
Locally Adaptive Optimization: Adaptive Seeding for Monotone
Submodular Functions

Ashwinkumar Badanidiyuru
Google

ashwinkumarbv@gmail.com

Christos Papadimitriou
UC Berkeley

christos@cs.berkeley.edu

Aviad Rubinstein
UC Berkeley

aviad@cs.berkeley.edu

Lior Seeman
Cornell Univeristy

lseeman@cs.cornell.edu

Yaron Singer
Harvard University

yaron@seas.harvard.edu

Abstract

The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximiza-
tion in social networks: One seeks to select among certain accessible nodes in a network, and
then select, adaptively, among neighbors of those nodes as they become accessible in order to
maximize a global objective function. More generally, adaptive seeding is a stochastic optimiza-
tion framework where the choices in the first stage affect the realizations in the second stage,
over which we aim to optimize.

Our main result is a (1−1/e)2-approximation for the adaptive seeding problem for any mono-
tone submodular function. While adaptive policies are often approximated via non-adaptive poli-
cies, our algorithm is based on a novel method we call locally-adaptive policies. These policies
combine a non-adaptive global structure, with local adaptive optimizations. This method en-
ables the (1−1/e)2-approximation for general monotone submodular functions and circumvents
some of the impossibilities associated with non-adaptive policies.

We also introduce a fundamental problem in submodular optimization that may be of inde-
pendent interest: given a ground set of elements where every element appears with some small
probability, find a set of expected size at most k that has the highest expected value over the
realization of the elements. We show a surprising result: there are classes of monotone submodu-
lar functions (including coverage) that can be approximated almost optimally as the probability
vanishes. For general monotone submodular functions we show via a reduction from Planted-
Clique that approximations for this problem are not likely to be obtainable. This optimization
problem is an important tool for adaptive seeding via non-adaptive policies, and its hardness
motivates the introduction of locally-adaptive policies we use in the main result.

1 Introduction

The surge of massive digital records of human interactions in recent years provides a new system-
wide perspective on social networks. In addition to observing and predicting patterns of collective
human behavior, in many cases the dynamics of the network can be engineered. One such example is
when attempting to initiate a large cascade by seeding it at certain important nodes in the network
to promote a product or social movement through word-of-mouth. The algorithmic challenge of
selecting individuals who can serve as early adopters of a new idea, product, or technology in a
manner that will trigger a large cascade in the social network is known as influence maximization.
Since it was first posed by Domingos and Richardson [11, 34] and elegantly formulated and further
developed by Kempe, Kleinberg, and Tárdos [22], a broad range of algorithmic methods have been
developed for this canonical problem [4, 5, 8, 17, 26, 27, 28, 31].

In many applications of influence maximization, despite having full knowledge of the network,
one may only have access to a small slice of the network. In marketing applications for example,
companies often reward influential users who visit their online store, or who have engaged with them
in other ways (subscribe to a mailing list, follow the brand, install an application etc.). If we think of
users who arrive at a store or follow a brand as being randomly sampled from the network, observing
high-degree users is a rare event. This is simply due to the heavy-tailed degree distributions of social
networks. Since influence maximization techniques are based on selecting high degree users (not
necessarily the highest degree), their application on such samples can become ineffective. In general,
access to high degree individuals in social networks is often rare, which raises the following question.

Is it possible to design effective influence maximization strategies despite the rarity of influencers?

To tackle the problem or rare influencers, the adaptive seeding framework was recently developed
in [36]. The framework is a stochastic optimization model which formalizes an intuitive approach:
rather than spend the entire budget on the non-influential users, we can spend a fraction of the
budget on the accessible users, wait for their friends to appear as a result, and optimize influence
by using the remaining budget to seed influential friends. The idea is to leverage what’s known as
the friendship paradox [15], which suggests that although people are not likely to be influential,
they are likely to know someone who is. In [24] it was shown that in well-established mathematical
models of social networks there are asymptotic gaps between the degree of a random node and its
neighbor. This structural property implies that dramatic improvements to influence maximization
are indeed achievable by optimizing influence over friends. In recent work [20], along with scalable
algorithms for this problem, it was shown through various experiments on the Facebook graph
that dramatic improvements to naive application of influence maximization are indeed obtainable
through adaptive seeding.

The adaptive seeding model. The adaptive seeding model is a two-stage stochastic optimiza-
tion framework. We are given a set of nodes X, their set of neighbors N (X), each associated with
a probability pi, as well as a budget k ∈ N and a function f : 2N (X) → R. In the first stage, a set
S ⊆ X can be selected, which causes each one of its neighbors to materialize independently with
probability pi. In the second stage, the remainder of the budget can be used to optimize the function
f(·) over the realized neighbors. This function quantifies the expected number of individuals in the
network that will be influenced as a result of selecting a subset of early adopters. The goal is to
select a subset S ⊆ X of size at most k s.t. the function can be optimized in expectation over all
possible realizations of its neighbors with the remaining budget k − |S|. Equivalently, our goal is
to select S ⊆ X s.t. in expectation over all possible realizations R1, . . . , Rm of N (X) the value of
a set of its neighbors Ti of size k − |S| that appears in the realization Ri is optimal.

1

Stated in these terms the objective is:

max
S⊆X

m∑
i=1

f(Ti) · p(Ri)

Ti ⊆ Ri ∩N (S) ∀i ∈ [m]

|S|+ |Ti| ≤ k ∀i ∈ [m]

The adaptive seeding formulation models the challenge of recruiting neighbors who can become
effective influencers using the budget, rather than trying to influence them to forward the informa-
tion without incentives as in the standard influence maximization framework.1 Although it seems
quite plausible that the probabilities of attracting neighbors could depend on the rewards they
receive, the simplification assuming unit costs is deliberate. This simplification is consistent with
the celebrated Kempe-Kleinberg-Tárdos model [22], and can be extended to the case where nodes
take on different costs [35].

While the motivation is influence maximization, adaptive seeding is a versatile framework of
stochastic optimization (see related work section for further discussion on stochastic optimization).
At its essence, it formalizes the following question.

Given a distribution on the consequences of the actions we take in the present, can we design
algorithms that optimize events in the future?

The main question when considering stochastic optimization models is whether the same guar-
antees as standard optimization can be obtained [38]. It is not hard to show that for very simple
objective functions such as f(S) = |S|, the two-stage optimization is NP-hard even in the non-
stochastic case, i.e. when all probabilities are one. Thus, approximation is needed. Therefore, in the
context of adaptive seeding the question is whether an objective that can be well approximated in
standard optimization can also be well approximated in adaptive seeding.

Submodularity. A function f : 2N → R+ is submodular if f(S ∪ T) ≤ f(S) + f(T)− f(S ∩ T).
Equivalently, a function is submodular if it has a natural diminishing returns property: for any
S ⊆ T ⊆ N and a ∈ N\T a function is submodular if fS(a) ≥ fT (a), where fA(B) = f(A∪B)−f(A)
for any A,B ⊆ N . Unless otherwise stated, we will assume the function is normalized (f(∅) = 0) and
monotone (S ⊆ T implies f(S) ≤ f(T)). In standard optimization submodularity is a certificate
for desirable approximation guarantees (1-1/e approximation for maximizing such functions under
a matroid constraint [41]), and a slightly broader class known as fractionally subadditive functions
already exhibits strong information-theoretic lower bounds [29].

Adaptive Seeding of submodular functions. The effectiveness of adaptive seeding depends
crucially on our ability to optimize general classes of submodular functions. Say that a function
can be adaptively seeded if the adaptive seeding problem can be approximated within a constant
factor for this objective. The main result in [36] shows that any function in a class known as the
triggering model — a special class of monotone submodular functions defined in the seminal work
of Kempe, Kleinberg, and Tárdos [22] — can be adaptively seeded. But far more general models of
submodular functions are used to describe influence in social networks [22, 31], and the techniques

1Having probabilities on the nodes in N (X) and not the edges implies that the neighbors are not more likely to
appear if they have more parents in X selected by the algorithm. This corresponds to what’s known in microeconomics
as a standard Bayesian utility model with no externalities. For submodular functions, this problem can be shown to
be equivalent to the one where probabilities appear on the edges and not the nodes. This corresponds to a model
where nodes in the second stage are influenced by nodes in the first stage through the independent cascade model [22].

2

of [36] cannot be applied to these (see related work section for further discussion on submodular
function, their connection with the influence maximization problem and the limitation of previous
techniques for adaptive seeding). Thus the main question in this work is:

Can any submodular function be adaptively seeded?

Naturally, we will seek algorithms that obtain the best approximation ratio possible. The main
challenge would be to obtain an algorithm that achieves a (1−1/e)2 approximation ratio for general
monotone submodular functions. This bound is a natural goal for this problem, as we discuss below.

1.1 Warm up: the non-stochastic case

We begin by considering the non-stochastic version of the problem. That is, the version in which
every node in the set of neighbors appears with probability one. Here we are given a set X and
its neighbors N (X), there is a monotone submodular function defined on N (X), and the goal is
to select t ≤ k elements in X connected to a set of size at most k − t in N (X) for which the
submodular function has the largest value. A trivial solution would be to run a greedy algorithm
with budget of k/2 on parent-child pairs. That is, at every stage select the node in N (X) whose
marginal contribution given the nodes already selected is the largest, and add one of its parents
(if none have been added in previous rounds) to ensure the solution is feasible. Since we need at
most k/2 parents to select k/2 children the solution is feasible, and submodularity guarantees the
solution’s value is at least half of the value as if we were to run the algorithm with a budget of
k, which is an upper bound on the optimal solution. It is well known that the greedy algorithm
is a 1 − 1/e-approximation to the optimal solution, and hence this trivial algorithm would be a
(1− 1/e)/2-approximation.

Optimal approximation via ε-blocks. A natural extension to the above approach would be
to pair parent nodes (i.e. nodes in X) with subsets of their children. We call such pairs blocks, and
the density of a block is simply the ratio between its marginal contribution and its size: for a set
of children T ⊆ N (X), the marginal density of a block (x,B) with respect to T is

fT (B)/(1 + |B|).

Ideally, for each parent we would add the subset of children which makes for the densest block, as
one can then show that an algorithm which iteratively adds the densest block results in the optimal
1 − 1/e approximation. However, even for coverage functions finding the densest block implies
solving an NP-hard problem. Instead of densest blocks we can consider using ε-blocks: a node in
x ∈ X and a subset of its neighbors of size at most 1/ε. Note that for any constant ε > 0, finding
the densest ε-block can be done in polynomial time by brute forcing all subsets of 1/ε neighbors of
every node x ∈ X and computing their value. Importantly, one can show that for any ε > 0 the
densest ε-block B is a (1− ε) approximation to the densest block O if |O| is larger than 1/ε:

fT (B)

1 + |B|
≥
(

1

1 + 1/ε

)
1/ε

|O|
fT (O) =

(
1

1 + ε

)
fT (O)

|O|
≥
(

1− ε
) fT (O)

1 + |O|

where the first inequality is by submodularity and taking the 1/ε elements of O with highest value.
The algorithm is now simple: until exhausting the budget, add the densest ε-block to the solu-

tion. For any ε > 0, this algorithm is a (1 − 1/e − ε) approximation, and the idea of the analysis
is natural; at every stage this algorithm selects an ε-block that is a (1 − ε) approximation to the
densest block, and by applying a standard inductive argument one can show that this results in a
(1 − 1/e − ε) approximation. Although it only holds in the dummy non-stochastic version of the
problem, this approach encapsulates the core idea in this paper.

3

1.2 Synopsis

In the stochastic case the optimal solution is an adaptive policy: one which selects a subset from
X, and after the realization of its neighbors, selects an optimal solution with its remaining budget.
Since adaptive policies are notorious in stochastic optimization for their difficulty, the standard
approach is to design non-adaptive policies which approximate adaptive policies well. Informally,
a non-adaptive policy is a policy which selects the subset S and a set of its neighbors, a priori to
their realization. We cannot hope to obtain an approximation better than 1− 1/e for the optimal
non-adaptive policy unless P=NP [14], as the non-stochastic case is a special case. As we show
later, the ratio between non-adaptive policies and adaptive ones can be as bad 1 − 1/e, and we
therefore naturally seek algorithms whose approximation ratio is (1−1/e)2. We do not know whether
(1−1/e)2 is the optimal approximation ratio, and it is one of the main open questions in this paper.

Similar to the exposition in the warmup above, finding a (1−1/e) approximation to the optimal
non-adaptive policy (and hence a (1−1/e)2 approximation to the optimal adaptive policy) reduces
to finding ε-blocks with arbitrarily good precision in the stochastic case. The key challenge in com-
puting ε-blocks here reduces to the following fundamental problem (which may be of independent
interest) we call submodular-optimization-with-small-probabilities (SOSP): given a ground set of
elements where every element appears with some small probability, find a set of expected size at
most k that has the highest expected value over the realization of the elements. While for some
classes of submodular functions near-optimal solutions for this problem can be obtained, arbitrarily
good approximations for this problem are not likely to be obtainable in general. In other words,
non-adaptive policies do not suffice for getting a (1− 1/e)2-approximation algorithm.

Our main result builds on an alternative strategy for defining ε-blocks. Instead of non-adaptive
policies we employ what we call locally-adaptive policies. Intuitively, a locally adaptive policy con-
sists of a set of ε-blocks, where within each block the policy can make adaptive decisions. The
adaptivity within a block lets us find the optimal ε-block and enables the (1− 1/e)2 guarantee.

1.3 Results

• Tight Adaptivity gap. In Section 2 we show that non-adaptive policies approximate adap-
tive policies within almost a factor of 1− 1/e. We then show that this gap is tight.

• Algorithm for SOSP. In section 2.1 we introduce this problem and show how it can be
solved almost optimally for matroid-rank-sum functions (which include coverage functions)
by convex programming as the probabilities vanish. We then show how to use this problem
to design a (1− 1/e)2-approximation algorithm for this class of submodular functions.

• Hardness of SOSP. We show that for general monotone submodular functions, the problem
is hard to approximate to arbitrary precision by a reduction from the Planted-Clique
problem. Thus, for general submodular functions computing the optimal ε-block is also hard.

• Our main result: A (1 − 1/e)2-approximation algorithm through locally-adaptive
policies. In Section 3 we describe our main algorithm designed for any monotone submodular
function using value oracles. The algorithm finds a locally-adaptive policy whose value is
guaranteed to be at least about 1− 1/e of the value of the optimum locally-adaptive policy.
Naturally, it remains to prove that the best locally-adaptive solution is 1−1/e away from the
true optimum. We establish this by showing that any non-adaptive policy can be approximated
arbitrarily well by a locally-adaptive policy, and utilizing the bounds we have for such policies.
The idea of locally-adaptive policies is new and may be of independent interest.

• Adaptivity gap for locally-adaptive policies. In section 3.3 we exhibit a gap (≈ 0.853)
between the optimal locally-adaptive policy and the optimal adaptive policy.

4

1.4 Related work

Adaptive Seeding. The Adaptive Seeding model was introduced by Seeman and Singer in [36].
They use a concave relaxation to achieve a constant bound approximation for the adaptive seeding
problem with influence functions in the Triggering model. Unfortunately, their techniques do not
extend to general submodular functions. In this work we introduce new non-adaptive and adaptive
techniques for this problem, and achieve a better approximation bound for the Triggering model.
Most importantly, our results hold for the entire class of submodular functions. In a follow-up
paper [35] the adaptive seeding problem is studied under knapsack constraints. While the techniques
used in that paper are applicable here, they give a different approximation bound than what we
achieve here, which as shown in that paper is actually the appropriate bound for that case. However,
as we show, in the cardinality case we can get better approximation bounds.

Submodular Functions. Monotone submodular set functions maximization is an extensively
studied problem. Nemhauser et al. [32] show a simple greedy algorithm that achieves a (1− 1/e)-
approximation for maximizing monotone submodular functions under cardinality constraints.
Feige [14] shows that this is the best possible unless P=NP. A continuous version of the greedy
algorithm was introduced by Calinescu et al. [6] to solve a multilinear extension of the problem
which combined with the pipage rounding [1] techniques is shown to give a (1−1/e)-approximation
under matroid constraint for a special class of submodular function. Vondrak [41] shows that similar
ideas can be used to give the same approximation for all monotone submodular functions. Checkuri,
Vondrak, and Zenklusen [7] extend this framework and introduce Contention Resolution Schemes
to show how to account for multiple matroid and knapsack constraints and also extend to non
monotone functions. In this paper we use the contention resolution and a bound from [6] to bound
the adaptivity gap between non-adaptive and adaptive policies.

Submodular functions have been a crucial tool in the influence maximization literature. Kempe,
Kleinberg, and Tardos [22] show that a class of influence models called Triggering model are all
submodular functions and thus can be approximated by a greedy algorithm as discussed above.
Mossel and Roch [31] proved a conjecture posted in [22] and show that far more general influence
models can be expressed by a submodular function. These models have been studied in numerous
papers both theoretically and empirically [4, 5, 8, 17, 26, 27, 28], and thus are the main focus of
this paper as well.

Stochastic optimization. The adaptive seeding model is a stochastic optimization framework
(see [37] for a survey). There has been extensive work on stochastic optimization problems in
the context of approximation algorithm varying from two-stage with recourse minimization prob-
lems ([19],[21], [33], [38, 39],[40]) and of maximizing an objective under a budget constraint ([10],
[18],[23]). The adaptive seeding model is different from these problems as it combines a two stage
model with a maximization under budget problem. Moreover, the constraint structure in adaptive
seeding is such that the first stage decisions determine the available actions in the second stage (not
just through the shared budget constraint). Another variant of multi-stage stochastic submodular
maximization was studied by Asadpour et al. [3] and Golovin and Krause [16]. Despite the similar
name, the adaptive seeding model is substantially different from these models, both in motivation
and in the fact that the second stage problem is strongly dependent on choices made in the first
stage. In these models the algorithm has access to the entire network but has the freedom to choose
one node at a time (or group of nodes) and observe the realized value of these nodes. Yang et
al. [43] and Chen et al. [9] also study “multi-level” models of the influence maximization problem,
the latter partially inspired by the adaptive seeding model. However, their motivation, model and
benchmark are substantially different from the adaptive seeding model, and apart from some special
cases, their models do not have any constant factor approximations.

5

2 Non-adaptive policies

A non-adaptive policy is a pair of sets (S, T) ⊆ X ×N (X) where S represents the set selected in the
first stage and T ⊆ N (S) is the set selected in the second stage. The natural definition for feasibility
would be that the policy selects at most k nodes, though it is easy to construct examples that show
that such strict policies have an unbounded approximation ratio. We therefore consider relaxed non-
adaptive policies whose guarantee is to select at most k nodes in expectation, where the expectation
is over the randomization in the model, i.e. the probabilities of nodes arriving in the second stage.
In the rest of the paper we drop the relaxed prefix and just call such policies non-adaptive policies.
We define the value of a non-adaptive policy (S, T) to be F (T) =

∑
i∈[m] p(Ri)f(T ∩Ri) and its

cost as |S|+C(T), where C(T) =
∑

i∈T pi. Finding the optimal non-adaptive policy requires solving
the optimization problem:

OPTNA = max
S,T
{F (T) : |S|+ C(T) ≤ k, S ⊆ X,T ⊆ N (S)} .

The crucial difference between these policies and adaptive ones is that non-adaptive policies fix a
set T a priori to seeing the realization, whereas adaptive policies have the luxury of selecting a
different set Ti for every realization Ri. Note that these policies are not a relaxation of adaptive
policies nor are they a special case, since on the one hand they fix one set T but on the other hand
are only restricted to the budget in expectation. Thus, it is not immediately clear they are useful
for approximating adaptive policies.

We first show that the adaptivity gap (i.e. the ratio between the value of the optimal adaptive
policy and that of the non-adaptive policy) is exactly 1− 1/e.

A tight 1 − 1/e adaptivity gap. Consider an instance with a single node in X connected to
n = 1/δ2 nodes, each appearing with probability δ, for some small δ > 0. The function is:

f(T) =

{
1 if T 6= ∅
0 otherwise.

For a budget of 2, an optimal adaptive policy seeds the single node in X, waits for the realization
of its neighbors, and seeds whichever node realizes. The optimal non-adaptive policy here seeds the
single node in X and spends the rest of its budget on 1/δ nodes in N (X), which has an expected
utility of 1− (1− δ)1/δ ≈ (1− 1/e). The adaptivity gap is therefore at least 1− 1/e.

We complement the above example by showing that the adaptivity gap is at most 1 − 1/e.
The proof utilizes an interesting connection between the optimal adaptive policy and the concave
closure of the underlying submodular function [6]. Using this connection and properties of the
concave closure from [6] we can bound the error of a fractional non-adaptive policy that we then
round to get our result.

Lemma 2.1. For any budget k, OPTNA ≥ (1− 1/e− 2/k)OPTA.

Proof. Let S be the set chosen by the optimal adaptive policy and let Ti be the set chosen by this
policy in realization Ri. For a set T ⊆ N (S) let αT be the total probability that T is chosen by
the adaptive policy in the second stage. That is, αT =

∑
i∈{i|T=Ti} p(Ri). For i ∈ N (S) let qi be

the probability that i is seeded over all realizations in the second stage. That is, qi =
∑
{T |i∈T} αT .

Consider the function:

f+(q) = max
~β
{
∑

T⊆N (S)

βT f(T)|
∑
T

βT = 1;βT ≥ 0;
∑
T

βT 1T = q}.

6

Obviously,
∑

T αT = 1 and
∑

T αT 1T = q. Thus ~α is a valid ~β for which f+(q) optimizes over.
Since OPTA =

∑
T αT f(T) this mean that f+(q) ≥ OPTA.

Consider instead the process in which at the second stage each element yi ∈ N (S) is chosen
independently with probability qi and call the value of this process F (q). By a consequence of [6,
Lemma 5] we know that F (q) ≥ (1 − 1/e)f+(q) ≥ (1 − 1/e)OPTA. Now note that qi ≤ pi as an
item can’t be seeded with a higher probability than the probability it realizes. Thus, there exists
t ∈ [0, 1]|N (S)| such that for every i ∈ N (S) qi = tipi. Since in each realization only k−|S| element
are chosen, we know that tTp < k− |S|. Thus, t can be understood as a fractional solution for the
second stage set of the non-adaptive policy. We can round t using the pipage rounding [1] technique
in order to get a vector with only one fractional solution and no loss in value. Note that we can
assume without loss of generality that the fractional entry has the smallest marginal density out of
all non-zero entries and that there are no fractional entries if tTp < k − |S|.

First assume that |S| < k/2. To get T we take the items for which the rounded vector entry is
1. From submodularity and the fact that tTp ≥ k/2 we get that the solution is a valid non-adaptive
policy and has at most 2/k loss of the fractional solution. If |S| ≥ k/2 we can instead remove an
item of S (and all the entries that are connected only to it) with the least marginal value and
include the fractional entry in T (if it is not connected to that item). From submodularity, we can
divide the value of the solution between the different items of S such that at least one of them has
marginal value less than 2/k so we get a valid solution with at most 2/k loss. So we constructed a
valid non-adaptive policy whose value is at least (1− 1/e− 2/k)OPTA and thus get our result.

We next show that a non-adaptive policy can be converted to an adaptive policy with small
loss by using the contention resolution scheme [7].

Lemma 2.2. For every ε ∈ (0, 1/5) and for any non-adaptive policy (S, T) such that k − |S| > ε−4,
there exist an adaptive policy with value ≥ (1− 2ε)F (T).

Proof. Given a solution (S, T) consider an adaptive policy which seeds the same set S in the first
stage; in the second stage, for every realization R of neighbors of S the policy selects each node
j ∈ R ∩ T with probability (1 − ε) into a set T̂ and seeds the nodes in T̂ if |T̂ | > ξ = k − |S| and
otherwise does not seed any nodes. We next compute the probability of any element j to be seeded
given that it is in T̂ .

Pr
[
j is seeded | j ∈ T̂

]
= Pr

[
|T̂ | ≤ ξ | j ∈ T̂

]
= Pr

[
|T̂ \ {j}| ≤ ξ − 1

]
= 1− Pr

[
|T̂ \ {j}| > ξ − 1

]
≥ 1− Pr

[
|T̂ \ {j}| >

(
ξ − 1

(1− ε)(ξ − pj)

)
E
[
|T̂ \ {j}|

]]
≥ 1− exp

(
−(1− ε)(ξ − pj)

3
(

ξ − 1

(1− ε)(ξ − pj)
− 1)2

)
≥ 1− exp

(
−ε

2ξ − 2

3

)
≥ 1− exp

(
−ε−1

)
≥ 1− ε

We derive the first inequality from (1− ε)(ξ − pj) ≥ E[|T̂ \ {j}|]. Notice that since ε < 0.5, we have

that ξ−1
(1−ε)(ξ−pj)

∈ (1, 2), and thus the second inequality follows form Chernoff bound (See appendix

7

for the exact bound used). The third inequality follows from simple arithmetic derivations. The
fourth is from substituting ξ with ε−4 and using the fact that ε < 1/5.

We therefore have that the probability j is seeded given that it is was realized (in R) is at least
(1− ε)2 ≥ (1− 2ε). We also have that the seeded set is always of size at most ξ. In addition for any
element j and any two realizations R1 and R2 such that j ∈ R1 ⊆ R2 we have that the probability
j is seeded when the realization is R1 is higher than if the realization is R2. These three condition
define a monotone (1 − 2ε)-balanced contention resolution scheme [7] and thus using the results
from [7] we get that the expected value of this process (and thus of the adaptive policy) is at least
(1− 2ε)F (T).

Combining these results we can prove the following theorem:

Theorem 2.3. For every ε > 0, given an algorithm that finds a non-adaptive policy with value
at least γOPTNA, there is a (1−1/e)γ− ε approximation algorithm for the optimal adaptive policy.

Proof. Run the non-adaptive algorithm to get a non-adaptive policy (S, T), with an approximation
of γ > 0 for OPTNA. First, assume that both k > 4/ε and k − |S| > (4/ε)4. We can then use the
same adaptive policy as in Lemma 2.2 with parameter ε/4 and let Adapt(S, T) be the value of that
policy.

Adapt(S, T) ≥ (1− ε/2)F (T)

≥ (1− ε/2) γOPTNA

≥ ((1− ε/2)(1− 1/e− ε/2)) γOPTA

≥ ((1− 1/e)γ − ε) OPTA

where the first inequality is due to Lemma 2.2 and the third is due to Lemma 2.1.
If k − |S| < c = (4/ε)4 we can iteratively remove from S the dce elements that contribute the

least to the value of the solution, as well as the elements of T that are connected only to the removed
elements. Let S′, T ′ be the result of this procedure. Notice that k − |S′| > c. As we removed the

elements with the least value we know that F (T ′) ≥ (1− dce|S|)F (T), and thus by the same argument

as in the previous case we get that Adapt(S′, T ′) ≥ (1− dce|S|)Adapt(S, T). It is easy to check that if

k > O(dceε) we still get the desired approximation ratio.
If k does no satisfy one of the conditions above (so smaller then some constant) we can find an

optimal adaptive policy by a brute force search over sets of size at most k in the first stage (we can
approximate their value to any desired accuracy by sampling realization and finding the optimal
second stage set).

2.1 Optimization via Non-Adaptive Policies

Given the blackbox reduction in Theorem 2.3, one can consider the problem of designing algorithms
for non-adaptive policies. We now describe the simple greedy algorithm NonAdaptiveGreedy
which is similar to the one sketched in the Introduction: at each step, as long as it doesn’t exceed
the total budget, the algorithm adds the densest ε-block. For non-adaptive policies, an ε-block is
a node x ∈ X and a subset of its neighbors whose expected cardinality is at most 1/ε. A formal
description of the algorithms follows in Algorithm 1. It assume a black-box access to an algorithm
that finds an approximate optimal ε-block called FindOptimalNonAdaptiveBlock.

The next lemma shows that for any α > 0, a procedure which guarantees an α-approximation
for the optimal ε-block translates to a (1 − 1/eα − ε)-approximation guarantee for the optimal
non-adaptive policy.

8

Algorithm 1 NonAdaptiveGreedy

Input: f : 2N (X) → R+, budget k.

1: S ← ∅, q← −→0 .
2: while |S|+

∑
j∈T pj ≤ k −

3
ε do

3: (x,B)← FindOptimalNonAdaptiveBlock(S, T)
4: (S, T) = (S ∪ x, T ∪B)
5: end while
6: return (S, T)

Lemma 2.4. ∀ε > 0, assume that in every iteration FindOptimalNonAdaptiveBlock returns
a block which is an α-approximation to the optimal ε-block. Then, when k = Ω(1/ε2) Algorithm
NonAdaptive returns a solution (S, T) such that F (T) ≥ (1− 1/eα −O(ε)) OPTNA.

Proof. Let (Sj , Tj) be the solution at the beginning of iteration j. For a block (x,B) let
FTj (B) =

∑
i∈[m] p(Ri)(f((Tj ∪B) ∩Ri)− f(Tj ∩Ri)). Let (xj , Bj) be the solution returned by

FindOptimalNonAdaptiveBlock at iteration j and let (xO, BO) be the optimal ε-block in this
iteration. First we observe that similarly to the non-stochastic case the optimal ε-block is a (1−2ε)-
approximation of the densest block. Consider an iteration j. For any block (x,B) we have that if
C(B) < 1/ε than the optimal ε-block has at least the same marginal density. Otherwise, let Bε be
the set of elements of B of highest marginal value of cost at most 1/ε.

FTj (BO)

1 + C(BO)
≥

FTj (Bε)

1 + C(Bε)
≥

1/ε−1
C(B) FTj (B)

1 + 1/ε
≥ 1− ε

1 + ε

FTj (B)

C(B)
≥ (1− 2ε)

FTj (B)

1 + C(B)

where the first inequality is because BO is the optimal ε-block and Bε is a candidate, the second
is because Bε is at least of size 1/ε− 1 and from the submodularity of the function, and the other
steps are just simple algebra.

We can think of the optimal non-adaptive solution as a set O ⊆ X and arbitrarily partition the
nodes in N (O) such that for each node o` ∈ O we associate a set of children O` ⊆ N (o`). The cost
associates with each node and its children is simply 1 + C(O`). Thus, we have that:

FTj (Bj)

1 + C(Bj)
≥ α

FTj (BO)

1 + C(BO)
≥ α (1− 2ε) max

`

FTj (O`)

1 + C(O`)
≥ α (1− 2ε)

∑
` FTj (O`)∑
` 1 + C(O`)

≥ α (1− 2ε)
FTj (O)

k

where the second inequality is from the last equation, and the last is from submodularity.
We proceed by induction to show that at any iteration we have that

F (Tj+1) ≥

(
1−

j∏
`=1

(
1− α (1− 2ε)

1 + C(B`)
k

))
OPTNA

9

The base case is trivial. Now assume it is true for F (Tj). Then we have that

F (Tj+1) ≥FTj + α (1− 2ε)
1 + C(Bj)

k
(OPTNA − F (Tj))

=

(
1− α (1− 2ε)

1 + C(Bj)
k

)
F (Tj) + α (1− 2ε)

1 + C(Bj)
k

OPTNA

≥
(

1− α (1− 2ε)
1 + C(Bj)

k

)(
1−

j−1∏
`=1

(
1− α (1− 2ε)

1 + C(B`)
k

))
OPTNA

+ α (1− 2ε)
1 + C(Bj)

k
OPTNA

=

(
1−

j∏
`=1

(
1− α (1− 2ε)

1 + C(B`)
k

))
OPTNA

where the first inequality is from the previous derivation and the second inequality is by the
induction hypothesis.

After the last iteration the cost of the solution is greater than k − 3
ε > (1− 3ε) k. Therefore,

F (T) ≥

(
1−

t∏
`=1

(
1− α(1− 2ε)

1 + C(B`)
k

))
OPTNA

≥
(

1− (1− α(1− 2ε) (1− 3ε)

t
)t
)
OPTNA

≥
(

1− 1

eα(1−5ε)

)
OPTNA

≥
(

1− 1

eα
−O(ε)

)
OPTNA

Where the second inequality is because setting all of the C(Bj) to be equal minimizes the function
and we know that their sum is at least (1− 3ε) k.

2.2 Finding optimal non-adaptive ε-block

Lemma 2.4 shows that finding good approximation for non-adaptive policies reduces to computing
approximations for the optimal ε-block. In this section we show that for some special cases we can
find an optimal ε-block and thus a (1− 1/e) approximation for the optimal non-adaptive policy in
polynomial time. Unfortunately, for general submodular functions we show it is unlikely that it can
be approximated arbitrary well.

2.2.1 Approximating optimal ε-block for large probabilities

In the first special case we consider, all the probabilities on nodes are larger than some constant.
Here, the optimization problem is easy. Given some constant ε > 0 the algorithm simply enumerates
over all x ∈ X and over all possible subsets of items T ∈ N (x) s.t. C(S) ≤ 1/ε.

Corollary 2.5. Let δ = mini∈[n] pi. Then for any constant ε > 0, we can approximate the optimal

non-adaptive policy to within (1− 1/e− ε) in time poly(n1/δ).

In the rest of this section we turn to the more challenging task of seeding nodes with small
probabilities.

10

2.2.2 Approximating the optimal ε-block for MRS objective

In case the probabilities are small enumerating over all possible solutions is computationally infea-
sible. The problem of finding ε-blocks reduces to the following fundamental problem.

Definition 2.6. Submodular-optimization-with-small-probabilities-δ (SOSP-δ) problem:
We are given a monotone submodular function f and probabilities of each element realizing p. The
probabilities satisfy maxi pi ≤ δ. Our goal is to find a set T of expected size k that maximizes the
expected value of f .

We’ll look at the fractional version of this problem in which the items of T are chosen indepen-
dently with probabilities q (this can be thought of as a multi-linear relaxation [6] of SOSP). Since
we are only interested in small values of δ it is easy to round fractional solutions using the pipage
rounding [1] technique with very small loss. Formally, we want to solve

max
q

E [f (T)] =
∑
T

(∏
i∈T

qi
∏
i/∈T

(1− qi)

)
f (T)

s.t.
∑
i

qi ≤ k

qi ∈ [0,pi] ∀i ∈ [n]

At a first glance, it may seem like no algorithm should be able to get an approximation better
than 1 − 1/e for this problem: when δ = 1 the problem identifies with submodular maximization
under a cardinality constraint, and due to Feige we know that no algorithm can do better than
1− 1/e unless P=NP even for coverage functions [14](even for the fractional version). It seems like
shrinking the constraint polytope by a factor of δ should not make a difference in the optimization.
Surprisingly, as we next show, for submodular functions in a class known as matroid rank sum (which
includes coverage functions), the above optimization problem can be solved nearly optimally. At a
high level, we show that for such functions the problem can be well approximated through a convex
program, which then enables us to produce a solution whose approximation becomes optimal as δ
vanishes. 2

Theorem 2.7. Suppose that f can be represented as a matroid rank sum (MRS) function. Then,
there exists a (1− δ/2)-approximation algorithm for SOSP-δ using convex programming.

Proof. Suppose that we relax the program, so that the probability of seeding node i is 1 − e−qi

(but the cost remain the same). We can now optimize the following program:

max
q

∑
T

(∏
i∈T

(1− e−qi)
∏
i/∈T

(e−qi)

)
f(T)

∑
i

qi ≤ 1/ε

qi ∈ [0,pi] ∀i ∈ [n]

Dughmi et al. [12] consider essentially the same program in the context of Poisson rounding and
show that this program is concave when f is a MRS function. (They use it to achieve a (1− 1/e)-
approximation for general probabilities and do not consider the special case of small δ.) Thus, we
can optimize this program (to within arbitrarily good approximation) in polynomial time.

2Note that this is not due to the low cost of elements which allows for example for a greedy algorithm to be nearly
optimal for the knapsack problem.

11

Observe that 1− e−qi ≤ qi. Therefore we only decreased the probability of seeding each node,
so by monotonicity of f , our expected value will be at least as good as the solution of the new
concave program.

We lose at most a factor of (1 − e−δ)/δ for any submodular function f (and in particular for
matroid rank sum). Think of the process where the elements are added one by one, and consider
the marginal contribution of each one. Let µ = µ (q) denote the original distribution on sets (i.e.
Prµ[T] =

∏
i∈T qi ·

∏
i/∈T (1 − qi)), and let ν = ν (q) denote the transformed distribution (i.e.

Prν [T] =
∏
i∈T (1 − e−qi) ·

∏
i/∈T e

−qi); let Fµ and Fν denote the value of the objective function
under each distribution.

Fν (q) =
∑
i

(
1− e−qi

)
ET∼ν [f ({i} ∪ (T ∩ [i− 1]))− f (T ∩ [i− 1])]

≥
∑

i : a∈Ai

(
1− e−δ

δ
· qi
)
ET∼ν [f ({i} ∪ (T ∩ [i− 1]))− f (T ∩ [i− 1])]

≥
∑

i : a∈Ai

(
1− e−δ

δ
· qi
)
ET∼µ [f ({i} ∪ (T ∩ [i− 1]))− f (T ∩ [i− 1])]

=
1− e−δ

δ
· Fµ (q) .

The first step follows by considering the expected increment for adding i, with respect to ν. The
second step follows by lower bounding e−qi and monotonicity. The third step follows by submodu-
larity. Finally, the last step follows by again considering the expected increment for adding i, this
time with respect to µ.

Finally, we obtain a tight approximation for the non-adaptive solutions to adaptive seeding
instances with MRS objective and arbitrary probabilities by carefully combining the two special
cases.

Theorem 2.8. For any ε > 0 there is a polynomial-time algorithm that returns a (1 − 1/e − ε)-
approximation of the optimal non-adaptive policy for any matroid rank sum (MRS) function.

Proof. Run Algorithm NonAdaptive with subroutine FindOptimalNonAdaptiveBlock that
finds ε′-blocks implemented as follows: Enumerate over all feasible subsets of nodes with probabil-
ities at least δ. For each subset, let k′ be the remaining budget for this block. Solve the concave
program for budget in {ε′′, 2ε′′, . . . , k′}. By Lemma 2.7, when our enumeration reaches the optimal
subset of large-probabilities elements, and we use the approximately correct additional budget (we
spend at most an additional ε budget), the solution of the concave program is a ((1− δ/2)− ε′′)-
approximation to the densest subset.

The concave program might return a solution that does not correspond to a set (have some qi
that does not equal to 0 or pi). However, using the pipage rounding [1] technique the algorithm can
round it (make qi equals either pi or 0) to have at most one undetermined item without any loss
of value. If such an item remains, the algorithm compares the density of the solution that includes
that item to the solution that does not include it and chooses the one with maximum marginal
density. It is easy to verify that one of those solution has a higher density than the density of the
fractional solution. This procedure might cause the block to cost δ more so in total 1 + 1/ε′ + δ.

We chose ε′, ε′′ and δ ≤ ε′ (thus the total cost of a block is at most 3/ε′) such that the total loss
due to Lemma 2.4 is ε. For large values of k the theorem follows by Lemma 2.4 and by noticing
that in the analysis of that lemma we only analyze iterations where there is at least 3/ε′ budget
left so this procedure returns a valid block in each such iteration. If k is not large enough (smaller
than some constant that depends on ε), we can enumerate over all first stage set of size at most k

12

and complete the solution by solving a monotone submodular maximization on the second stage to
get a (1− 1/e) approximation.

Combining this with the results of the previous section we get that for MRS functions we have
a (1− 1/e)2 approximation for the adaptive seeding problem as desired.

2.2.3 Hardness of approximating optimal ε-block for general submodular functions

Unfortunately, for general submodular functions the Submodular-optimization-with-small-
probabilities problem cannot be approximated arbitrary well even with a constant budget (and
as a special case, computing optimal densest ε-blocks is hard). Our algorithm heavily relies on the
reduction to a concave program, yet as pointed out by [12, 13], this program is not concave in gen-
eral. While this means our current approach fails it does not mean the problem is computationally
hard.

Standard techniques for showing hardness of submodular maximization seem to fail for this
problem: Feige’s construction [14] would also show hardness for the max-cover version, but we
know that this problem is easy in this setting. The symmetry gap [42] should give an information-
theoretic lower bound (in the oracle model), but with a constant budget it is easy to design an
exponential-time, poly-information algorithm that achieves an arbitrarily good approximation.

We therefor look for a construction where the optimal set behaves locally very differently from a
random set. In other words, when we look at a random (1/ε)-subset of the optimal set, it should be
different from what we expect from a random (1/ε)-subset somewhere else in the graph. Intuitively,
this is very similar to the Planted-Clique problem, where every subset of the clique is of course
also a clique, but the rest of the graph may be arbitrarily (constant) sparse [2].

Theorem 2.9. If the Submodular-optimization-with-small-probabilities problem with
a constant budget k can be approximated within any constant factor better than(
1− e−k/2

)
/
(
1−

(
k
2 + 1

)
e−k
)
, then there is a polynomial time algorithm for the Planted-

Clique problem that succeeds with high probability. In particular, for k = 1.7,(
1− e−k/2

)
/

(
1−

(
k

2
+ 1

)
e−k
)
≈ 0.865

Proof. We reduce from the Densest l-subgraph problem. In particular, Alon et al. [2] proved that
for any constant ε > 0, given a graph G = (V,E) it is Planted-Clique hard3 to distinguish
between:

• Completeness: G contains a clique of size l; or

• Soundness: every l-vertex subgraph of G is ε-sparse (i.e. it contains at most an ε-fraction of

the
(
l
2

)
edges an l-clique would contain.)

Given G, we construct a monotone submodular function that gives 1 for every subset that contains
an edge, and otherwise approaches 1 exponentially with the size of the subset:

f (T) =

{
1 ∃ (u, v) ∈ E s.t. {u, v} ⊆ T
1− 2−|T | otherwise

We set the maximal probabilities such that a budget of k is sufficient to bid exactly for the entire
l-clique: pi = k/l. Monotonicity is trivial.

3See [2] for precise statement.

13

• Submodularity: Adding u to T may increase f by at most 2−|T |. However, adding u to any
T ′ (T would increase f by at least 2−(|T

′|−1) ≥ 2−|T |.

Now, observe that regardless of the choice of q, the random variable |T | (the size of the realized
set) behaves approximately like a Poisson distribution with parameter k. More precisely, the total
variation distance between |T | and Pois (k) is bounded

∑
q2
i ≤ k2/l < ε (e.g. [25]).

• Completeness: Let qopt be 1 on the l-clique and 0 otherwise; then

E
[
f
(
T opt

)]
= 1− 1

2
Pr [|T | = 1]− Pr [|T | = 0]

≥ 1− 1

2
Pr [Pois (k) = 1]− Pr [Pois (k) = 0]− ε

= 1−
(
k

2
+ 1

)
e−k − ε

• Soundness: Suppose that every l-subgraph of G is ε-sparse. Observe that by submodularity
of f , we can assume w.l.o.g. that qalg defines a set, i.e. it is pi for l vertices that contain at
most ε

(
l
2

)
edges (and 0 everywhere else). Then,

E
[
f
(
T alg

)]
≤ 1−

∞∑
i=0

Pr [|T | = i] 2−i + Pr[T contains an edge]

For each of the ε
(
l
2

)
potential edges, the probability that both vertices belong to T is

(|T |
2

)
/
(
l
2

)
.

Taking a union bound over all of them, we have

Pr[T contains an edge] ≤ ε
(
|T |
2

)
< ε|T |2

Finally, since |T | is distributed ε-like Pois (k),

Pr[T contains an edge] < ε · (k2 + k) + ε

Therefore,

E
[
f
(
T alg

)]
≤ 1−

∞∑
i=0

Pr [Pois (k) = i] 2−i +O(ε)

= 1−
∞∑
i=0

ki

i!
e−k2−i +O(ε)

= 1−

(∞∑
i=0

(
k
2

)i
i!

e−k/2

)
· e−k/2 +O(ε)

= 1− e−k/2 +O(ε)

Thus, for budget k, it is Planted-Clique hard to find any approximation which is better than(
1− e−k/2

)
/
(
1−

(
k
2 + 1

)
e−k
)
. For example, set k = 1.7 to get the approximation factor of(

1− e−1.7/2
)
/
(
1−

(
1.7
2 + 1

)
e−1.7

)
< 0.865. (Recall that since we have fractional costs, the budget

may be fractional as well.)

14

This lower bound implies that the non-adaptive framework we use here cannot obtain the
(1 − 1/e)2 approximation ratio4. This obstacle motivates our use of ε-locally adaptive policies
discussed in the following section.

3 Approximation via ε-locally-adaptive policies

In this section we prove our main result:

Theorem 3.1. For every constant ε > 0 there is an algorithm that runs in polynomial time and
returns an adaptive policy which is a ((1− 1/e)2 − ε)-approximation to the optimal adaptive policy
with general monotone submodular functions.

Proof outline. Our entire proof relies on the novel definition of a restricted class of adaptive
policies which we call ε-locally-adaptive. Informally, we say that a policy is ε-locally-adaptive, if it
can be divided into ε-blocks. In this context, an ε-block is a subset of X of constant size (for technical
reasons these are not singletons as in previous cases), and for each realization an adaptively chosen
set of constant size of its neighbors. We prove that a greedy algorithm that in each iteration finds
the optimal ε-block gives a (1−1/e−ε)-approximation to the optimal ε-locally-adaptive policy. This
adaptive variant of ε-blocks allows us to find the optimal subset for each realization (much in the
same way as in the warmup presented in the introduction) and thus find the optimal block. Thus,
while the non-adaptive block structure allows for greedy optimizations, the power of adaptivity
within a block circumvents the hardness result of the previous section. We then prove that the
optimal ε-locally-adaptive policy is a (1 − 1/e)-approximation to the optimal adaptive policy by
using the fact that locally-adaptive policies dominate non-adaptive policies. In particular, we show
we can convert a non-adaptive policy to an ε-locally-adaptive policy, with arbitrarily small loss in
value, and thus our bound follows. A natural question is then whether locally-adaptive policies are
as good as adaptive policies. We answer that question negatively by presenting an example that
exhibits a gap (≈ 0.853) between the optimal locally-adaptive policy and the optimal adaptive
policy. We conclude this expository subsection by formally defining ε-locally-adaptive policies.

Definition 3.2. An (adaptive) ε-block is a set S ⊆ X of size at most 1/ε2 and for each realization
Ri a set Ti ⊆ N (S) ∩Ri of size at most 2/ε. The cost of a block B is C(B) = |S|+ maxi(|Ti|). An
ε-locally-adaptive policy is a set B of (not necessarily disjoint) ε-blocks.5

Let Ti,B be the set seeded by block B in realization Ri and let Ti(B) =
⋃
B∈B Ti,B. We abuse

notation and generalize the value and cost functions to be applied on these policies. That is, we
let the value of such a policy be F (B) =

∑m
i=1 p(Ri)f(Ti(B)) and its cost C(B) =

∑
B∈B C(B). The

optimal ε-locally-adaptive policy with budget k is then:

OPTεLA = max
B

{
F (B) : C(B) ≤ k,∀B ∈ B : |SB| ≤ 1/ε2, ∀i : Ti,B ⊆ N (SB) ∩Ri, |Ti,B| ≤ 2/ε

}
3.1 The Algorithm

We now describe the LocallyAdaptiveGreedy algorithm. We run a greedy algorithm that in
each iteration adds a new ε-block to the current solution. The algorithm always adds a block
with an optimal marginal density, i.e. a block which maximizes the ratio between the expected
marginal contribution and cost. A formal description of the algorithm is included below. The

4Note that this does not exclude worse approximations guarantees via non-adaptive policies. In [35] non-adaptive
policies are used to obtain a (poor) constant approximation guarantee under knapsack constraints. In this paper, we
are interested in obtaining the (1− 1/e)2 approximation bounds.

5Note that the blocks are not necessarily independent - Ti can depend on the entire Ri and not only on N (S)∩Ri.

15

FindOptimalAdaptiveBlock subroutine simply enumerates over all subsets of size less than
1/ε2 of X and all budgets of size at most 2/ε and returns the pair with the highest marginal
density.

Algorithm 2 LocallyAdaptiveGreedy

Input: budget k,ε
1: B ← ∅
2: while C(B) < k − 3

ε2
do

3: B ← B ∪ FindOptimalAdaptiveBlock (B, ε)
4: end while
5: return B

Polynomial-size representation. As there are possibly exponential many realizations we can’t
hope to output a full explicit description of a locally-adaptive policy. Our algorithm instead outputs
for each block its first stage set Si and a budget ki for it to optimize in the second stage as well as
an order over the blocks. At every realization the policy seeds the second stage nodes by going over
the blocks by order and optimizing the choices of each block given only the choices made by the
previous blocks. Note that this implicitly determines the content of each block. In our algorithm
we implicitly assume the order on the blocks of B is the order in which the algorithms adds them
to B. Note that we can approximate F (B) and FB(B) (the marginal value of block B for policy B)
for such a policy to any desired accuracy by sampling realizations and running this process on each
of them (we thus assume in the analysis that we have an oracle for their value).

3.2 Analysis

Lemma 3.3. For any ε > 0, let B be the solution returned by LocallyAdaptiveGreedy with

input k, ε. Then, F (B) ≥
(

1− 1/e−O
(

(ε
√
k)−2

))
OPTεLA.

Proof. We first show that the marginal density of the ε-block chosen in each iteration of the algo-
rithm is at least the marginal density of the optimal locally-adaptive policy. Note that we always
have enough budget left to add a full sized block. Let Bj be the solution at the beginning of iteration
j and let Bj be the block added at iteration j with kj = maxi(|Ti,Bj |). Let BO denote an optimal
solution with value OPTεLA. For every iteration of the algorithm we have that:

FBj (BO)

k
=
ERi

[
fTi(Bj) (Ti(BO))

]
k

≤

∑
B∈BO ERi

[
fTi(Bj) (Ti,B))

]
∑

B∈BO C(B)

≤ max
B∈BO

ER

[
fTi(Bj) (Ti,B)

]
C(B)

≤
ERi

[
fTi(Bj)

(
Ti,Bj

)]
|Sj |+ kj

=
FBj (Bj)

|Sj |+ kj

16

The first inequality is from the submodularity of f , and the third holds because the algorithm
enumerates over all ε-blocks as candidates in each iteration - including over the blocks of BO.

We proceed by induction to show that at any iteration we have that

F (Bj+1) ≥

(
1−

j∏
l=1

(
1− |Sl|+ kl

k

))
OPTεLA

The base case is trivial. Assume it is true for F (Bj). Then we have that

F (Bj+1) ≥F (Bj) +
|Sj |+ kj

k
(OPTεLA − F (Bj))

=

(
1− |Sj |+ kj

k

)
F (Bj) +

|Sj |+ kj
k

OPTεLA

≥
(

1− |Sj |+ kj
k

)(
1−

j−1∏
l=1

(
1− |Sl|+ kl

k

))
OPTεLA +

|Sj |+ kj
k

OPTεLA

=

(
1−

j∏
l=1

(
1− |Sl|+ kl

k

))
OPTεLA

where the first inequality is from the previous derivation and the second inequality is by the
induction hypothesis.

When the algorithm ends the cost of the solution is greater than k′ >
(
1− 3

kε2

)
k. Therefore,

F (B) ≥

1−
t∏

j=1

(
1− |Sj |+ kj

k

) OPTεLA

≥
(

1− (1− k′

kt
)t
)
OPTεLA

≥
(

1− 1

ek′/k

)
OPTεLA

≥
(

1− 1

e
−O

(
1

kε2

))
OPTεLA

where the second inequality is because the solution’s cost is at least k′ and this expression is
minimized when the cost is evenly spread over the iterations.

Adaptivity gap of ε-locally-adaptive policies. We now show that ε-locally-adaptive policies
can arbitrarily approximate non-adaptive policies, which implies our bound. The high level idea
is to show that there are good non-adaptive policies that have a block structure and thus can be
converted to locally-adaptive policies. We first define the notion of ε-local for non-adaptive policies:

Definition 3.4. A budgeted ε-block is a triplet (S, k, T) such that S ⊆ X is of size at most
1/ε2,1ε ≤ k ≤ 2

ε and T ⊆ N (S) satisfies
∑

j∈T pj ≤ k. An ε-local non-adaptive policy is a set L of
budgeted ε-blocks. The cost of L is C(L) =

∑
B∈L |SB|+ kB.

We now prove that a non-adaptive policy can be converted into an ε-local non-adaptive policy.
Let T (L) be the union of all of L’s blocks second stage sets.

Lemma 3.5. For any non-adaptive policy (S, T) in which |S|+C(T) > 3/ε3, there exists an ε-local
non-adaptive policy L of the same cost such that F (T (L)) ≥ (1− 3ε)F (T).

17

Proof. Let k = |S|+ C(T). Fix some order (x1 . . . x|S|) on the elements of S. We say that a second-
stage node y ∈ N (S) ∩ T belongs to xj if xj is the smallest-indexed node in S with an edge to y.
For a set Q ⊆ S, let R(Q) be the nodes that belong to nodes in Q. Iteratively construct the blocks
of L by adding nodes from S into sets Si by the order (x1 . . . x|S|), until either

• 2/ε ≥ C(R(Si)) > 1/ε - set Ti = R(Si) and ki = C(R(Si)).

• C(R(Si)) > 2/ε - let Φ be the maximal set of nodes of R(x), where x is the last node added
to Si, that can be added to R(Si \ x) such that the cost remains under 2/ε (there is at least
one such node since a node’s cost is at most 1); set Ti = R(Si \ x) ∪ Φ and ki = C(Ti); start
the next set Si+1 again with x but ignore the nodes in Φ.

• |Si| = 1/ε2 or we are done - set Ti = R(Si) and ki = 1/ε.

The first condition incurs no extra cost. The second condition applies at most dεC(T)e times
and incurs an extra cost of 1 for the duplicated node, and in total at most εC(T) + 1. The third
condition applies at most dε2|S|e times and it incurs an extra cost of at most 1/ε, and in total at
most ε|S|+ 1/ε. The total additional cost incurred is therefore at most εk + 1 + 1/ε ≤ 2εk.

Iteratively remove from L the blocks whose marginal density is the lowest until C(L) ≤ k. Their
total cost at most 2εk+ (1/ε2 + 2/ε) ≤ 3εk. Thus, by submodularity, F (T (L)) ≥ (1− 3ε)F (T).

Our last step is to show that given an ε-local non-adaptive policy, we can construct an ε-locally-
adaptive policy with almost the same value. The following lemma follows from Lemma 2.2 by
analyzing each block of the policy independently. The ε4 is needed to match the condition on the
budget left for the second stage in that Lemma.

Lemma 3.6. For any ε such that ε ∈ (0, 1/5), and for any ε4-local non-adaptive policy L there
exists an ε4-locally-adaptive policy B with value ≥ (1− 2ε)F (T (L)).

Putting it all together, we have that for every constant ε > 0 there exist ε1, ε2, ε3 such that:

F (B) ≥ (1− 1/e− ε1) OPTε2LA ≥ (1− 1/e− ε3) OPTNA ≥
(
(1− 1/e)2 − ε

)
OPTA

where the first inequality follows from Lemma 3.3, the second from Lemma 3.6 and the third from
the results of the previous section. This completes our proof of Theorem 3.1.

3.3 Separation between ε-locally-adaptive and adaptive policies

We complement this section with an example that exhibits a gap between the values of the optimal
ε-local-adaptive policy and the optimal adaptive policy. It remains open whether the optimal gap
is (1 − 1/e) as our upper bound suggests. Any better upper bound on the gap will immediately
imply a better approximation bound for Algorithm LocallyAdaptiveGreedy.

Lemma 3.7. There are instances where every ε-locally-adaptive policy achieves at most ≈ 0.853 of
the value of the optimal adaptive policy.

Proof. We construct an instance where it is advantageous to move large amounts of the budget after
seeing the realizations. Since this is only possible in a fully adaptive (i.e. not ε-locally-adaptive)
policy, we obtain a separation between the two classes of solutions.

Let m be a large parameter, and consider an instance where the first stage has |X| = m nodes.
Each node x ∈ X is connected to one special node yx ∈ Y , and it also has m2 regular neighbors

18

zix ∈ Zx ⊂ Z. The special nodes in Y realize with probability 1/m, while the regular nodes in Z
realize with probability 1. Let the budget be k = m2 +m+ 1. Finally, consider the function:

f(T) = 1−
∏
x∈X

(
1− 1

2
|T ∩ yx| −

1

2m2
|T ∩ Zx|

)
.

To see that f is indeed submodular, consider the following observation by Dughmi and Vondrak [13]:
For any monotone submodular functions g1 and g2 with values in [0, 1], g(S) := 1− (1− g1(S))(1−
g2(S)) is also monotone submodular. Applying this lemma recursively, we see that for any number
of monotone submodular functions g1 . . . gt with values in [0, 1], g(S) := 1 −

∏
i(1 − gi(S)) is also

monotone submodular. Finally, f is submodular since it can be written in this form for coverage
functions fx(T) = 1

2 |T ∩ yx| −
1

2m2 |T ∩ Zx|.
Optimal adaptive: The optimal adaptive solution seeds all the first-stage nodes. With probability

1−1/e, one of the special nodes yx realizes, in which case the optimal policy seeds yx, as well
as all the nodes zx ∈ Zx. In this case, f(T) = 1. With probability 1/e, none of the special
nodes realize. In this case, the adaptive policy picks x arbitrarily, and seeds all the nodes
zx ∈ Zx. In this case f(T) = 1/2. In expectation, E[f(T)] = 1− 1/(2e).

ε-locally adaptive: Given a realization, we say that a block Si is special if it contains a node with
a realized special neighbor, and regular otherwise. Observe that in any locally adaptive policy,
the probability that a block Si is special is less than 1/(mε2) by union bound. Therefore, the
expected total budget ki allocated to special blocks Si is at most O(m/ε2), i.e. negligible in
comparison to |Zx| = m2. Therefore any locally adaptive policy must spend all but a negligible
amount of its budget on regular subsets. (It may still seed all the realized special nodes, but
with only a negligible fraction of their neighbors). Let ξ denote the number of realized special
nodes. Conditioning on ξ, we have,

E [f (T) | ξ] ≤ 1− 2−ξ ·
∏
x∈X

(
1− 1

2m2
|T ∩ Zx|

)
+ o(1).

The optimal way to spend the budget on regular blocks is to pick some x arbitrarily, and seed
(almost) all the nodes zx ∈ Zx, leaving sufficient budget to seed any realized special nodes.
In particular, for any feasible T ,∏

x∈X

(
1− 1

2m2
|T ∩ Zx|

)
≥ 1−

∑
x∈X

1

2m2
|T ∩ Zx| ≥ 1/2.

Finally, notice that the distribution of ξ is approximately Pois(1). The expected value of the
locally adaptive policy is therefore:

E [f (T)] ≈ 1− 1

2
·
∞∑
i=0

Pr [Pois (1) = i] 2−i

= 1− 1

2
·
∞∑
i=0

1

i!
e−12−i

= 1− 1

2

(∞∑
i=0

(
1
2

)i
i!

e−1/2

)
· e−1/2

= 1− 1

2
e−1/2

Thus the ratio between the values of the policies is 1−1/(2e)
1− 1

2
e−1/2 ≈ 0.853.

19

References

[1] Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of constructing
algorithms with proven performance guarantee. J. Comb. Optim., 8(3):307–328, 2004.

[2] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri Weinstein. In-
approximabilty of densest k-subgraph from average case hardness, 2011.

[3] Arash Asadpour, Hamid Nazerzadeh, and Amin Saberi. Stochastic submodular maximization.
In Internet and Network Economics, pages 477–489. Springer, 2008.

[4] Eytan Bakshy, Jake M. Hofman, Winter A. Mason, and Duncan J. Watts. Everyone’s an
influencer: quantifying influence on twitter. In WSDM, 2011.

[5] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing social
influence in nearly optimal time. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, SODA, volume 14. SIAM, 2014.

[6] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodu-
lar set function subject to a matroid constraint. In Integer programming and combinatorial
optimization, pages 182–196. Springer, 2007.

[7] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In Proceedings of the 43rd annual
ACM symposium on Theory of computing, pages 783–792. ACM, 2011.

[8] Ning Chen. On the approximability of influence in social networks. In SODA, pages 1029–1037,
2008.

[9] Wei Chen, Fu Li, Tian Lin, and Aviad Rubinstein. Combining Traditional Marketing and
Viral Marketing with Amphibious Influence Maximization. In Proceedings of the Sixteenth
ACM Conference on Economics and Computation, EC ’15, Portland, OR, USA, June 15-19,
2015, pages 779–796, 2015.

[10] Brian C Dean, Michel X Goemans, and J Vondrák. Approximating the stochastic knapsack
problem: The benefit of adaptivity. In Foundations of Computer Science, 2004. Proceedings.
45th Annual IEEE Symposium on, pages 208–217. IEEE, 2004.

[11] Pedro Domingos and Matthew Richardson. Mining the network value of customers. In KDD,
pages 57–66, 2001.

[12] Shaddin Dughmi, Tim Roughgarden, and Qiqi Yan. From convex optimization to randomized
mechanisms: toward optimal combinatorial auctions. In Proceedings of the 43rd annual ACM
symposium on Theory of computing, STOC ’11, pages 149–158, New York, NY, USA, 2011.
ACM.

[13] Shaddin Dughmi and Jan Vondrák. Limitations of randomized mechanisms for combinatorial
auctions. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium
on, pages 502–511. IEEE, 2011.

[14] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998.

[15] Scott L Feld. Why your friends have more friends than you do. American Journal of Sociology,
pages 1464–1477, 1991.

20

[16] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in ac-
tive learning and stochastic optimization. Journal of Artificial Intelligence Research, 42(1):427–
486, 2011.

[17] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of diffusion
and influence. In KDD, pages 1019–1028, 2010.

[18] Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R Ravi. Approx-
imation algorithms for stochastic orienteering. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1522–1538. SIAM, 2012.

[19] Anupam Gupta, Martin Pál, R Ravi, and Amitabh Sinha. Boosted sampling: approxima-
tion algorithms for stochastic optimization. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 417–426. ACM, 2004.

[20] Thibaut Horel and Yaron Singer. Scalable methods for adaptively seeding a social network.
WWW, 2015.

[21] Nicole Immorlica, David Karger, Maria Minkoff, and Vahab S Mirrokni. On the costs and
benefits of procrastination: approximation algorithms for stochastic combinatorial optimiza-
tion problems. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 691–700. Society for Industrial and Applied Mathematics, 2004.

[22] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In KDD, pages 137–146, 2003.

[23] Jon Kleinberg, Yuval Rabani, and Éva Tardos. Allocating bandwidth for bursty connections.
SIAM Journal on Computing, 30(1):191–217, 2000.

[24] Silvio Lattanzi and Yaron Singer. The power of random neighbors in social networks. WSDM,
2015.

[25] Lucien Le Cam. An approximation theorem for the poisson binomial distribution. Pacific
Journal of Mathematics, 10(4):1181–1197, 1960.

[26] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics of viral marketing.
In ACM Conference on Electronic Commerce, pages 228–237, 2006.

[27] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne M. VanBriesen,
and Natalie S. Glance. Cost-effective outbreak detection in networks. In KDD, pages 420–429,
2007.

[28] Michael Mathioudakis, Francesco Bonchi, Carlos Castillo, Aristides Gionis, and Antti Ukkonen.
Sparsification of influence networks. In KDD, 2011.

[29] Vahab S. Mirrokni, Michael Schapira, and Jan Vondrák. Tight information-theoretic lower
bounds for welfare maximization in combinatorial auctions. In ACM Conference on Electronic
Commerce, pages 70–77, 2008.

[30] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

[31] Elchanan Mossel and Sébastien Roch. On the submodularity of influence in social networks.
In STOC, pages 128–134, 2007.

21

[32] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maxi-
mizing submodular set functions ii. Math. Programming Study 8, pages 73–87, 1978.

[33] R Ravi and Amitabh Sinha. Hedging uncertainty: Approximation algorithms for stochastic
optimization problems. In Integer programming and combinatorial optimization, pages 101–
115. Springer, 2004.

[34] Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for viral marketing.
In KDD, pages 61–70, 2002.

[35] Aviad Rubinstein, Lior Seeman, and Yaron Singer. Approximability of adaptive seeding under
knapsack constraints. In Proceedings of the Sixteenth ACM Conference on Economics and
Computation, EC ’15, pages 797–814, 2015.

[36] Lior Seeman and Yaron Singer. Adaptive seeding in social networks. In Proceedings of the The
54th Annual Symposium on Foundations of Computer Science, 2013.

[37] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochastic pro-
gramming: modeling and theory, volume 9. Society for Industrial Mathematics, 2009.

[38] David B Shmoys and Chaitanya Swamy. Stochastic optimization is (almost) as easy as deter-
ministic optimization. In Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, pages 228–237. IEEE, 2004.

[39] David B Shmoys and Chaitanya Swamy. An approximation scheme for stochastic linear pro-
gramming and its application to stochastic integer programs. Journal of the ACM (JACM),
53(6):978–1012, 2006.

[40] Aravind Srinivasan. Approximation algorithms for stochastic and risk-averse optimization. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1305–1313. Society for Industrial and Applied Mathematics, 2007.

[41] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In Proceedings of the 40th annual ACM symposium on Theory of computing, pages
67–74. ACM, 2008.

[42] Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM
J. Comput., 42(1):265–304, 2013.

[43] De-Nian Yang, Hui-Ju Hung, Wang-Chien Lee, and Wei Chen. Maximizing acceptance prob-
ability for active friending in online social networks. In KDD’13, 2013.

22

A Chernoff bound

We use the following bound in the paper (See for example [30, Theorem 4.4]).

Theorem A.1 (Chernoff bound). Suppose X1, . . . , Xn are independent random variables taking
values in [0, 1] and let X denote their sum and µ be the expected value of X. Then, for 0 < δ < 1
we have that

Pr[X > (1 + δ)µ] ≤ exp(−δ
2µ

3
)

23

	Introduction
	Warm up: the non-stochastic case
	Synopsis
	Results
	Related work

	Non-adaptive policies
	Optimization via Non-Adaptive Policies
	Finding optimal non-adaptive -block
	Approximating optimal -block for large probabilities
	Approximating the optimal -block for MRS objective
	Hardness of approximating optimal -block for general submodular functions

	Approximation via -locally-adaptive policies
	The Algorithm
	Analysis
	Separation between -locally-adaptive and adaptive policies

	Chernoff bound

