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The Problem: Labeling Points with “Phase(s)”
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Motivation
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Identifying boundaries

Product Substitute, Resource 
Management… 

Identifying new phase regions

Material Property Understanding, 
Product Substitute… 

Ex: Catalysts for fuel cell technology

Automating a laborious manual task

Best data out of expensive experiments…
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• Introduction
Problem Definition
Motivation

• Key Characteristics, Challenges & Previous work

• Formal Definition & Problem Complexity

• Constraint Programming Model

• Unsupervised Learning

• Integrating both approaches: a new methodology

• Experimental Sample

• Applications with similar structure

• Conclusion



Key Characteristics, Challenges & Previous work

Strong underlying “physics”
requirements!

 Peaks shift within a phase
 Intensities fade away
 Connectivity
 Mixtures of  3 phases
 Small peaks might be 

discriminative 

 Experimentation errors
 Large scale

CROCS’10,  June 15, 2010 19

++

+








6 phases

Previous approaches unable
to model or enforce these
key characteristics!



Formal Definition & Complexity
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The peak location matters      We discretize the patterns into lists of peaks.

[Formal Definition]

Theorem: This problem is NP-complete.

Proof: Reduction from the Normal Set Basis Problem (which is 
itself reduced from the Vertex Cover Problem).

Input: Diffraction patterns Y1,…, Yn of n points on the thin-film.

Output: Set of k basis patterns (or phases) X1,…,Xk.
Weights A1,…,An and shifts B1,…,Bn of these basis
patterns in the n points.
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• Introduction
• Key Characteristics, Challenges & Previous work
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• Constraint Programming Model

• Unsupervised Learning

Global Alignment Kernel

K-means clustering

• Integrating both approaches: a  new methodology

• Applications with similar structure

• Experimental Results

• Conclusion



Constraint Programming Model

CROCS’10,  June 15, 2010 22

Advantage: Captures physical properties and relies on peak location rather than height.
Drawback: Does not scale to realistic instances; poor propagation if experimental noise.



Unsupervised learning: Kernel
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Set of features: D =
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Set of features: D =

Similarity matrix:
[D.DT]
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Set of features: D =

Similarity matrix:
[D.DT] [(D D+s1 D+s2).(D D D)T]
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Set of features: D =

Similarity matrix:
[D.DT] [(D D+s1 D+s2).(D D D)T]=M [M.MT]



Unsupervised learning: K-means
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Purpose
The goal is to select groups of samples that belong to the same phase
region and then run the CP approach on this subset, in order to extract the
underlying phases of this sub-problem.

Parameter setting
As the number of phase regions is a hidden parameter, we over-segment
the kernel by choosing a large number of clusters.
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What’s New: Solving it “Properly” Requires…
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… a robust, physically meaningful, scalable,
automated solution method that combines:

Similarity “Kernels”
& Clustering

Machine Learning
for a “global

data-driven view”

Underlying
Physics

A language for
Constraints

enforcing
“local details”

Constraint Programming model



Bridging Constraint Reasoning and Machine 
Learning: Overview of the Methodology
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Experimental Sample
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Example on Al-Li-Fe diagram:
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Example on Al-Li-Fe diagram:
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Example on Al-Li-Fe diagram:
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Applications with similar structure
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Flight Calls / Bird conservation

Identifying bird population from  sound  recordings at 
night.

Analogy: basis pattern = species
samples = recordings
physical constraints = spatial constraints, 

species and season specificities…

Fire Detection

Detecting/Locating fires.

Analogy: basis pattern = warmth sources
samples = temperature recordings
physical constraints = gradient of 

temperatures, material properties…

CROCS’10,  June 15, 2010



Conclusion

An exciting new problem!
 Close collaboration with Physicists

Sustainability impact:
 Technologies for fuel cell design
 Best data out of “expensive” experiment!

Computer science impact:
New problems at the intersection of 
constraint reasoning & machine learning
 clustering under hard & soft
. constraints (imposed by underlying physics)

Ongoing project
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