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Motivation
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Cornell Fuel Cell Institute

Mission: develop new materials for fuel cells.

An Electrocatalyst must:

1) Be electronically conducting

2) Facilitate both reactions

Platinum is the best known metal to 

fulfill that role, but:

1) The reaction rate is still considered 

slow (causing energy loss)

2) Platinum is fairly costly, intolerant

to fuel contaminants, and has a short

lifetime.

Goal: Find an intermetallic compound that is a better catalyst than Pt.
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Recipe for finding alternatives to Platinum

1) In a vacuum chamber, place a silicon wafer.

2) Add three metals.

3) Mix until smooth, using three sputter guns.

4) Bake for 2 hours at 650ºC

Ta

Rh

Pd

(38% Ta, 45% Rh, 17% Pd)

• Deliberately inhomogeneous 

composition on Si wafer  

• Atoms are intimately mixed

[Source: Pyrotope, Sebastien Merkel]

Ronan Le Bras - CP’11, Sept 15, 2011



Motivation

4

Identifying crystal structure using X-Ray Diffraction at CHESS

• XRD pattern characterizes the underlying crystal fairly well

• Expensive experimentations: Bruce van Dover’s research

team has access to the facility one week every year.

Ta

Rh

Pd

(38% Ta, 45% Rh, 17% Pd)

[Source: Pyrotope, Sebastien Merkel]
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Fe

Al

Si
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INPUT: pure phase

region

Fe

Al

Si

m phase regions

 k pure regions

 m-k mixed regions

XRD pattern

characterizing

pure phases

Mixed

phase

region

OUTPUT:

Additional Physical characteristics:

 Peaks shift by  15% within a region

 Phase Connectivity

 Mixtures of  3 phases

 Small peaks might be discriminative

 Peak locations matter, more than peak 

intensities
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Ta

Rh

Pd

Figure 1: Phase regions of Ta-Rh-Pd Figure 2: Fluorescence activity of Ta-Rh-Pd
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• Motivation

• Problem Definition

Abstraction

 Hardness

• CP Model

• Kernel-based Clustering

• Bridging CP and Machine learning

• Conclusion and Future work
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Problem Abstraction: Pattern Decomposition with Scaling
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Input

Output
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Problem Abstraction: Pattern Decomposition with Scaling
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M= K = 2, δ = 1.5
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s14=0.84
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Problem Hardness
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Assumptions: Each Bk appears by itself in some vi  / No experimental 

noise 

The problem can be solved* in polynomial time.

Assumption: No experimental noise 

The problem becomes NP-hard (reduction from the “Set Basis” problem)

Assumption used in this work: Experimental noise in the form of 

missing elements in Pi
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• Motivation

• Problem Definition

• CP Model

Model

Experimental Results

• Kernel-based Clustering

• Bridging CP and Machine learning

• Conclusion and Future work
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CP Model
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CP Model (continued)
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Advantage: Captures physical properties and relies on peak location rather than height.

Drawback: Does not scale to realistic instances; poor propagation if experimental noise.
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CP Model – Experimental Results
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Number of unknown phases (K’)

Number of unknown phases vs. running times 

(AlLiFe with |P| = 24)

N=10

N=15

N=28

N=218

For realistic instances, K’ = 6 and N ≈ 218...  
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• Motivation

• Problem Definition

• CP Model

• Kernel-based Clustering

• Bridging CP and Machine learning

• Conclusion and Future work
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Kernel-based Clustering
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Set of features: X =

Similarity matrices:
[X.XT]

Method: K-means on Dynamic Time-Warping kernel

Goal: Select groups of samples that belong to the same phase region to feed the CP 

model, in order to extract the underlying phases of these sub-problems.

Better approach: take

shifts into account

Red: similar

Blue: dissimilar

+





+





+
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Bridging CP and ML
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Goal: a robust, physically meaningful, scalable,

automated solution method that combines:

Similarity “Kernels”

& Clustering

Machine Learning
for a “global

data-driven view”

Underlying

Physics

A language for

Constraints
enforcing

“local details”

Constraint Programming model
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Bridging Constraint Reasoning and Machine 

Learning: Overview of the Methodology
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INPUT:

Peak

detection

Machine Learning:

Kernel methods,

Dynamic Time Wrapping

Machine Learning:

Partial “Clustering”

Fe

Al

SiCP Model & Solver

on sub-problems

, +, 

 only  only

Full CP Model

guided by

partial solutions

OUTPUT

Fix errors

in data
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Experimental Validation
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Al-Li-Fe instance

with 6 phases:

Ground truth

(known)

Our CP + ML hybrid

approach is much

more robust

Previous work (NMF)

violates many

physical requirements
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Hybrid approach to clustering under constraints

 More robust than data-driven “global” ML approaches

 More scalable than a pure CP model “locally” enforcing constraints

An exciting application in close collaboration with physicists

 Best inference out of expensive experiments

 Towards the design of better fuel cell technology
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Future work

Ongoing work:

Spatial Clustering, to further enhance cluster quality

Bayesian Approach, to better exploit prior knowledge

about local smoothness and available inorganic libraries

Active learning:

Where to sample next, assuming we can interfere with

the sampling process?

When to stop sampling if sufficient information has 

been obtained?

Correlating catalytic properties across many thin-films:

In order to understand the underlying physical 

mechanism of catalysis and to find promising 

intermettalic compounds
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The end

Thank you!
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Extra slides
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Experimental Sample
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Example on Al-Li-Fe diagram:
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Applications with similar structure

34

Flight Calls / Bird conservation

Identifying bird population from  sound  recordings at 

night.

Analogy:  basis pattern = species

samples = recordings

physical constraints = spatial constraints, 

species and season specificities…

Fire Detection

Detecting/Locating fires.

Analogy:  basis pattern = warmth sources

samples = temperature recordings

physical constraints = gradient of 

temperatures, material properties…
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Previous Work 1: Cluster Analysis (Long et al., 2007)
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xi =

(Feature vector) (Pearson correlation coefficients) (Distance matrix)

(PCA – 3 dimensional approx) (Hierarchical Agglomerative  Clustering)

Drawback: Requires sampling of pure phases, detects phase regions (not phases), 

overlooks peak shifts, may violate physical constraints (phase continuity, etc.).
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Previous Work 2: NMF (Long et al., 2009)
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xi =

(Feature vector) (Linear positive combination (A) of 

basis patterns (S))

(Minimizing squared 

Frobenius norm

X = A.S + E Min ║E║

Drawback: Overlooks peak shifts (linear combination only), may violate physical 

constraints (phase continuity, etc.).
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