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ABSTRACT 

In many ways, the central problem of ubiquitous computing 
– how computational systems can make sense of and 
respond sensibly to a complex, dynamic environment laden 
with human meaning – is identical to that of Artificial 
Intelligence (AI).  Indeed, some of the central challenges 
that ubicomp currently faces in moving from prototypes 
that work in restricted environments to the complexity of 
real-world environments – e.g. difficulties in scalability, 
integration, and fully formalizing context – echo some of 
the major issues that have challenged AI researchers over 
the history of their field. In this paper, we explore a key 
moment in AI’s history where researchers grappled directly 
with these issues, resulting in a variety of novel technical 
solutions within AI.  We critically reflect on six strategies 
from this history to suggest technical solutions for how to 
approach the challenge of building real-world, usable 
solutions in ubicomp today.  
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INTRODUCTION 

In the relatively short history of our field, ubiquitous 
computing has frequently engaged techniques, methods and 
approaches from Artificial Intelligence (AI) [e.g. 29]. This 
is hardly a surprise, since the fields share an overlapping 
interest in building technologies that make sense and 
respond in a sensible way to the complex dynamics of 
human environments. This common interest supports the 
useful adaptation of AI methods such as machine learning, 

sensing, and decision algorithms to ubicomp systems. In 
addition, the special class of real-time, responsive, 
embedded AI systems share a particular affinity with 
ubicomp systems, since they are intended to be deployed in 
similar environments, share many overlapping 
requirements, and therefore face similar challenges in 
coming to grips with situations that are fast-changing, 
unpredictable, and laden with complex human meaning. 

In particular, ubicomp is currently facing a series of 
challenges in scaling up from prototypes that work in 
restricted environments to solutions that reliably, robustly 
work in the full complexity of human environments [2,26]. 
These challenges echo problems AI researchers tackled as 
the field sought to move beyond ‘blocks-world’ solutions to 
build real-time systems that could work in dynamic, 
complex environments. In this paper, we reflect on 6 
episodes from this history where researchers found novel 
ways to reframe core AI problems in order to develop new 
technical solutions. We use these episodes as a starting 
point for thinking through how ubicomp may be able to 
draw on similar forms of reframing in order to spur the 
development of robust, reliable, real-time ubiquitous 
systems today.   

BACKGROUND 

In order to better understand the problems AI researchers 
were addressing and their relevance to ubicomp, we begin 
by describing the recurrent difficulties AI was running into 
in the 1980s, and the ways in which what we will here term 
‘interactionist AI’ reframed AI problems in order to move 
beyond these recurrent difficulties. We will then explain 
how these challenges are mirrored in contemporary 
ubicomp’s push to move out of the laboratory and into the 
real world. 

Making AI work in the world 

The history of AI, “the most colorful and controversial 
branch of computer science” [24, p. 54], has been marked 
by numerous highs followed by crashing lows in terms of 
success, recognition and funding. One such low was 
triggered by the undelivered promises of early AI research, 
resulting in the AI funding winter of the 1970s. As the goal 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
UbiComp'08, September 21-24, 2008, Seoul, Korea. 
Copyright 2008 ACM  978-1-60558-136-1/08/09...$5.00. 
 



 

of computational intelligence proved to be harder to achieve 
than initially expected, in the early 1980s, a number of focal 
areas of interest for AI began to crystallize. These areas 
targeted individual intelligent capabilities: knowledge 
representation, planning, computer vision, natural language 
understanding, machine learning, etc. In what later became 
known as classical AI, these problems were generally 
tackled by identifying real-world entities relevant to the 
problem, formally representing them using symbolic 
representations, and using rules and inference to manipulate 
said representations to derive answers [48]. Based on the 
principle of divide-and-conquer, progress was to be made 
through independent work on each of the competencies 
revealed through functional decomposition; these functional 
modules would eventually be combined into a complete 
intelligent system.  

Although it had appeared that this divide-and-conquer 
strategy would allow for measurable, incremental 
improvements in AI algorithms that could eventually be 
merged into a single system, a number of problems 
emerged. First, attempts to provide technical solutions to 
each of these problems were often overwhelmed by the 
amount of contextual information and intelligence each 
seemed to require. Incorporating more contextual 
information in systems by way of symbolic representation 
did not seem to really solve the problem, since each 
addition to the model would trigger a chain of additional 
related entities that had to be accounted for. This 
proliferation of considerations the algorithms needed to 
address led to problems of scalability in terms of 
computational complexity [e.g. 16]. At the same time, AI 
researchers discovered the complexities of maintaining 
consistent and accurate world models even in simplified 
environments [17]. Finally, although research development 
in AI was organized around modular functionalities, when 
attempts were made to combine these functionalities it was 
found that integration was less a matter of plug-and-play 
than a substantial technical achievement on its own [46]. 

Given the fast successes claimed by early AI in 
demonstrating advanced problem solving capabilities, 
sometimes beyond human level (e.g. playing chess), these 
difficulties came as a surprise. Particularly so, as some of 
the subproblems researchers hoped to address – such as 
vision or natural language understanding – are easy, even 
effortless for humans, yet proved to be very hard for 
computers. Realization gradually dawned that these 
functional modules were intertwined, each requiring others 
in order to work. As a consequence, such problems were 
sometimes termed AI-complete problems to suggest that a 
solution to these problems would presuppose a solution to 
the general problem of intelligence [33].  The notion of AI-
completeness suggests that it will be very difficult, if not 
impossible, to develop complete, robust, and general 
solutions to AI-complete problems – i.e., that the challenges 
AI had taken on were hopeless by conventional methods. 

The problems of AI-completeness became particularly 
obvious and challenging in the area of autonomous agents, 
i.e. software and robotic systems that are intended to 
correspond to a complete (though perhaps simplistic) 
animal, person, or character. By necessity, agents require 
functional integration. In light of the growing complexities 
faced by tackling AI-complete problems head on, a number 
of alternative approaches arose in this area to work around 
issues pertaining to AI-completeness, such as behavior-
based AI, situated action, and believable agents. These 
researchers developed specific technical strategies to 
circumvent AI-completeness by focusing on solutions that 
worked in specific, situated contexts rather than solving the 
general problem of intelligence (this work was informed in 
part by Lucy Suchman’s critiques of the limitations of 
planning algorithms, which are also well-known in HCI 
[44]). Because, as we will describe below, these researchers 
saw themselves as providing concrete, technically feasible 
approaches for supporting real-time, intelligent interaction 
with a changing environment, we will refer to these 
approaches as interactionist AI. Interactionist AI questions 
the assumptions of generality, rationality, and complete and 
correct world models underlying classical AI, focusing 
instead on embedding autonomous systems within specific, 
real-world contexts. Our goal in this paper is to reflect on 
the technical strategies developed by interactionist AI 
researchers in order to identify tactics that may be useful for 
ubicomp today.  

For the purposes of this paper, interactionist AI is 
understood as historically appearing in two waves. The first 
wave was concerned with constructing autonomous agents, 
primarily robots that operate robustly in real-world 
environments. These first-wave systems were generally not 
concerned with human interpretation of the agent, but rather 
with robust and fault-tolerant performance in a complex 
environment. The second wave was, and is, concerned 
explicitly with human interpretation of and interaction with 
autonomous agents, with a focus on effective 
communication between agent and human. This was a 
natural evolution of interactionist AI as humans became 
part of the environment in which the autonomous agent 
should operate.  

Both waves of interactionist AI make use of context-
specific regularities in the environment to avoid AI-
completeness. For example, first-wave systems avoid the 
need for a complete and correct theory of the physical 
world by leveraging assumptions and dynamical regularities 
of the environment to directly select actions based on 
sensor values. Similarly, second-wave systems avoid the 
need for a complete and correct theory of human 
communication (semantics, pragmatics, mental state), by 
leveraging extra-system knowledge in the minds of human 
participants in a specific context of interaction.  

In the next section, we will describe why these lessons of 
interactionist AI might be particularly pertinent for the 
challenges ubicomp currently faces. 
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From AI to Ubicomp 

The central insight that drove technical solutions in 
interactionist AI was that in moving from small-scale, 
partial prototypes to complete systems that could work in 
the real world, it can be helpful to circumvent the problem 
of developing full-scope, human-scale intelligence by 
taking advantage of the situated properties of the context of 
use in the technical design of the system. Because ubicomp 
is now facing a similar challenge to scale up from 
experimental components tested in controlled conditions to 
robust, reliable, integrated, real-world systems, there is a 
real potential for the solutions that proved useful for 
autonomous agents to map to ubicomp.  

First-wave interactionist AI focused on the following three 
challenges: responding to dynamically changing 
environments, graceful degradation of behavior in the face 
of unexpected environmental conditions, and balancing 
several, often conflicting goals. This requires that agents be 
robust to noisy, faulty and inconsistent sensor values, 
provide sensible functionality even when the environment 
changes unexpectedly or components fail, and solve the 
action-selection problem in such a way as to accomplish 
internal goals while remaining reactive to the environment. 
Ubicomp systems today face similar challenges with 
respect to sensing [e.g. 2,26], robust and reliable operation 
in unexpected real-world conditions [e.g. 50,21], and real-
time, flexible juggling of competing goals [e.g. 2,43,19]. 

Second-wave interactionist AI focuses on the following 
three challenges: incorporating explicit interaction with 
humans as part of the environment (human-in-the loop), 
explicitly communicating agent (system) state in a manner 
actionable by humans, and participating in rich social and 
cultural contexts. This requires that agents leverage 
dynamical regularities in individual and group behavior, 
match internal state complexity and external representation 
complexity, often taking advantage of representation 
strategies from the expressive arts, and manipulate and 
reference cultural codes whose full meaning is strictly 
greater than that represented within the system. Ubicomp 
systems today face similar challenges with respect to 
human behavioral regularities [e.g.12], expressive 
representation [e.g. 14], and social and cultural embedding 
[e.g. 45, 51]. From this description, it should be clear that 
the challenges and goals of interactionist AI are strikingly 
similar to those facing ubicomp today; and, therefore, 
technical solutions developed by interactionist AI 
researchers may prove to have relevance to these 
contemporary challenges. Yet if this is the case, given the 
existing interchanges between AI and ubicomp, why 
haven’t these solutions already been explored? The simple 
answer is because interactionist AI is not currently a central 
theme in AI, and thus is not very visible or accessible to the 
ubicomp researcher.  

Though first-wave interactionist AI had some clear 
victories in developing new forms of real-time, responsive 
systems, the approaches did not scale to more complex 

agents with higher-level cognitive competencies. The 
ideological and technological battle between traditional and 
first-wave interactionist AI resulted essentially in a draw; 
neither side really attempted to scale outside their comfort 
zone, with symbolic partisans staying safely away from 
real-time responsiveness and noisy sensors, and 
interactionist partisans staying safely away from longer-
term planning, complex inference, and natural language 
interaction. Robotics settled into a standard three-tier 
architecture, which combines interactionist and symbolic 
methods; interactionist methods handle real-time execution 
(the bottom two tiers) and symbolic methods handle long-
term planning (the top tier). Though this state of détente has 
been productive for robotics (though integration issues 
remain, often limiting the useful generativity possible in the 
symbolic reasoning layer), by effectively ending the 
conversation, it has made interactionist AI’s insights into 
technical and design strategies less visible.  

Second-wave interactionist AI is still in its youth, with a 
small but growing number of active researchers 
contributing to the field. But the influence of this body of 
work tends to be restricted to smaller, specialized 
conferences, such as AI and Interactive Digital 
Entertainment, Intelligent Virtual Agents, and Human-
Robot Interaction, rather than being visible within AI as a 
whole. Thus the focus on AI as a method of communication 
and means for structuring audience experience, while 
commonplace within, for example, the game AI 
community, is not very accessible to the ubicomp 
researcher.  

Reflecting on the insights of interactionist AI holds value 
for ubicomp for the following reasons. First, although 
interactionist AI may not be the route to full, autonomous 
intelligence, its ability to generate systems of many, 
distributed, autonomous, robust and responsive components 
that communicate through the environment is directly 
relevant to Weiser’s vision of ubiquitous computing [49]. 
Second, while interactionist AI’s critiques of classical 
approaches are no longer as relevant in AI (having been 
absorbed into the background), they remain relevant in 
ubicomp because ubicomp’s existing approaches towards 
system design and representation often resemble those of 
classical AI. For example, emphasis in our field, as in 
classical AI, is placed on incorporating systematic 
representations of external entities that are pertinent to the 
system’s functionality into the system. In ubicomp, such 
representations revolve around users’ identity, activity, 
location, and indeed harder to define notions, such as 
context [2,18,20]. As we will demonstrate below, the 
similarity between these representational approaches may 
support relatively straightforward adaptation of 
interactionist AI solutions to the problems of ubicomp.  

Before moving on, we would like to comment briefly on the 
statistical revolution in AI. Machine learning (ML) has 
become a major approach within AI; by enabling statistical 
reasoning over large datasets, ML has circumvented 



 

knowledge engineering bottlenecks that plagued classical 
AI. However, ML is not an approach for building complete 
agents, but rather provides statistical solutions for specific 
competencies (ML’s application to activity recognition is 
particularly relevant in a ubicomp context). Interactionist 
AI, in contrast, provides strategies for building complete, 
integrated agents, which is why we focus on interactionist 
AI in this paper.  

SIX STRATEGIES 

As we began to explore in the previous section, 
interactionist AI approaches arose in reaction to recurring 
difficulties in extending formal, symbolic approaches to 
real-world, embedded systems. It sought to create systems 
that appeared to be intelligent, without running into the 
problems associate with AI-completeness. In this section, 
we reflect on six technical strategies developed in 
interactionist AI. In each case, we will describe why and 
how the strategy was developed, then reflect on how that 
strategy could be usefully adapted for the development of 
ubiquitous computing technologies. Strategies one through 
three are drawn from first-wave interactionism, strategies 
four through six from second-wave interactionism.  

Strategy #1: Tightly integrate sensing and action in 
complete working systems 

The first strategy we will explore was developed in the field 
of robotics and addressed the issues that emerge in 
integrating the functional components of intelligence in 
real-world, embodied systems. Traditionally [e.g. 37], a 
mobile robot’s control system is decomposed into function 
modules such as perception (sensing), modeling (mapping 
sensor input to a representation of the world), planning, task 
execution and motor control. This functional decomposition 
involves a chain of modules, each of which solves a 
subproblem and passes the result along to the next module, 
eventually performing a motor action. 

In this setting, even a very minimal working system 
requires that an instance of each module must be realized 
and that all modules must fit together. It becomes clear that 
in the event of faulty functionality of one of the 
components, the robustness of the entire system is 
compromised. Furthermore, alterations within a single 
module are limited to either 1) keeping the interface to the 
neighboring modules unchanged or 2) modifying the 
interface, which translates into propagating the changes 
along the module chain. As such, common maintenance 
operations, such as debugging and optimization, as well as 
ordinary upgrades like adding new sensors or responding to 
conflicting goals by changing the control unit (usually 
located in the planning module) may result in costly and 
time consuming changes in the entire system architecture.  

In light of these difficulties, roboticist Rodney Brooks 
proposed an alternative called behavioral decomposition 
[9]. Instead of breaking up the problem of robotic action 
into functional, modular subproblems, behavioral 
decomposition relies on an incremental method that stacks 

increasingly complex layers of behavior on top of each 
other. Each layer links perception to action and is 
responsible for a certain behavior: low level layers 
implement basic behaviors (e.g. avoid obstacles), while 
higher levels provide more complex ones (e.g. build maps 
of the environment and compute paths). Higher levels 
subsume the behavior of lower levels, while the lower 
levels do not know about the existence of the higher layers. 
Once a level is completed it is never altered: introducing 
new behaviors is achieved by simply adding another layer 
of functionality on top. 

Genghis, a six-legged walking robot, exemplifies the 
potential of this approach [9]. Genghis integrates a large 
number of sensors and actuators, achieving a rich array of 
behaviors from basic ones such as standing-up and walking 
to complex actions such as following people. Genghis has 
no perception module and therefore does not engage in 
sensor fusion; instead, programmers manage conflicts 
between sensors only when the inconsistencies are relevant 
to the current behavioral situation. The robot (along with 
others built by Brooks’ group) represents a technical proof 
that complex behavior can be achieved by way of many 
independent simple behaviors, with little or no central 
coordination.  

Consequences for Ubicomp  

Turning our attention back to ubiquitous computing, we see 
a similar challenge to build systems that integrate 
components reliably in complex real-world contexts, and a 
similar opportunity to build up system functionality 
incrementally in order to assure that experimental 
components actually function usefully in integrated 
systems.  

The functional decomposition, which turned out to be 
problematic for integration, continues to structure much 
ubicomp research. For example, in context-aware systems, 
a common development approach explicitly separates 
sensing from the core of the application and aims to 
develop it as a stand-alone application regardless of context 
of use [18,27]. Instead, Brook’s work suggests explicitly 
structuring system architecture to reflect the intricate 
relationship between sensing and acting. Approaches that 
fundamentally rely on a deep coupling between sensing and 
acting represent viable alternatives for ubicomp systems in 
which 1) sensor fusion cannot be decoupled from the 
situation of use, i.e. the relevance of the sensor readings 
cannot be established a priori and/or may become obvious 
only in light of the specific, current situation of use and 2) 
conflicting sensor readings do not necessarily lead to 
different actions. By tying sensing and action together as 
Brooks suggest, we may be able to address technically 
Dourish’s critique that context and action in ubicomp 
should be more tightly intertwined [20]. 

Perhaps the most significant lesson from Brooks’ work is 
that early component integration, irrespective of the 
approach taken, can uncover opportunities as well 
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constraints that would otherwise go unnoticed. Specifically, 
it could help focus the system development by highlighting 
the sine qua non technical requirements, as opposed to 
getting slowed down by what we might ideally want, but is 
secondary to the bare functionality of the system. 
Interactionist strategies allow applications to grow 
organically (a frequent requirement for ubicomp system 
development [1]) by incrementally upgrading with new, 
more complex functionality without altering existing 
functionality.  

One example of an ubicomp system that implicitly 
embodies such an orientation towards system design is 
ButterflyNet, a capture and access mobile system designed 
for biology fieldwork [52]. Rather than focusing on 
developing individual cutting-edge functionality, the 
designers created a fully functioning application by 
combining off-the-shelf, heterogeneous devices - a digital 
camera, and a digital handheld pen system. They designed 
its architecture to be easily extendable e.g. to support 
adding new sensors. It is quite robust and offers graceful 
degradation; paper notes are automatically digitized by the 
pen system, but in case of errors the user still has the paper 
version.  

Strategy #2: Sense rather than represent 

Both classical AI and ubicomp rely heavily on explicit, 
formal models of the world as well as on manipulating 
symbols corresponding to entities in the world in order to 
understand the environment and derive results that are 
meaningful in the context of use. In AI, this approach has 
proven to be quite cumbersome as it may require large 
amounts of storage, internal models must be continuously 
kept up to date (the frame problem is a classic problem in 
this regard [e.g. 22]) and inference can be computationally 
costly, all of which are problematic even in simplified 
environments [17].  

In response to the challenges inherent in building and 
maintaining accurate world models, Brooks suggested a 
radical solution: abandon the use of sophisticated world 
models and instead use sensing to extract the minimum 
information required to drive behavior. This is in some 
sense a corollary of the first strategy, in that tight coupling 
of sensing and action is at odds with maintaining a 
complete world model. However, as a strategy, it is useful 
to pull out separately as it refocuses system designers to 
consider what world state can be directly exploited without 
modeling.  

Herbert is an example of a fairly sophisticated robot built 
by Brooks’ group that was able to engage in complex 
behavior such as walking around busy offices, identifying 
and picking up empty soda cans. It accomplished this with 
no internal model of the office space and no internal 
communication between behavior layers. Instead, Herbert, 
following the dictum “the world is its own best model” [10, 
p.5], relied solely on its sensors to continuously sense and 
react to the environment by following simple, opportunistic 

rules (e.g. if a soda can is detected, move towards it). By 
relying on regularities in the world, Herbert demonstrates 
that real-world systems can avoid using explicit internal 
representations, and thus avoid the difficulties involved in 
maintaining such representations so that they remain true 
[11]. 

Consequences for Ubicomp 

The challenges posed by representation are of relevance for 
ubicomp, in light of significant efforts to model context 
[e.g. 2,18] and critiques of their intrinsic limitations [e.g. 
40,20]. World models are also becoming popular in 
ubicomp in an attempt to build more powerful ubicomp 
systems [e.g. 25]. The issues explored by interactionist AI 
researchers suggest there are serious technical limitations to 
the goal of building complex, reliable, and dynamically 
relevant world models. The Brooksian rule-of-thumb – limit 
representation, sense instead – suggests that it might in fact 
be easier to achieve complex, useful behavior without 
building and reasoning about internal representations of 
context. Systems such as Herbert demonstrate that 
apparently intelligent, and useful, behavior can be achieved 
without the system having a formal or explicit 
understanding of what it is doing.  

Strategy #3: Develop ad-hoc, situated representations  

There are limitations to the complexity of systems that can 
be built if designers literally eliminate all internal 
representation. As interactionists reached these limitations, 
they began developing strategies for re-introducing 
representation without re-introducing all the problems of 
maintaining complete, correct and coherent world models.  

One such alternative representation strategy is David 
Chapman and Phil Agre’s deictic representation developed 
in their work on reactive planning [4]. Agre and Chapman 
developed a computer program controlling Pengi, a penguin 
that plays the computer game Pengo. The game takes place 
in an ice blocks maze inhabited by killer bees. As is typical 
for interactionist AI applications, this environment is highly 
dynamic: the bees and some of the ice blocks are constantly 
moving, ice blocks can be pushed by either Pengi or the 
bees, where pushing an ice block causes it to slide in the 
direction it was pushed until it hits another ice block. In 
order to win, Pengi must avoid being killed by bees or ice 
blocks, and kill all the bees by crushing them using ice 
blocks. Although the setting is fairly simple, the bees 
behavior is randomized, therefore Pengi’s environment is 
constantly changing, often in unpredictable ways. 

Pengi managed to play “a pretty decent game of Pengo. In 
its present state it is a little better than I am, which is to say 
that it wins from time to time and usually puts up a good 
fight” [3, p.265]. What is remarkable about Pengi is that the 
complex behavior it exhibits is accomplished without 
maintaining a complete, coherent world model. Such a 
world model would typically represent the entities that 
appear in Pengi’s environment (the bees, the ice blocks and 



 

Pengi itself) using explicit, objective representations, e.g. 
bee#1 to keep track of the location of a particular bee. In 
contrast, deictic representations are defined in terms of the 
agent’s situation (location, scope, etc.) and the roles entities 
might play with respect to the agent’s activity. For example, 
the-bee-I-am-attacking, as the name suggests, represents the 
bee Pengi is currently attacking. At different points in time, 
any of the bees in the game may ‘become’ this bee. In other 
words, Pengi only keeps track of the entities relevant to his 
current actions, relying on the fact that the individual 
identity of these entities does not matter. This deictic 
approach saves Pengi a lot of unnecessary computation and 
potential sources of error: as the world changes, only 
representations of parts of the world currently relevant to 
Pengi’s actions are tracked and updated.  

Deictic representation is informed by the realization that 
much of our interaction with the environment is guided by 
regularities in the world: e.g. we use cups to drink from, 
forks to eat with, etc. As such, the identities of cups, forks, 
etc. become irrelevant. Therefore, deictic representation 
does not designate unique entities in the world, but rather a 
role that a certain kind of entity can play. Different entities 
can play this role at different times, but the system will treat 
them the same way. As a consequence, the representation is 
not objective, in the sense that it is defined relative to the 
system’s needs and interests rather than the identities of 
real-world entities. With deictic representation, a system 
only represents different entities to the extent that they fill 
roles that have behavioral consequences for the system.  

Another example of an ad-hoc approach to representation 
was realized in Loyall and Bates’s Hap agent architecture 
[31], which supports real-time, reactive behavior. A Hap 
agent is divided into a collection of behaviors, each of 
which integrates sensing and action in a similar manner to 
that suggested by Brooks, but which can also optionally 
query and update symbolic representations. The Hap 
architecture is designed to allow programmer-scripted 
behavior, similar to Pengi’s control structure, to be flexibly 
interleaved with optional stretches of reasoned behavior 
which somewhat resemble plans. Like Pengi, the Hap agent 
architecture is explicitly designed to only require its 
programmers to specify, store, maintain and reason with 
symbolic representations to the extent that they are 
explicitly required by any individual behavior. Unlike 
Pengi, these representations can be stored and maintained 
over time as needed; so Hap agents can know where they 
are over the course of an interaction, or, in later 
architectures developed from Hap [41,35], can explicitly 
reflect on their own behavior. Unlike classical AI 
architectures, they do not need to do so consistently and 
coherently across their entire structure; they only need to do 
so to the extent specifically useful for the situation and 
behavior they find themselves in. 

Consequences for Ubicomp 

Alternative approaches to non-systematic representation 
support more complex functionality than non-
representational approaches (like strategies 1 and 2), 
without introducing the complexities of complete, objective 
world models. For example, deictic representations could 
be used in a smart home to represent roles that specific 
household objects such as forks and chairs play in specific 
behavioral contexts, rather than attempting to represent the 
individual identifies of objects, and the “total context” of 
the home. Even when using more traditional forms of 
symbolic representation, Hap demonstrates that designers 
can reduce the complexity of building real-world working 
systems by dropping the requirement that representations 
must be complete, coherent and consistent.  

Strategy #4: Design for human-in-the-loop dynamics  

With strategy 4, we start mining insights from second-wave 
interactionist AI. Where first-wave interactionists focused 
on robust behavior in complex environments, second-wave 
interactionists focus on human interpretation of and 
interaction with autonomous systems. A recurring theme of 
first-wave interactionist AI was to design systems to take 
advantage of structural regularities of the physical 
environments into which they were deployed. In a move 
reminiscent of Simon’s ant [42], this bootstrapping on the 
dynamics of the world allowed the internal code of the 
system to be simplified while maintaining complexity of 
observable behavior.  Second-wave interactionists built on 
this work by bootstrapping on the behavioral regularities of 
human beings.  

One example of such work is Kismet, a sociable, humanoid 
robot, developed by Cynthia Breazeal and her collaborators 
at MIT [8]. Kismet engages people in face-to-face 
interaction and gives, reads and learns social cues such as 
gaze, eye movement, posture, gesture, etc. much as human 
babies do. Serendipitous interactions with Kismet highlight 
the role people’s interactions play in bootstrapping system 
behavior. One such interaction was caused by limitations of 
the cameras that were part of Kismet’s vision system, which 
required that the person interacting with the robot be 
located within a certain range from the cameras. If the 
person came too close, the robot would suddenly move 
back so that the distance would fall within the range again. 
This sudden movement was often interpreted as an invasion 
of Kismet’s ‘private space’ and would cause the person to 
retreat as well. Similarly, if an object was too far, Kismet 
would crane his neck towards the object to get a better 
view. A human observer would read interest in Kismet’s 
action and would usually bring the object closer.  

Consequences for Ubicomp 

These episodes show how complex interactions with 
responsive systems may develop not only from the internal 
code of the system but also from the dynamics that occur 
when that code interacts with users who interpret, respond 
to, and trigger new behavior in the system.  Given that 



 7

ubicomp systems are always directed towards human users, 
they could capitalize on the fact that simple mechanisms, 
when coupled with user behavior, can achieve complex 
design goals.  

For example, Kristina Höök’s group has developed 
emotional sensing interfaces for mobile devices based on 
the notion of the affective loop [28]. The idea behind the 
affective loop is that the problem of sensing users’ 
emotions can be reframed if the gestures the user must use 
to express an emotion tend to reinforce that emotion (e.g. 
vigorous shaking to express excitement). By having the 
sensed modality reinforce the expressed emotion, users are 
more likely to actually feel the emotion that they are 
expressing. Such systems can support explicit reflection on 
emotion and richer experiences of emotional 
communication – even in cases where the system itself has 
limited-to-no understanding of the emotions involved. 

Strategy #5: Leverage socio-cultural knowledge 

Historically, the approach of complete world modeling 
grew out of AI research performed in micro-worlds, such as 
the classic blocks world, in which it was possible to 
explicitly represent the entire world, given that the micro-
world had been purposefully simplified and circumscribed 
just so as to make this possible. Attempts to apply micro-
world approaches to real-world systems lead to the 
difficulties and interactionist responses described above. 
The strategies above are all approaches for eliminating or 
limiting the use of internal representations of the world. 
Another response is to engage in more complex and 
complete micro-world modeling, but to carefully align the 
internal micro-world maintained by the system with rich 
social and cultural knowledge possessed by human 
participants, in such a way that the system can participate in 
contexts much richer than it is literally representing and 
reasoning about. In other words, we can separate the use of 
complex, extensive representation from the idea that 
representations must exist in a one-to-one correspondence 
to the outside world. Instead, representations can participate 
in external, human meaning systems whose complexity is 
not fully captured internally by the system. This is the 
strategy of building micro-worlds with cultural 
significance.  

First-wave interactionism served as a useful corrective 
within AI, and pragmatically, opened up new technical 
strategies for building robust, real-world systems. However, 
in its ideological formulation, the first-wave has sometimes 
argued the un-nuanced position that “symbols are bad, 
behavior is good.” It is perfectly possible, however, to use 
complex, formal representational methods from classical AI 
in richly interactive, real-world systems. As Mateas has 
argued, interactionism does not, of necessity, have to 
commit to specific technical approaches; the difference, 
rather, is in how those representations are incorporated into 
system design [34]. 

For example, Steffi Domike, Michael Mateas, and Paul 
Vanouse’s Terminal Time [36] is an AI system that 
generates ideologically-biased historical documentaries of 
the last millennium in real-time based on audience 
feedback. The system asks questions of the audience to 
determine their apparent ideological bias, and then 
generates a half-hour historical documentary which reflects 
this bias. At first, the system’s spin on history is gentle, 
creating a story which feels comfortable to an audience’s 
preconceptions; but gradually the system ramps up the spin, 
making the audience’s ideological orientation 
uncomfortably apparent.  

Terminal Time uses complex, formal models to represent 
and reason about historical events, using planning 
algorithms to construct historical documentaries derived 
from Carbonell’s classic work on ideologically-biased 
reasoning [15]. As such, it is subject to the critiques of 
planning and formal models promoted by researchers like 
Brooks – notably, that it imposes an a priori framework on 
the world rather than responding flexibly and intelligently 
to actual events. Yet these properties are precisely what 
make the system work, since the system is not intended to 
tell the full truth of the last millennium but present extreme 
views onto it. The design of Terminal Time avoids the trap 
of AI-completeness by explicitly acknowledging that the 
system is not intended to give one, true perspective on the 
world but instead an idiosyncratic, yet useful one. The full 
rhetorical import of the histories generated by Terminal 

Time are not completely represented in an internal model; 
rather, the internal model provides just enough structural 
scaffolding to usefully manipulate external symbols such as 
visual imagery, music, and generated narrative track, the 
full human meaning of which the system is unaware of. 
Thus, symbolically represented micro-worlds can serve as 
systems of authorship, a mechanism for structuring human 
experiences, where the richness of the experience lies in the 
heads of people, not the system.  

Consequences for Ubicomp 

A similar strategy can be applied in ubiquitous computing if 
we shift focus from building systems that behave in 
absolutely correct ways to constructing ones that explicitly 
maintain an alien, but nevertheless useful perspective; 
Mateas terms this strategy alien presence [39]. When using 
alien presence as a design strategy, it is no longer necessary 

for a system to fully understand the domain of human 

activity which it is addressing in the way humans would, 
since it is intended to be apparent to users that the system 
has its own forms of understanding. For example, Mateas 
and Böhlen’s interactive sculpture Office Plant #1 [13] is a 
robotic office plant that changes shape based on its current 
reading of the social and emotional content of its users’ 
email. Its output is enigmatic and ambiguous; its changing 
form suggests that the social and emotional tone of email 
matters, but is not a directly readable meter of social and 
emotional tone; because of this, the system does not need to 



 

be able to understand this tone in a way which corresponds 
directly to human understanding).  

Strategy #6: Design for an engaged audience 

As examples such as Kismet and Pengi demonstrate, the 
behavior of the systems that interactionist AI researchers 
built often resonated much more deeply with human 
observers than a superficial reading of their code would 
suggest. Joseph Bates and his Oz group at CMU built on 
this understanding to suggest a further route around the 
problem of AI-completeness [5,6]. Specifically, Bates 
argued that classical AI tended to frame the problem of 
intelligence as creating a system that was so robust that 
even a hostile interlocutor (such as in the Turing Test) 
would be unable to distinguish its behavior from that of an 
intelligent being. Yet in Bates’s area – interactive computer 
characters and interactive fiction – this notion of an 
inherently hostile user did not apply.  Bates proposed that 
the problem of creating full-level human intelligence could 
be simplified by taking advantage of the fact that interactive 
computer characters could count on human audiences 
actively seeking to engage with and believe in them. As a 
consequence, the problem of intelligence for agents was 
less to be able to behave in an optimally intelligent way as 
to avoid making any serious mistakes that would break 
what Bates termed ‘believability,’ i.e. the willing 
suspension of disbelief by the audience.  

As this work was extended [e.g. 30,38], ‘believability’ 
came to refer to the notion that the technical design of 
computer characters could be simplified by driving it 
largely by the way in which agents were interpreted by 

friendly human audiences, rather than by whether or not the 
agent would ‘count’ as intelligent if its behavior was 
analyzed either in a vacuum or by a hostile observer intent 
on identifying the limits of its functionality. In other words, 
system design could be simplified and made more effective 
by making the eventual experience and interpretation of the 
system by human users central to every technical decision 
made in the design of the system, rather than by considering 
this only when it came time to design the final user 
interface. 

Consequences for Ubicomp 

If we extend this idea to ubiquitous computing, it suggests 
technical advantages of simplification in shifting from a 
conception of ubicomp as proactive computing – i.e. setting 
the goal that systems should be able to engage in intelligent 
anticipation of human behavior, irrespective of human 
awareness or interaction – to designing systems which 
provide human-understandable reactions which can be 
further interpreted and built on by human users. One 
example of such simplification is in the use of sensing in 
the Home Health Horoscope system [23]. In this case, 
sensors track changing patterns of usage of objects that may 
be relevant for emotional reflection in the household. 
Informed by these patterns, the system’s output is presented 
to the family in the form of daily horoscopes. The members 

of the family use their rich background knowledge and 
understanding of the household to make sense of the 
horoscopes. While the system’s relatively simple sensing 
will inevitably be unable to truly understand the full 
emotional tone of the household, the audience’s 
interpretations fill in the gaps in the system’s understanding 
of the situation. Because of this, there is no need to tackle 
the technical challenge of full, complete, and accurate 
sensing.  

This idea extends to any setting in which the manner in 
which the system is experienced as performing is more 
important than the internal optimal functionality of the 
system – what we might in modern HCI parlance term 
experience design. Indeed, focusing on human-
understandability of system behavior may help to 
ameliorate problems of user confidence in ubicomp 
systems; this has been identified as a major challenge for 
smart homes [21]. Although the idea of taking the human 
experience of the system as the point of functionality is not 
new in HCI, the use of believability as a reorientation of 
agent architecture can remind us of the fact that this focus 
on understandable user interpretation is not simply an 
interface requirement which should be largely the concern 
of product designers but a stance from which every level of 
technical work involved in building systems – including 
sensing, decision algorithms, machine learning techniques, 
etc. – could be rethought and simplified.  

CONCLUSION 

Our goal in this paper is not to propose interactionist AI as 
the magic solution to the problems of ubicomp. Indeed, the 
tactics of interactionist AI were often extreme, which 
limited the eventual efficacy of the approach. But the tactics 
were extreme for a reason: to provide a lens for rethinking 
the assumptions behind classical AI, and in particular to 
suggest that it was possible to make concrete technical 
progress without requiring general solutions, complex or 
consistent world representations, or full capabilities to 
reason about the world. This ability to spur reflection on 
how we might be able to do more with less are precisely 
what makes interactionist AI a valuable moment for 
reflection for ubicomp. In particular, interactionist AI arose 
in response to the realization that the problems AI was 
tackling presupposed a solution to the general problem of 
machine intelligence, i.e. what AI researchers termed the 
problem of AI-completeness.  Interactionist AI researchers 
made the AI problem easier by avoiding tackling AI-
completeness head-on, developing alternative strategies for 
AI systems that achieved their design goal without having 
to solve the human level intelligence problem. 

When seen from this lens, we can recognize that much of 
ubicomp is implicitly tackling a similar problem to classical 
AI – trying to approach a human-level understanding of the 
world. This is particularly noticeable in the framing of 
proactive computing, or “proactive environments that 
anticipate our needs and act on our belief” [47] – such a 
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vision is difficult to achieve without systems that reliably 
and robustly can understand the world of human action. A 
similar implicit need for human-level understanding of the 
world underlies the framing of context-aware computing – 
as Dey argues, “[o]ne of the holy grails of context-aware 
computing is to have applications that do the right thing at 
the right time” [20, p. 7]. 

In solving this problem, ubicomp is using approaches that 
often mirror the methods of classical AI: breaking up the 
problem into functional modules, relying on formal 
representations and direct mappings between the outside 
world and world model, and seeking general solutions to 
the problems of sensing and action. This orientation is 
clearly reflected, for example, in Abowd and Mynatt’s 
influential paper laying out the ubiquitous computing 
research agenda: “Without good representations for context, 
applications developers are left to develop ad hoc and 
limited schemes for storing and manipulating [information 
about context]. The evolution of more sophisticated 
representations will enable a wider range of capabilities and 
a true separation of sensing context from the programmable 
reaction to that context” [2, p. 37]. While this framing has 
clearly been useful for the field, we need to be aware that 
we might be able to achieve the same goals without heading 
down the difficult path of achieving human-level 
understanding, a problem which we might in our field term 
ubicomp-complete.  

Indeed, this problem of ubicomp-completeness resonates 
with recent critiques within ubicomp that question the 
ability and desirability to attain human-level understanding 
of the context of use.  Looking at these issues through the 
lens of interactionist AI provides a useful starting point for 
turning these conceptual critiques into concrete technical 
proposals.  

For example, both Dourish and Salvador & Anderson argue 
that the separation of context and action is problematic in 
ubicomp because the aspects of context that will be 
pertinent cannot be known until the action takes place 
[20,40]. The tight integration of sensing and action in 
interactionist AI agent architectures may support a more ad 
hoc, situated approach to tying context and action together 
than approaches which aim to separate perception of 
context as an individual and general functional unit. 

As another example, Bell and Dourish argue that current 
ubicomp research is oriented around a conception of the 
world as orderly, homogeneous, and accessible to machine 
sensing and inference [7]. A major focus of ubicomp 
research has been on designing for such a world, in which 
complex representations and full world models make sense. 
However, Bell and Dourish argue, the world in which 
ubicomp systems are currently deployed is messy and 
heterogeneous and is likely to stay that way.  If we take the 
messiness, heterogeneity, and unknowability of the world 
as a starting point for technical design, then the strategies of 
interactionist AI become particularly appropriate, since they 

do not rely on the orderliness of the world and were 
designed with the explicit understanding that the world is 
inherently contingent.  These strategies suggest shifting 
from the goal of designing complete, integrated ubicomp 
systems to building many small, ad-hoc devices that 
leverage regularities in the environment, and in people’s 
behaviors and perceptions, to participate usefully and 
engagingly in the human world.  
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