to their payoff in σ by playing a fixed sequence of action profiles
repeatedly.

5 Our result also hold for rational payoffs, except then the size of the game needs to take into
account the bits needed to represent the payoffs.

6 By our assumption that the minimax payoff is 0 for all players, we can assume a ≥ 0, b ≤ 0,
and a− b > 0 (otherwise a = b = 0, which makes the game uninteresting).

Lemma 1. For all a, b, c, all polynomials q, all n, all games G ∈ Ga,b,c,n, and all
correlated strategies σ in G, if the expected payoff vector of playing σ is ξ, then there
exists a sequence sq of action profiles of length w(n) = 2((a−b)q(n)+1)nc, such that
for all δ ≤ 1/f(n), where f(n) = 2(a − b)w(n)q(n), if sq is played infinitely often,
then player i’s payoff in G∞(δ) is at least ξi − 1/q(n), no matter at which point of the
sequence play is started.

To explain what we mean by the phrase “no matter at which point of the sequence
play is started”, suppose that the sequence sq has the form (~a1, . . . ,~a5). Then the result
holds if we start by playing ~a1 or if we start by playing ~a4 (and then continue with ~a5,
~a1, ~a2, and so on).

The next lemma shows that, for every inverse polynomial, if we “cut off” the game
after some appropriately large polynomial p number of rounds (and compute the dis-
counted utility for the finitely repeated game considering only p(n) repetitions), each
player’s utility in the finitely repeated the difference between a player’s utility in the in-
finitely repeated and the finitely repeated game is negligible; that is, the finitely repeated
game is a “good” approximation of the infinitely repeated game.

Lemma 2. For all a, b, c, all polynomials q, all n, all games G ∈ Ga,b,c,n, all 0 < δ <

1, all strategy profiles ~M , and all players i, the difference between i’s expected utility
pi[~M] in game Gdn/δe(δ) and pi[~M] in game G∞(δ) is at most a/2n.

The last lemma shows that the punished player’s expected payoff is negligible.

Lemma 3. For all a, b, c, all polynomials t and f , all sequences of games G1, G2, . . .

such that Gn ∈ Ga,b,c,n, and all players i, if the players other than i play ~MσNE,`

−i , then
for all non-uniform polynomial time TMs M , there exists a negligible function ε such
that if i uses M and M deviates from the phase 1 sequence before round t(n), then i’s
expected payoff during phase 3 is less then ε(n).

We first show that for any strategy that deviates while phase 1 is played, there is a
strategy whose payoff is at least as good and either does not deviate in the first polyno-
mially many rounds, or after its first deviation, deviates every time phase 1 is played.
(Recall that after every deviation in phase 1, the other players play the punishment phase
for `(n) rounds and then play phase 1 again.)

We do this by showing that if player i has a profitable deviation at some round t
of phase 1, then it must be the case that every time this round of phase 1 is played, i
has a profitable deviation there. (That is, the strategy of deviating every time this round
of phase 1 is played is at least as good a strategy where player i correlates his plays
in different instantiations of phase 1.) While this is trivial in traditional game-theoretic
analyses, naively applying it in the computational setting does not necessarily work. It
requires us to formally show how we reduce a polynomial time TM M to a different
TM M ’ of the desired form without blowing up the running time and size of the TM.

For a game G, let H1,n,f
G∞ be the set of histories h of G∞ of length at most nf(n)

such that at (the last node of) h, σNE ,` is in phase 1. Let R(M) be the polynomial that
bounds the running time of TM M .

Definition 6. Given a game G, a deterministic TM M is said to be (G, f, n)-well-
behaved if, when (M,σNE ,`

−i) is played, then either M does not deviate for the first
nf(n) rounds or, after M first deviates, M continues to deviate from sq every time
phase 1 is played in the next nf(n) rounds.

Lemma 4. For all a, b, c, and all polynomials f , there exists a polynomial g such
that for all n, all games G ∈ Ga,b,c,n, all h ∈ H1,n,f

G∞ , all players i, and all TMs M ,

there exists a (G(h), f, n)-well-behaved TM M’ such that pG
h,1/f(n)

i (M ′, ~MσNE,`

−i) ≥
p
Gh,1/f(n)
i (M, ~MσNE,`

−i), and R(M ′), |M ′| ≤ g(R(M)).

Proof. Suppose that we are given G ∈ Ga,b,c,n, h ∈ H1,n,f
G∞ , and a TM M . We can

assume without loss of generality that M is deterministic (we can always just use the
best random tape). If M does not deviate in the first nf(n) rounds of G(h)∞ then M ′

is just M , and we are done. Otherwise, we construct a sequence of TMs starting with
M that are, in a precise sense, more and more well behaved, until eventually we get the
desired TM M ′.

For t1 < t2, say that M is (t1, t2)-(G, f, n)-well-behaved if M does not deviate
from sq until round t1, and then deviates from sq every time phase 1 is played up to
(but not including) round t2 (by which we mean there exists some history in which
M does not deviate at round t2 and this is the shortest such history over all possible
random tapes of ~MσNE,`

−i). We construct a sequence M1,M2, . . . of TMs such that (a)
M1 = M , (b) Mi is (ti1, t

i
2)-(G, f, n)-well-behaved, (c) either ti+1

1 > ti or ti+1
1 = ti1

and ti+1
2 > ti2, and (d) pG

h,1/f(n)
i (Mi+1, ~M

σNE,`

−i) ≥ p
Gh,1/f(n)
i (Mi, ~M

σNE,`

−i). Note
that if t1 ≥ nf(n) or t2 ≥ t1 + nf(n), then a (t1, t2)-(G, f, n)-well-behaved TM is
(G, f, n)-well-behaved.

Let t < nf(n) be the first round at which M deviates. (This is well defined since
the play up to t is deterministic.) Let the history up to time t be ht. If M deviates every
time that phase 1 is played for the nf(n) rounds after round t, then again we can take
M ′ = M , and we are done. If not, let t′ be the first round after t at which phase 1
is played and there exists some history of length t′ at which M does not deviate. By
definition, M is (t, t′)-(G, f, n)-well behaved. We take M1 = M and (t11, t

1
2) = (t, t′).

(Note that since ~MσNE,`

−i are randomized during phase 2, the first time after t at which
M returns to playing phase 1 and does not deviate may depend on the results of their
coin tosses. We take t′ to be the first time this happens with positive probability.)

Let sh
∗

be M ’s memory state at a history h∗. We assume for ease of exposition that
M encodes the history in its memory state. (This can be done, since the memory state
at time t is of size polynomial in t.) Consider the TM M ′′ that acts like M up to round
t, and copies M ’s memory state at that round (i.e., sh

t

). M ′′ continues to plays like M
up to the first round t′ with t < t′ < t + nf(n) at which σNE,` would be about to
return to phase 1 and M does not deviate (which means that M plays an action in the
sequence sq at round t′). At round t′, M ′′ sets its state to sh

t

and simulates M from
history ht with states sh(t); so, in particular, M ′′ does deviate at time t′. (Again, the
time t′ may depend on random choices made by ~MσNE,`

−i . We assume that M ′′ deviates
the first time M is about to play phase 1 after round t and does not deviate, no matter

what the outcome of the coin tosses.) This means, in particular, that M ′′ deviates at any
such t′. We call M ′′ a type 1 deviation from M .

If pG
ht
,1/f(n)

i (M ′′, ~MσNE,`

−i) > p
Ght

,1/f(n)
i (M, ~MσNE,`

−i), then we take M2 =
M ′′. Note that t21 = t11 = t, while t22 > t12 = t′, since M ′′ deviates at t′. If

p
Ght

,1/f(n)
i (M ′′, ~MσNE,`

−i) < p
Ght

,1/f(n)
i (M, ~MσNE,`

−i), then there exists some history
h∗ of both M and M ′′ such that t < |h∗| < t + nf(n), M ′′ deviates at h∗, M does
not, and M has a better expected payoff than M ′′ at h∗. (This is a history where the
type 1 deviation failed to improve the payoff.) Take M2 to be the TM that plays like
~MσNE,`

i up to time t, then sets its state to sh
∗
, and then plays like M with state sh

∗

in history h∗. We call M2 a type 2 deviation from M . Note that M2 does not devi-

ate at ht (since M did not deviate at history h∗). Clearly pG
ht
,1/f(n)

i (M2, ~M
σNE,`

−i) =

p
Gh∗ ,1/f(n)
i (M, ~MσNE,`

−i), since ~MσNE,`

−i acts the same in Gh
t

and Gh
∗
. For

similar reasons, p
Ght

,1/f(n)
i (M, ~MσNE,`

−i) = p
Gh∗ ,1/f(n)
i (M ′′, ~MσNE,`

−i). Thus,

p
Ght

,1/f(n)
i (M2, ~M

σNE,`

−i) = p
Ght

,1/f(n)
i (M, ~MσNE,`

−i). Also note that t21 > t11. This
completes the construction of M2. We inductively construct Mi+1, i = 2, 3, . . ., just as
we did M2, letting Mi play the role of M .

Next observe that, without loss of generality, we can assume that this sequence
arises from a sequnce of type 2 deviations, followed by a sequence of type 1 deviations:
For let j1 be the first point in the sequence at which a type 1 deviation is made. We
claim that we can assume without loss of generality that all further deviations are type
1 deviations. By assumption, since Mj1 gives i higher utility than Mj1−1, it is better
to deviate the first time Mj1−1 wants to play phase 1 again after an initial deviation.
This means that when Mj1 wants to play phase 1 again after an initial deviation it must
be better to deviate again, since the future play of the ~MσNE,`

−i is the same in both of
these situations. This means that once a type 1 deviation occurs, we can assume that all
further deviations are type 1 deviations.

LetMj be the first TM in the sequence that is well behaved. (As we observed earlier,
there must be such a TM.) Using the fact that the sequence consists of a sequence of
type 2 deviations followed by a sequence of type 1 deviations, it is not hard to show
that Mj can be implemented efficiently. First notice that Mj1 is a TM that plays like
~MσNE,`

i until some round, and then plays M starting with its state at a history which
is at most (nf(n))2 longer than the real history at this point. This is because its initial
history becomes longer by at most nf(n) at each round and we iterate this construction
at most nf(n) times. This means that its running time is obviously polynomially related
to the running time of the original M . The same is true of the size of Mj1 , since we
need to encode only the state at this initial history and the history at which we switch,
which is polynomially related to R(M)(n).

To construct Mj , we add need only modify Mj1 slightly, since only type 1 devia-
tions occur. Specifically, we need to know only t1j1 and to encode its state at this round.
At every history after that, we run MJ1 (which is essentially running M on a longer
history) on a fixed history, with a potential additional step of copying the state. It is
easy to see that the resulting TM has running time and size at most O(R(M)). ut

We now state and prove our theorem, which shows that there exists a polynomial-
time algorithm for computing a subgame-perfect ε-equilibrium by showing that, for all
inverse polynomials ε, there exists a polynomial function ` of ε such that σNE∗,` is a
subgame-perfect ε-equilibrium of the game. The main idea of the proof is to show that
the players can’t gain much from deviating while the sequence is being played, and also
that, since the punishment is relatively short, deviating while a player is being punished
is also not very profitable.

Theorem 1. For all a, b, c, and all polynomials q, there is a polynomial f and a
polynomial-time algorithm F such that, for all sequences G1, G2, . . . of games with
Gj ∈ Ga,b,c,j and for all inverse polynomials δ ≤ 1/f , the sequence of outputs of
F given the sequence G1, G2, . . . of inputs is a subgame-perfect 1

q -equilibrium for
G∞1 (δ1), G∞2 (δ2),

Proof. Given a game Gn ∈ G(a, b, c, n), the algorithm finds a correlated equilibrium σ
of Gn, which can be done in polynomial time using linear programming. Each player’s
expected payoff is at least 0 when playing σ, since we assumed that the minimax value
of the game is 0. Let r = a− b. By Lemma 1, we can construct a sequence sq of length
w(n) = 4(rnq(n) + 1)nc and set f ′(n) = 4rw(n)q(n), so that if the players play
sq infinitely often and δ < 1/f ′(n), then all the players get at least −1/2q(n). The
correlated punishment strategy against each player can also be found in polynomial
time using linear programming.

Let m(n) be the length of phase 2, including the round where the deviation oc-
curred. (Note that m(n) is a polynomial that depends only on the choice of en-
cryption scheme—that is, it depends on φ, where a φ-bit public-key encryption
scheme is used, and on z, where z(k) is the length of encrypted messages.) Let
`(n) = nq(n)(m(n)a + 1), let σ∗n be the strategy ~MσNE,`

described above, and let
f(n) = max(3rq(n)(`(n) +m(n)), f ′(n)).

We now show that σ∗1 , σ
∗
2 , . . . is a subgame-perfect (1/q)-equilibrium for every in-

verse polynomial discount factor δ ≤ 1/f . We focus on deviations at histories of length
< n

δ(n) , since, by Lemma 2, the sum of payoffs received after that is negligible. Thus,
there exists some n0 such that, for all n > n0, the payoff achieved after that history is
less than 1/q(n), which does not justify deviating.

We first show that no player has an incentive to deviate in subgames starting from
phase 1 histories. By Lemma 4, it suffices to consider only a deviating strategy that after
its first deviation deviates every time phase 1 is played; for every deviating strategy,
either not deviating does at least as well or there is a deviating strategy of this form that
does at least as well. Let h1 be the history in which the deviation occurs and let M be
the deviating strategy. Notice that ~MσNE,`

can always act as intended at such histories;
it can detect it is in such a history and can use the history to compute the next move
(i.e., it does not need to maintain memory to figure out what to do next).

The player’s payoff from (M, ~MσNE,`

−i) during one cycle of deviation and punish-
ment can be at most a at each round of phase 2 and, by Lemma 3, is negligible through-
out phase 3. (We use εneg to denote the negligible payoff to a deviator in phase 3.)
Thus, the payoff of the deviating player from (M, ~MσNE,`

−i) from the point of deviation

onwards is at most

((1− δ(n)|h1|)
(
δ(n)(m(n)a+ εneg)

dnf(n)−|h1|
m(n)+`(n)

e∑
t=0

(1− δ(n))(m(n)+`(n))t + ε′neg
)

≤ ((1− δ(n)|h1|)
(
δ(n)(m(n)a+ εneg)

∞∑
t=0

(1− δ(n))(m(n)+`(n))t + ε′neg
)
,

where ε′neg is the expected payoff after round nf(n). By Lemma 1, no matter where
in the sequence the players are, the average discounted payoff at that point from playing
honestly is at least −1/2q(n). Thus, the payoff from playing (~MσNE,`

) from this point
onwards is at least

−(1− δ(n))|h1|)1/2q(n).

We can ignore any payoff before the deviation since it is the same for both. This
means we need to show that

(1− δ(n))|h1|)
(
δ(n)(m(n)a+ εneg)

∞∑
t=0

(1− δ(n))(m(n)+`(n))t + ε′neg
)

≤ −(1− δ(n))|h1|)1/2q(n) + 1/q(n).

We can also divide both sides by (1− δ(n))|h1|); thus, it suffices to prove that

δ(n)(m(n)a+ εneg)

∞∑
t=0

(1− δ(n))(m(n)+`(n))t + ε′neg ≤
1

2q(n)
.

The term on the left side is bounded by O
(m(n)a+εneg

nq(n)(m(n)a+1)

)
, and thus there exists n1

such that, for all n > n1, the term on the left side is smaller than 1
2q(n) (In fact, for all

constants c, there exists nc such that the left-hand side is at most 1
cq(n) for any n > nc.)

We next show that no player wants to deviate in phase 2 or 3 histories. Notice
that since these phases are carried out to completion even if the players deviate while
in these phases (we do not punish them for that), and the honest strategy can easily
detect whether it is in such a phase by looking at when the last deviation from phase 1
occurred. First consider a punishing player. By not following the strategy, he can gain at
most r for at most `(n)+m(n) rounds over the payoff he gets with the original strategy
(this is true even if his memory state is such that he just plays a fixed action, or even if
another player deviates while the phase is played). Once the players start playing phase
1 again, our previous claim shows that no matter what the actual history is at that point,
a strategy that does not follow the sequence does not gain much. It is easy to verify
that, given the discount factor, a deviation can increase his discounted payoff by at most
1

q(n) in this case. (Notice that the previous claim works for any constant fraction of
1/q(n), which is what we are using here since the deviation in the punishment phase
gains 1/cq(n) for some c.)

The punished player can deviate to a TM that correctly guessed the keys chosen (or
the current TM’s memory state might contain the actual keys and the defects to a TM

that uses these keys) , in which case he would know exacatly what the players are going
to do while they are punishing him. Such a deviation exists once the keys have been
played and are part of the history. Another deviation might be a result of the other TMs
being in an inconsistent memory state, so that they play a fixed action, one which the
deviating player might be able to take advantage of. However, these deviations work (or
any other possible deviation) only for the current punishment phase. Once the players go
back to playing phase 1, this player can not gain much by deviating from the sequence
again. For if he deviates again, the other players will choose new random keys and a
new random seed (and will have a consistent memory state); from our previous claims,
this means that no strategy can gain much over a strategy that follows the sequence.
Moreover, he can also gain at most r for at most `(n) +m(n) rounds which, as claimed
before, means that his discounted payoff difference is less than 1

q(n) in this case.
This shows that, for n sufficiently large, no player can gain more than 1/q(n) from

deviating at any history. Thus, this strategy is a subgame-perfect 1/q-equilibrium. ut

3.2 Variable number of players

Up to now, we have assumed, just as in [2, 8], that the number of players in the game
is a fixed constant (≥ 3). What happens if the number of players in the game is part
of the input? In general, describing the players’ utilities in such a game takes space
exponential in the number of players (since there are exponentially many strategy pro-
files). Thus, to get interesting computational results, we consider games that can be
represented succinctly.

Graphical games [10] of degree d are games that can be represented by a graph
in which each player is a node in the graph, and the utility of a player is a function
of only his action and the actions of the players to which he is connected by an edge.
The maximum degree of a node is assumed to be at most d. This means a player’s
punishment strategy depends only on the actions of at most d players.

Definition 7. Let G′a,b,d,n,m be the set of all graphical games with degree at most d, at
most m players and at most n actions per player, integral payoffs,7 maximum payoff a,
and minimum payoff b.

The following corollary then follows from our theorem, the fact that a correlated
equilibrium with polynomial sized-support can be computed in polynomial time [9],
and the observation that we can easily compute a correlated minimax strategy that de-
pends only on the action of at most d players.

Corollary 1. For all a, b, d, and all polynomials q, there is a polynomial f and a
polynomial-time algorithm F such that, for all sequences G1, G2, . . . of games with
Gj ∈ Ga,b,d,j,j and for all inverse polynomials δ ≤ 1/f , the sequence of outputs
of F given the sequence G1, G2, . . . of inputs is a subgame-perfect 1

q -equilibrium for
G∞1 (δ1), G∞2 (δ2),

7 Again, our result also holds for rational payoffs, except then the size of the game needs to take
into account the bits needed to represent the payoffs.

References

[1] R. J. Aumann and L. S. Shapley. Long-term competition: a game-theoretic analysis. In
N. Megiddo, editor, Essays in Game Theory, pages 1–15. Springer, 1994.

[2] C. Borgs, J. T. Chayes, N. Immorlica, A. T. Kalai, V. S. Mirrokni, and C. H. Papadimitriou.
The myth of the folk theorem. Games and Economic Behavior, 70(1):34–43, 2010.

[3] X. Chen, X. Deng, and S.-H. Teng. Settling the complexity of two-player Nash equilibrium.
Journal of the ACM, 53(3), 2009.

[4] C. Daskalis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a
Nash equilibrium. In Proc. 38th ACM Symposium on Theory of Computing, pages 71–78,
2006.

[5] D. Fudenberg and E. Maskin. The folk theorem in repeated games with discounting or with
incomplete information. Econometrica, 54(3):533–554, 1986.

[6] R. Gradwohl, N. Livne, and A. Rosen. Sequential rationality in cryptographic protocols.
ACM Trans. Econ. Comput., 1(1):2:1–2:38, January 2013.

[7] J. Y. Halpern and R. Pass. Sequential equilibrium in computational games. In Proc. Twenty-
Third International Joint Conference on Artificial Intelligence (IJCAI ’13), pages 171–176,
2013.

[8] J.Y. Halpern, R. Pass, and L. Seeman. The truth behind the myth of the folk theorem. In
Proc. 5th Conference on Innovations in Theoretical Computer Science (ITCS ’14), pages
543–554, 2014.

[9] A. X. Jiang and K. Leyton-Brown. Polynomial-time computation of exact correlated equi-
librium in compact games. In Proc 12th ACM Conference on Electronic Commerce, pages
119–126, 2011.

[10] M. Kearns, M. L. Littman, and S. P. Singh. Graphical models for game theory. In Proc. Sev-
enteenth Conference on Uncertainty in Artificial Intelligence (UAI 2001), pages 253–260,
2001.

[11] G. Kol and M. Naor. Games for exchanging information. In Proc. 40th Annual ACM
Symposium on Theory of Computing (STOC ’08), pages 423–432, 2008.

[12] D. M. Kreps and R. B. Wilson. Sequential equilibria. Econometrica, 50:863–894, 1982.
[13] M. L. Littman and P. Stone. A polynomial-time Nash equilibrium algorithm for repeated

games. Decision Support Systems, 39(1):55–66, 2005.
[14] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, Cambridge,

Mass., 1994.
[15] A. Rubinstein. Equilibrium in supergames with the overtaking criterion. Journal of Eco-

nomic Theory, 21(1):1–9, 1979.
[16] R. Selten. Spieltheoretische behandlung eines oligopolmodells mit nachfrageträgheit.

Zeitschrift für Gesamte Staatswissenschaft, 121:301–324 and 667–689, 1965.

APPENDIX

A Cryptographic definitions

For a probabilistic algorithm A and an infinite bit string r, A(x; r) denotes the output
ofA running on input x with randomness r;A(x) denotes the distribution on outputs of
A induced by considering A(x; r), where r is chosen uniformly at random. A function
ε : N → [0, 1] is negligible if, for every constant c ∈ N, ε(k) < k−c for sufficiently
large k.

We use a non-uniform security model, which means our attackers are non-uniform
PPT algorithm.

Definition 8. A non-uniform probabilistic polynomial-time machine A is a sequence
of probabilistic machines A = {A1, A2, ...} for which there exists a polynomial d such
that the description size of |Ai| < d(i) and the running time ofAi is also less than d(i).

Alternatively, a non-uniform PPT machine can also be defined as a uniform PPT ma-
chine that receives an advice string (for example, on an extra “advice” tape) for each
input length. It is common to assume that the cryptographic building blocks we define
next and use in our constructions are secure against non-uniform PPT algorithms.

A.1 Computational Indistinguishability

Definition 9. A probability ensemble is a sequence X = {Xn}n∈N of probability dis-
tribution indexed by N. (Typically, in an ensemble X = {Xn}n∈N, the support of Xn

consists of strings of length n.)

We now recall the definition of computational indistinguishability [4].

Definition 10. Two probability ensembles {Xn}n∈N, {Yn}n∈N are computationally in-
distinguishable if, for all non-uniform PPT algorithmsD, there exists a negligible func-
tion ε such that, for all n ∈ N,

| Pr
x←Xn

[D(1n, x) = 1]− Pr
y←Yn

[D(1n, y) = 1]| ≤ ε(n).

To explain the Pr in the last line, recall thatXn and Yn are probability distributions. Al-
though we write D(1n, Xn), D is a randomized algorithm, so what D(1n, Xn) returns
depends on the outcome of random coin tosses. To be a little more formal, we should
write D(1n, Xn, r), where r is an infinitely long random bit strong (of which D will
only use a finite initial prefix). More formally, taking Pr to be the uniform distribution
on bit-strings, we want

| Pr
x←Xn

[{r : D(1n, x, r) = 1}]− Pr
y←Yn

[{r : D(1n, y, r) = 1}] | ≤ ε(n).

We similarly abuse notation elsewhere in writing Pr.

We often call an algorithm that is supposed to distinguish between two probability
ensembles a distinguisher.

A.2 Pseudorandom Functions

Definition 11. A function ensemble is a sequence F = {Fn}n∈N of probability dis-
tributions such that the support of Fn is the set of functions mapping n-bit strings to
n-bit strings. The uniform function ensemble, denoted H = {Hn}n∈N, is the uniform
distribution on the set of functions mapping n-bit strings to n-bit strings.

We have the same notion of computational indistinguishablity for function ensem-
bles as we had for probability ensembles, only that the distinguisher is now an oracle

machine, meaning that it can query the value of the function at any point with one com-
putation step, although it does not have the full description of the function. (See [3] for
a detailed description.)

We now define pseudorandom functions (see [2]). Intuitively, this is a family of
functions indexed by a seed such that it is hard to distinguish a random member of the
family from a truly randomly selected function.

Definition 12. A pseudorandom function ensemble (PRF) is a set
{fs : {0, 1}|s| → {0, 1}|s|}s∈{0,1}∗ such that the following conditions hold:

– (easy to compute) fs(x) can be computed by a PPT algorithm that is given s and
x;

– (pseudorandom) the function ensemble F = {Fn}n∈N, where Fn is uniformly dis-
tributed over the multiset {fs}s∈{0,1}n , is computationally indistinguishable from
H .

We use the standard cryptographic assumption that a family of PRFs exists; this
assumption is implied by the existence of one-way functions [6, 2]. We actually require
the use of a seemingly stronger notion of a PRF, which requires that an attacker getting
access to polynomially many instances of a PRF (i.e., fs for polynomially many values
of s) still cannot distinguish them from polynomially many truly random functions.
Nevertheless, as we show in [5], it follows using a standard “hybrid” argument that
PRFs also satisfy this stronger “multi-instance” security notion.

A.3 Public-key Encryption Schemes

We now define public-key encryption schemes. Such a scheme has two keys. The first is
public and used for encrypting messages (using a randomized algorithm). The second is
secret and used for decrypting. The keys are generated in such a way that the probability
that a decrypted message is equal to the encrypted message is equal to 1. The key
generation algorithm takes as input a “security parameter” k that is used to determine
the security of the protocols (inuitively, no polynomial-time attacker should be able to
“break” the security of the protocol except possibly with a probability that is a negligible
function of k).

We now recall the formal definitions of public-key encryption schemes [1, 7, 4].

Definition 13. Given a polynomial φ (with natural coefficients), a φ-bit public-key en-
cryption scheme is a triple Π = (Gen,Enc,Dec) of PPT algorithms where (a) Gen
takes a security parameter 1k as input and returns a (public key, private key) pair; (b)
Enc takes a public key pk and a message m in a message space {0, 1}φ(k) as input and
returns a ciphertext Encpk(m); (c) Dec is a deterministic algorithm that takes a secret
key sk and a ciphertext C as input and outputs m′ = Decsk(C), and (d)

Pr
[
∃m ∈ {0, 1}φ(k) such that Decsk(Encpk(m)) 6= m

]
= 0.

We next define a security notion for public-key encryption. Such a security notion
considers an adversary that is characterized by two PPT algorithms, A1 and A2. In-
tuitively, A1 gets as input a public key that is part of a (public key, secret key) pair

randomly generated by Gen, together with a security parameter k. A1 then outputs two
messages in {0, 1}φ(k) (intuitively, messages it can distinguish), and some side infor-
mation that it passes to A2 (intuitively, this is information that A2 needs, such as the
messages chosen), A2 gets as input the encryption of one of those messages and the
side information passed on by A1. A2 must output which of the two messages m0 and
m1 the encrypted message is the encryption of (where an output of b ∈ {0, 1} indicates
that it is mb). Since A1 and A2 are PPT algorithms, the output of A2 can be viewed as a
probability distribution over {0, 1}. The scheme is secure if the two ensembles (i.e., the
one generated by this process where the encryption of m0 is always given to A2, and
the one where the encryption of m1 is always given to A2) are indistinguishable. More
formally:

Definition 14 (Public-key security). An φ-bit public-key encryption scheme Π =
(Gen,Enc,Dec) is secure if, for all non-uniform PPT adversaries A = (A1, A2), the
ensembles {INDΠ0 (A, k)}k and {INDΠ1 (A, k)}k are computationally indistinguishable,
where INDΠb (A, k) is the output of the following non-uniform PPT algorithm:

INDΠb (A, k) := (pk, sk)← Gen(1k)
(m0,m1, τ)← A1(1k, pk) (m0,m1 ∈ {0, 1}φ(k))
C ← Encpk(mb)
o← A2(C, τ)
Output o.

Intuitively, the← above functions as an assignment statement, but it is not quite that,
since the various algorithms are actually PPT algorithms, so their output is random-
ized. Formally, INDΠb (A, k) is a probability distribution on ({0, 1}∗)4. To compute
INDΠb (A, k, r1, r2, r3, r4), we view r1, r2, r3, and r4 as the random bitstrings that serve
as the second arguments of Gen, A1, Encpk, and A2, respectively. Once we add these
arguments (considering, e.g., Gen(1k, r1) and A1(1k, pk, r2) rather than Gen(1k) and
A1(1k, pk)) these algorithms become deterministic, and← can indeed be viewed as an
assignment statement.

We assume a secure public-key encryption scheme exists. We actually require a
seemingly stronger notion of “multi-instance” security, where an attacker gets to see
encryptions of multiple messages, each of which is encrypted using multiple keys (for
a formal definition and proof that it is an equivalent notion see [5]).

Appendix References

[1] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, 1976.

[2] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal
of the ACM, 33(4):792–807, 1986.

[3] Oded Goldreich. Foundation of Cryptography, Volume I Basic Tools. 2001.
[4] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and

System Sciences, 28(2):270–299, 1984.

[5] Joseph Y. Halpern, Rafael Pass, and Lior Seeman. The truth behind the myth of the folk
theorem. In Proceedings of the 5th Conference on Innovations in Theoretical Computer
Science, ITCS ’14, pages 543–554, 2014.

[6] Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396,
1999.

[7] Ronald L Rivest, Adi Shamir, and Len Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

