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Motivation {1IcS)

Cornell Fuel Cell Institute

Mission: develop new materials for fuel cells.

__________________________________________________________

" An Electrocatalyst must:

i 1
- 1 1

f . () + 1) Be electronically conducting
C Cl ] comone ' 2) Facilitate both reactions |

0; Platlnum is the best known metal to |
. fulfill that role, but: |

H—

-— !

Cathodic | 1) The reaction rate is still considered |

O2+2H +2¢ 1 - :

- | slow (causing energy loss) |

Electrolyte I !

T 2) Platinum is fairly costly, intolerant !
Ty, i to fuel contaminants, and has a short !

Squrce: Annual Reveiws of Energy and the Environment. http://energy.annualreviews.org/ :
cgilcontent/fulli24/1/281 { I |fet| me. :

__________________________________________________________________________________________________________
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Motivation

Recipe for finding alternatives to Platinum

1) In a vacuum chamber, place a silicon wafer.
2) Add three metals. |
3) Mix until smooth, using three sputter guns. :
4) Bake for 2 hours at 650°C

__________________________________________________________________________

» Deliberately inhomogeneous
composition on Si wafer

« Atoms are intimately mixed
(38% Ta, 45% Rh, 17% Pd)

Ta Pd
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Motivation

Identifying crystal structure using X-Ray Diffraction at CHESS B Somalnivemiy

':ly Cornell High Energy Synchrotron Source

« XRD pattern characterizes the underlying crystal fairly well

« EXxpensive experimentations: Bruce van Dover’s research
team has access to the facility one week every year.

Rh

(38% Ta, 45% Rh, 17% Pd)

[Source: Pyrotope, Sebastien Merkel]

Ta Pd

CORNELL Ronan Le Bras - CP’11, Sept 15, 2011 4

51T Y




Motivation

Rh

Ta Pd
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Motivation
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Motivation
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Motivation
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omPutationg,

Motivation {1cs} (&)

Pd
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Motivation

INPUT: OUTPUT: pure phase
: region
m phase regions
- k pure regions Mixed
- m-k mixed regions phase
region

XRD pattern
characterizing g, Si
pure phases

Additional Physical characteristics:
= Peaks shift by < 15% within a region
» Phase Connectivity

= Mixtures of < 3 phases

=  Small peaks might be discriminative

= Peak locations matter, more than peak
intensities
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Motivation
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Figure 1: Phase regions of Ta-Rh-Pd Figure 2: Fluorescence activity of Ta-Rh-Pd

Ronan Le Bras - CP’'11, Sept 15, 2011

40 B

Fluorescence onset potent

3
®

(mV vs Ag/AgCl)

11



Outline

« Motivation
* Problem Definition
v" Abstraction
v" Hardness
« CP Model
 Kernel-based Clustering
* Bridging CP and Machine learning

e Conclusion and Future work

Ronan Le Bras - CP’11, Sept 15, 2011 12



Problem Abstraction: Pattern Decomposition with Scaling

Input — G = (V,E) be an undirected graph with V = {v1,...,un},
— P={P.....Px} be a collection of N patterns over a finite set S C QT
— M < K < N be positive integers, and 6 = 1 be a rational.
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Problem Abstraction: Pattern Decomposition with Scaling

Input — G = (V,E) be an undirected graph with V = {v1,...,un},
— P={P.....Px} be a collection of N patterns over a finite set S C QT
— M < K < N be positive integers, and 6 = 1 be a rational.

V9 P ——eooe0o- @ 0o @ 00 0 0
7,9 P, — oo ® oo 0 e e 060 o
1,9 P, — e o0 0o 00 o @ o000
ve P, o ©® ® e o0 00 00 o
vs® P o o o o o o o
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V9 P ——eooe0o- @ 0o @ 00 0 0
7,9 P, — oo ® oo 0 e e 060 o
1,9 P, — e o0 0o 00 o @ o000
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Problem Abstraction: Pattern Decomposition with Scaling {1CS } (&)

Input — G = (V,E) be an undirected graph with V = {v1,...,un},
— P={P.....Px} be a collection of N patterns over a finite set S C QT
— M < K < N be positive integers, and 6 = 1 be a rational.

Output  Determine whether there exists a collection B of K basis patterns over S and
scaling factors s; € {0} U [1/4, 8] such that:

(a) Vi: P; = U;‘?:] Sik B
(b) Vi: {k|s; >0 <M
(c) Wk: the subgraph of G induced by Vi, = {v; € V' | s; > 0} is connected

B, e o o o o o o
V9 P ——eooe0o- @ 0o @ 00 0 0
7,9 P, —— oo ® e0 0 e e 00 o
1,9 P, — e o0 0o 00 o @ o000
v,e P, o ©® ® e 00 00 00 o
vs® P o o o o o o o
M=K=26=15 B
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Problem Abstraction: Pattern Decomposition with Scaling {1cs) (&)

Input — G = (V,E) be an undirected graph with V = {v1,...,un},
— P={P.....Px} be a collection of N patterns over a finite set S C QT
— M < K < N be positive integers, and 6 = 1 be a rational.

Output  Determine whether there exists a collection B of K basis patterns over S and
scaling factors s; € {0} U [1/4, 8] such that:

(a) Vi: P; = U£=1 Sik B
(b) Vi: {k|siy >0H <M
(c) Wk: the subgraph of G induced by Vi, = {v; € V' | s; > 0} is connected

51,=1.00 5,,=0.68
5,=0.95 5,,=0.78
55=0.88  5,,=0.85
54=0.84  5,=0.96

55— 5,:=1.00
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Problem Hardness {1es} ({

. Assumptions: Each B, appears by itself in some v; / No experimental |
. noise '

' The problem can be solved* in polynomial time.

' Assumption: No experimental noise

The problem becomes NP-hard (reduction from the “Set Basis” problem)

' Assumption used in this work: Experimental noise in the form of
. missing elements in P,

____________________________________________________________________________________________________________

=B, e o o o o o o
P —e <0 —0 00— —X 51,=1.00 5,,=0.68
P, —e 0 0 -0 0 -0 —0 5,=0.95 5,,=0.78
P, —e e 9@ —@—0— 0 -9 53=0.88  5,;=0.85
P, e e e e e 54=0.84  5,=0.96
P X 55= 5,:=1.00
15 B,
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Variables Description

Dhei Normalizing element for phase £ mn pattern F;
Al Whether phase k 1s present in pattern F;
qr Set of normalized peak locations of phase By,

(ari =0) <= (pri =0) VI<E<S<K 1<i<n
K
152}mgﬂf V1i<i<n

(pri = ) = (ax C 7ij) VI<k<K1<i<n1<j<|P]

K
(phi =AY asi =1) = (ri; C qi)
s=1

V1I<k<K1<i<n1<j<|P

Ronan Le Bras - CP’11, Sept 15, 2011

21



CP Model (continued)

K
(pri =J Apri =37 A Z asi = 2)
s=1
= (member (ri; 15", qi) V member(ri 0 [5"]. qr))

VI<EE<KI1<i<n1<jj.5" <|P]| (5

(pri = J) = (prar # 7' VI<k<K,(i,ji.j)ed (6)
b ={(i,7,7,] |P,[j]]<1/(5vp,[”]>bz<z}
basis PatternConnectivity({ar;|1 <1 < n}) VI<E<K (7)

Advantage: Captures physical properties and relies on peak location rather than height.
Drawback: Does not scale to realistic instances; poor propagation if experimental noise.
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CP Model — Experimental Results

Number of unknown phases vs. running times
(AILiFe with |P| = 24)
1400

1200
1000 /

800 / N=10
600 // / —N=15
400 //// // N=28
200 N=218

0 1 2 3 4 5 6

Running time (in s)

Number of unknown phases (K’)

For realistic instances, K’ =6 and N = 218...
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Kernel-based Clustering

A A AR R ARR
I — AR
: AR RI i PR,
R R ARk i
" p— R R R SR RR
Set of features: X = B e
ﬁ. A AP i AR,
R A A_RR AR AR
A R RR RRRR
a’+B V=TS % b - _
B A ¥ T ARl
A o - ~
\ ~ A A -

Similarity matrices:
[X.XT]

Better approach: take
shifts into account

-:>

Red Slmllar 20 40 E0 a0 1001
Blue: dissimilar Regions:0(1-20);1(21-39),;2(40-101);

AN

Regions:0(1-20);1(21-39);2(40-101);

Method K-means on Dynamic Time-Warping kernel |

' Goal: Select groups of samples that belong to the same phase region to feed the CP
model, in order to extract the underlying phases of these sub-problems.
Ronan Le Bras - CP’11, Sept 15, 2011
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Bridging CP and ML

Goal: arobust, physically meaningful, scalable,
automated solution method that combines:

W
Underlying 'l Fax '%lllm
Physics e 'j_',':! Illml

Machine Learning
A language for for a “global

Constraints data-driven view”
enforcing

“local details”

10 10
x ! =
* | 2
« aaf
% 0t
® &)
£ 7
® )
% %)
100 IS 100 3
% W o 80 0 2 o & 0 W

Similarity “Kernels”
& Clustering
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Bridging Constraint Reasoning and Machine
Learning: Overview of the Methodology

INPUT:

Machine Learning:

S Kernel methods,

\Dynamic Time Wrapping

+ Peak . ‘
detection - —

A [Machine Learningj Al

Fix errors |

in data : Partial “Clustering”

| Q o)

Full CP Model CP Model & Solver e s
guided by - on sub-problems
partial solutions
S | O o only O v only
A4 AA.\&
:A:AAAA Qo atp, B
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Experimental Validation

Al-Li-Fe instance
with 6 phases: ~ LD, ohases
S |

Ground truth
(known)

Relative Phase Concentration

Synthetic

Previous work (NMF) L
violates many = —_
physical requirements

Our CP + ML hybrid
approach is much




Conclusion {1es} (&

Hybrid approach to clustering under constraints
= More robust than data-driven “global” ML approaches
» More scalable than a pure CP model “locally” enforcing constraints

An exciting application in close collaboration with physicists

» Best inference out of expensive experiments
» Towards the design of better fuel cell technology
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Future work

— :
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A2 L

Ongoing work:
Spatial Clustering, to further enhance cluster quality

Bayesian Approach, to better exploit prior knowledge
about local smoothness and available inorganic libraries

Active learning:

Where to sample next, assuming we can interfere with
the sampling process?

When to stop sampling if sufficient information has
been obtained?

Correlating catalytic properties across many thin-films:

In order to understand the underlying physical
mechanism of catalysis and to find promising
intermettalic compounds

uuuuuuuuuu Ronan Le Bras - CP’11, Sept 15, 2011
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The end

Thank you!
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Extra slides
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Experimental Sample

Example on Al-Li-Fe diagram:

;AA A ﬁ\&

Synthetic
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Flight Calls / Bird conservation

Identifying bird population from sound recordings at
night.

Analogy: basis pattern = species
samples = recordings

physical constraints = spatial constraints,

species and season specificities...

Fire Detection

Detecting/Locating fires.

Analogy: basis pattern = warmth sources
samples = temperature recordings
physical constraints = gradient of

temperatures, material properties. ..
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Previous Work 1: Cluster Analysis (Long et al., 2007)

Xi : : - E ['xf - ']'_-)[_"'ILII - _IF}
) D —_— i=1
, C_:;_\- - n . % \ |
| 2 (=322 (-3 D=(1-C)/2
i=l i=l
(Feature vector) (Pearson correlation coefficients) (Distance matrix)

(PCA — 3 dimensional approx) (Hierarchical Agglomerative Clustering)

Drawback: Requires sampling of pure phases, detects phase regions (not phases),
overlooks peak shifts, may violate physical constraints (phase continuity, etc.).
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Previous Work 2: NMF (Long et al., 2009)

T . X=AS+E . Min|E|

(Feature vector) (Linear positive combination (A) of (Minimizing squared
basis patterns (S)) Frobenius norm

Drawback: Overlooks peak shifts (linear combination only), may violate physical
constraints (phase continuity, etc.).
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