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Integrating both approaches 

 Each cluster represents a 

sub-problem that the CP 

procedure attempts to 

solve by extracting the 

underlying phases. 
 

The full CP model is 

then solved  using the 

pool of extracted phases. 
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As illustrated on the Al-Li-Fe 

diagram (right), our method 

outperforms the current state of 

the art (NMF, Long et al. ‘09) 

as it better captures the underly-

ing phases and ensures connec-

tivity in composition space. 

Material Discovery through Combinatorial Method: sputtering 3 metals 

(or oxides) onto a silicon wafer (which produces a thin-film) and using x-

ray diffraction to obtain structural information about crystal lattice. 
 

Input: Diffraction patterns Y1,…, Yn of n points on the thin-film. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Output: Set of k basis patterns (or phases) X1,…,Xk. 

    Weights A1,…,An and shifts B1,…,Bn of these basis patterns in  

              the n points. 
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Advantage: Captures physical properties and relies on peak location rather than height. 

Drawback: Does not scale to realistic instances; poor propagation if experimental noise. 

Advantage: Provides a data driven global picture, incorporates complex dependencies. 

Drawback: Misses critical details (e.g. connectivity, linear phase shifts). 

Problem Definition 

■ Finding new products  

■ Finding product substitutes 

■ Understanding material properties (such 
as catalysts for fuel cell technologies) 


