

Constraint Reasoning and Kernel Clustering for Pattern Decomposition With Scaling

Ronan LeBras

Theodoros Damoulas Ashish Sabharwal Carla P. Gomes John M. Gregoire Bruce van Dover Computer Science Computer Science Computer Science Computer Science Materials Science / Physics Materials Science / Physics

Sept 15, 2011

CP'11

cfci

Cornell Fuel Cell Institute

Mission: develop **new materials** for **fuel cells**.

Figure 1. Fuel cell schematic. Source: Annual Reveiws of Energy and the Environment. http://energy.annualreviews.org/ cgi/content/full/24/1/281 An Electrocatalyst must:

1) Be electronically conducting

2) Facilitate both reactions

Platinum is the best known metal to fulfill that role, but:

- 1) The reaction rate is still considered slow (causing energy loss)
- 2) Platinum is fairly costly, intolerant to fuel contaminants, and has a short lifetime.

Goal: Find an *intermetallic compound* that is a better catalyst than Pt.

Recipe for finding alternatives to Platinum

- 1) In a vacuum chamber, place a silicon wafer.
- 2) Add three metals.
- 3) Mix until smooth, using three sputter guns.
- *4)* Bake for 2 hours at 650°C

- *Deliberately* inhomogeneous composition on Si wafer
- Atoms are intimately mixed

ICS B

Identifying crystal structure using **X-Ray Diffraction** at CHESS

- XRD pattern characterizes the underlying crystal fairly well
- **Expensive** experimentations: Bruce van Dover's research team has access to the facility **one week every year**.

Additional Physical characteristics:

- Peaks shift by $\leq 15\%$ within a region
- Phase Connectivity
- Mixtures of ≤ 3 phases
- Small peaks might be discriminative
- Peak locations matter, more than peak intensities

Figure 1: Phase regions of Ta-Rh-Pd

Figure 2: Fluorescence activity of Ta-Rh-Pd

Outline

- Motivation
- Problem Definition
 - \checkmark Abstraction
 - ✓ Hardness
- CP Model
- Kernel-based Clustering
- Bridging CP and Machine learning
- Conclusion and Future work

Input

- $-G = (V, E) \text{ be an undirected graph with } V = \{v_1, \dots, v_N\},$
 - $-\mathcal{P} = \{P_1, \ldots, P_N\}$ be a collection of N patterns over a finite set $S \subseteq \mathbb{Q}^+$,
 - $-M \leq K \leq N$ be positive integers, and $\delta \geq 1$ be a rational.

Input

- $-G = (V, E) be an undirected graph with V = \{v_1, \dots, v_N\},$
 - $-\mathcal{P} = \{P_1, \ldots, P_N\}$ be a collection of N patterns over a finite set $S \subseteq \mathbb{Q}^+$,
 - $-M \leq K \leq N$ be positive integers, and $\delta \geq 1$ be a rational.

Input -G = (V, E) be an undirected graph with $V = \{v_1, \ldots, v_N\}$, $-\mathcal{P} = \{P_1, \ldots, P_N\}$ be a collection of N patterns over a finite set $S \subseteq \mathbb{Q}^+$, $-M \leq K \leq N$ be positive integers, and $\delta \geq 1$ be a rational.

Input -G = (V, E) be an undirected graph with $V = \{v_1, \ldots, v_N\}$, $-\mathcal{P} = \{P_1, \ldots, P_N\}$ be a collection of N patterns over a finite set $S \subseteq \mathbb{Q}^+$, $-M \leq K \leq N$ be positive integers, and $\delta \geq 1$ be a rational.

 $M = K = 2, \delta = 1.5$

- Input -G = (V, E) be an undirected graph with $V = \{v_1, \ldots, v_N\}$, $-\mathcal{P} = \{P_1, \ldots, P_N\}$ be a collection of N patterns over a finite set $S \subseteq \mathbb{Q}^+$, $-M \leq K \leq N$ be positive integers, and $\delta \geq 1$ be a rational.
- **Output** Determine whether there exists a collection \mathcal{B} of K basis patterns over S and scaling factors $s_{ik} \in \{0\} \cup [1/\delta, \delta]$ such that:

(a)
$$\forall i: P_i = \bigcup_{k=1}^{K} s_{ik} B_k$$

(b) $\forall i: |\{k \mid s_{ik} > 0\}| \le M$
(c) $\forall k:$ the subgraph of G induced by $V_k = \{v_i \in V \mid s_{ik} > 0\}$ is connected
 $B_1 \longrightarrow P_1 \longrightarrow P_1$

- Input -G = (V, E) be an undirected graph with $V = \{v_1, \ldots, v_N\}$, $-\mathcal{P} = \{P_1, \ldots, P_N\}$ be a collection of N patterns over a finite set $S \subseteq \mathbb{Q}^+$, $-M \leq K \leq N$ be positive integers, and $\delta \geq 1$ be a rational.
- Output Determine whether there exists a collection \mathcal{B} of K basis patterns over S and scaling factors $s_{ik} \in \{0\} \cup [1/\delta, \delta]$ such that:

M = K = 2,

Problem Hardness

Outline

- Motivation
- Problem Definition
- CP Model
 - ✓ Model

✓ Experimental Results

- Kernel-based Clustering
- Bridging CP and Machine learning
- Conclusion and Future work

Va	riables	Descriptio	on				-
p_{ki}	Normalizi	Normalizing element for phase k in pattern P_i					
a_{ki}		Whether	r phase k is present in pattern P_i				
q_k Set of no			ormalized peak locations of phase B_k				
							-
$(a_{ki} = 0)$	$\Leftrightarrow_{K} (p)$	$k_i = 0$		$\forall \ 1 \leq k$	$\leq K, 1 \leq$	$i \leq n$	(1)
$1 \leq$	$\sum^{n} a_{si}$	$\leq M$		$\forall 1$	$\leq i \leq n$		(2)
$(p_{ki} = j) \Rightarrow ($	$q_k \subseteq r_{ij}$)	$\forall \ 1 \leq k$	$\leq K, 1 \leq$	$i \leq n, 1$	$\leq j \leq P_i $	(3)
$(p_{ki} = j \land \sum^{K}$	$a_{si} = 1$	$) \Rightarrow (r_{ij} \subseteq$	$q_k)$				
s=1			$\forall \ 1 \leq$	$k \le K, 1$	$\leq i \leq n,$	$1 \le j \le $	$P_i $ (4)

CP Model (continued)

$$\begin{aligned} p_{ki} &= j \wedge p_{k'i} = j' \wedge \sum_{s=1}^{K} a_{si} = 2) \\ &\Rightarrow \left(member(r_{ij}[j''], q_k) \lor member(r_{ij'}[j''], q_{k'}) \right) \\ &\forall 1 \le k, k' \le K, 1 \le i \le n, 1 \le j, j', j'' \le |P_i| \quad (5) \end{aligned}$$

$$(p_{ki} = j) \Rightarrow (p_{ki'} \ne j') \qquad \forall 1 \le k \le K, (i, j, i', j') \in \Phi \qquad (6) \\ \Phi = \{ (i, j, i', j') \mid \frac{P_i[j]}{P_i'[j']} < 1/\delta \lor \frac{P_i[j]}{P_i'[j']} > \delta, i < i' \} \end{aligned}$$

$$basisPatternConnectivity(\{a_{ki} | 1 \le i \le n\}) \qquad \forall 1 \le k \le K \qquad (7) \end{aligned}$$

Advantage: Captures physical properties and relies on peak location rather than height. *Drawback:* Does not scale to realistic instances; poor propagation if experimental noise.

For realistic instances, K' = 6 and $N \approx 218...$

Outline

- Motivation
- Problem Definition
- CP Model
- Kernel-based Clustering
- Bridging CP and Machine learning
- Conclusion and Future work

Kernel-based Clustering

Set of features: $X = \alpha$

Similarity matrices:

 $[X.X^T]$

Method: K-means on Dynamic Time-Warping kernel

Goal: Select groups of samples that belong to the same **phase region** to feed the CP model, in order to extract the underlying phases of these sub-problems.

Goal: a robust, *physically meaningful*, scalable, automated solution method that combines:

Bridging Constraint Reasoning and Machine Learning: Overview of the Methodology

Experimental Validation

Hybrid approach to clustering under constraints

- More robust than data-driven "global" ML approaches
- More scalable than a pure CP model "locally" enforcing constraints

An exciting application in close collaboration with physicists

- Best inference out of expensive experiments
- Towards the design of better fuel cell technology

Ongoing work:

Spatial Clustering, to further enhance cluster quality **Bayesian Approach**, to better exploit prior knowledge about local smoothness and available inorganic libraries

Active learning:

Where to sample next, assuming we can interfere with the sampling process?

When to stop sampling if sufficient information has been obtained?

Correlating catalytic properties across many thin-films:

In order to understand the underlying **physical mechanism** of **catalysis** and to find promising intermettalic compounds

Thank you!

Extra slides

Example on Al-Li-Fe diagram:

Applications with similar structure

Flight Calls / Bird conservation

Identifying bird population from sound recordings at night.

Analogy: basis pattern = species samples = recordings physical constraints = spatial constraints, species and season specificities...

Fire Detection

Detecting/Locating fires.

Analogy: basis pattern = warmth sources samples = temperature recordings physical constraints = gradient of temperatures, material properties...

⁽PCA – 3 dimensional approx)

(Hierarchical Agglomerative Clustering)

Drawback: Requires sampling of pure phases, detects phase regions (not phases), overlooks peak shifts, may violate physical constraints (phase continuity, etc.).

Drawback: Overlooks peak shifts (linear combination only), may violate physical constraints (phase continuity, etc.).

