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Motivation

Material Discovery through Combinatorial Method: sputtering 3 metals
(or oxides) onto a silicon wafer (which produces a thin-film) and using x-
ray diffraction to obtain structural information about crystal lattice.

Y, of n points on the thin-film.

Input: Diffraction patterns Y, ...,

IIIHI!IWII MM

2
260
8 E
I
| [
‘ . i l
g0 20 30 40 50 60 70 80
scattering vector (1/nm)

ﬂ
z

o (=]
Fluorescence onset potential &.
(mV vs Ag/AgCl)

2500

2000

FARIAY
JAUAN

1000 -

500

Qﬂ\ -
o | | A

qO 20 30 60 70 86 90 100 Q%

Output: Set of k basis patterns (or phases) X I - Xk
Weights 4,,...,4, and shifts B, ..., B, of these basis patterns in
the n points.

B Finding new products

B Finding product substitutes

B Understanding material properties (such
as catalysts for fuel cell technologies)

cfci
Problem Definition

Input — G = (V,FE) be an undirected graph with V = {vy,..., UN },
— P={P,..., Px'} be a collection of N patterns over a finite set S C QT
— M < K < N be positive integers, and 6 > 1 be a rational.

Output  Determine whether there exists a collection B of K basis patterns over S and
scaling factors s;; € {0} U [1/4,6] such that:
((L) Vi: U;l 1 “zF\BL
(b) Yi: IMI«,;k >0 <M
(c) Yk: the subgraph of G induced by Vi. = {v; € V | s;5 > 0} is connected
B; ={1,2,3} B> ={1,3,4}

z”? ‘!’t_? ‘!’tj z/l-.l s11 =1 s12 =0
° ® ° o 21 =2 523 =0

P;={1,23} P>={2,4,6} P;={24,6,8} Ps={1,3,4} $31 =2 $32 =2

sq1 =0 42 =17

Problem Complexity

 Assumptions: No experimental noise / Each B, appears by itself in
. somev;

The problem can be solved® in polynomial time.

Assumptions used in this work: Experimental noise in the form of
. missing elements in P, and each B, need not be sampled

Constraint Programming Model

Advantage: Captures physical properties and relies on peak location rather than height.
Drawback: Does not scale to realistic instances; poor propagation if experimental noise.

Variables Description Type
j Normalizing peak for phase k£ in pattern ¢; Decision
i Whether phase k is present in pattern ¢;  Auxiliary
qk Set of normalized peak locations of phase £ Auxiliary
arp; =0 <= pr; =0 VI<E<S K. 1<i<n (1)
K
1<) a4y <3 Vi<i<n (2)
s=1

K

Pri=jAY ai=1=q,Cry VI<E<KI<i<nl<j<|al (3)

K

Pri = J N Z agi =1 =1 Cqp
s=1

VI<k<K1<i<n1<j<]|eg (4)

[ member (ri5 17", ar)
Pk ki j.j) =4V

| member (ri [5"], qir)

V1i<k<k <K1<i<n1<jj.;" <|e

(5)
where P(k,k’,7,7,7") is the proposition: pg; = 7 Appri = 7' A Z _, Qi = 2.

Pri =J = Prir 5’ V1<k<K,(i,ji,j)ed (6)
phaseConnectivity({a;|1 <i <n}) VI<k<K (7)

Unsupervised Machine Learning

Advantage: Provides a data driven global picture, incorporates complex dependencies.
Drawback: Misses critical details (e.g. connectivity, linear phase shifts).

Features Similarity matrices
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Better approach: take
shifts into account

Red: similar
Blue: dissimilar
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. Method: K-means on Dynamic Time-Warping kernel
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Goal: Select groups of samples that belong to the same phase region to feed the CP
. model, in order to extract the underlying phases of these sub-problems.

___________________________________________________________________________________________________________________________________

Integrating both approaches

INPUT:
Each cluster represents a Machine Learning:
sub-problem that the CP — — g;gjlgﬂgmgﬁt
procedure attempts to &
solve by extracting the I detection L |
underlying phases. / /I\
The full CP model is Fixerrors | SRR
. in data | Partial “Clustering” | / A
then solved using the ! — o —— Q.
pool of extracted phases. Full CP Model EEE R A2 )ShY
guided by - on sub-problems
partial solutions
O o only O y only
0 o, at+3, 3

Experimental Results: Example
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As 1llustrated on the Al-Li-Fe
diagram (right), our method
outperforms the current state of
the art (NMF, Long et al. ‘09) £
as 1t better captures the underly-
ing phases and ensures connec-
tivity in composition space.
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