Computational Challenges in Material Discovery:
Bridging Constraint Reasoning and Machine Learning

putatiopn
c-"‘“ ™ 8,

s ‘a,% Ronan LeBras Computer Science
% Ics &  Theodoros Damoulas Computer Science
sy | John M. Gregoire Materials Science / Physics
Ssens it Ashish Sabharwal Computer Science
Carla P. Gomes Computer Science
Bruce van Dover Materials Science / Physics

June 15, 2010 CROCS’10



Problem Definition

CORNELL CROCS'10, June 15, 2010 2



Problem Definition

Al

Fe Si

CORNELL CROCS'10, June 15, 2010 3



Problem Definition

Al

o
(38% Fe, 45% Al, 17% Si)

Fe Si

CORNELL CROCS'10, June 15, 2010



Problem Definition

[Source: Pyrotope, Sebastien Merkel]
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The Problem: Labeling Points with “Phase(s)” {1cs)
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Motivation {1cs i (&)

Identifying boundaries

Product Substitute, Resource

Management...
|*‘°§A Identifying new phase regions
wg Material Property Understanding,
i Product Substitute...
' Ex: Catalysts for fuel cell technology
Ooéd B

P4 Cornell High E:

g;@r%j% Cornell Ur_\iversitv

Automating a laborious manual task

Best data out of expensive experiments...
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Key Characteristics, Challenges & Previous work {1cs) (&)

Strong underlying “physics” gy 6 phases

requirements!

= Peaks shift within a phase
» Intensities fade away

= Connectivity

= Mixtures of <3 phases

= Small peaks might be
discriminative

JY . R T R

= Experimentation errors
= Large scale

Synthetic

—

Previous approaches unable
to model or enforce these
key characteristics!
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Formal Definition & Complexity

The peak location matters => We discretize the patterns into lists of peaks.

[Formal Definition]
Input: Diffraction patterns Y,,..., Y, of n points on the thin-film.

Output: Set of k basis patterns (or phases) X;,...,X,.
Weights A,,...,A, and shifts B,,...,B,, of these basis
patterns in the n points.

Theorem: This problem is NP-complete.

Proof: Reduction from the Normal Set Basis Problem (which is
Itself reduced from the Vertex Cover Problem).
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» Key Characteristics, Challenges & Previous work

» Formal Definition & Problem Complexity
 Constraint Programming Model
» Unsupervised Learning

Global Alignment Kernel

K-means clustering
* Integrating both approaches: a new methodology
 Applications with similar structure
» Experimental Results

e Conclusion
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Constraint Programming Model {1cs)
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Variables Description Type
Phoi Normalizing peak for phase k in pattern ¢; Decision
A Whether phase k is present in pattern c¢; Auxiliary
qr Set of normalized peak locations of phase k Auxiliary
Qi = 0 =5 pj; =0 Vi<ks=K,1<i<m (1)
K
1€} aq 28 V1<i<n (2)
s=1
K
Pri=JAD aui=1—qCryy; VI<k<KI1<i<n1<j<|ol (3)
s=1
K
pk:i:j/\Z(I.Qijl_);’}ijg(Jk’ Viskx K l1i<nmlxj<|q (4)
s=1

member(ri;[7"], ar)
P(k, K i, j.7) — \Y VIi<k<K <K 1<i<n1<jji. i <|q]

member (r;;[3”]. qrr)

(5)
where P(k,k’.4,j,7") is the proposition: py; = 7 Aprs = 7' A Zf{:l bep = 2.
Pri =J = prir # J’ V1i<k<K,(iji,j)ed (6)
phaseConnectivity({ag;|1 <i < n}) V1i<k<K (7)

Advantage: Captures physical properties and relies on peak location rather than height.
Drawback: Does not scale to realistic instances; poor propagation if experimental noise.
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Unsupervised learning: Kernel

Set of features: D = =
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Unsupervised learning: Kernel
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Unsupervised learning: K-means {1cs}

Purpose
The goal is to select groups of samples that belong to the same phase

region and then run the CP approach on this subset, in order to extract the
underlying phases of this sub-problem.

Parameter setting
As the number of phase regions is a hidden parameter, we over-segment

the kernel by choosing a large number of clusters.
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What's New: Solving it “Properly” Requires... {ies) (]

.. arobust, physically meaningful, scalable,
automated solution method that combines:
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A language for for a “global
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b ol m) “local details”
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Constraint Programming model

Similarity “Kernels”
& Clustering
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Bridging Constraint Reasoning and Machine
Learning. Overview of the Methodology
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Experimental Sample

Example on Al-Li-Fe diagram:
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jputation,
oo s,
o I
@ . 55 B =
g 3 =
] B R\
5
% &

Example on Al-Li-Fe diagram:

AaArlL

Synthetic

NMF

CORNELL CROCS’10, June 15, 2010

vvvvvvvvvv

32



Experimental Sample
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Flight Calls / Bird conservation

Identifying bird population from sound recordings at
night.

Analogy: basis pattern = species
samples = recordings

physical constraints = spatial constraints,

species and season specificities...

Fire Detection

Detecting/Locating fires.

Analogy: basis pattern = warmth sources
samples = temperature recordings
physical constraints = gradient of

temperatures, material properties...
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Conclusion

An exciting new problem!

» Close collaboration with Physicists
N

Relative Phase Concentration

Sustainability impact:
= Technologies for fuel cell design
= Best data out of “expensive” experiment!

AlLO, o2 04 0.8 10Fe 05

Computer science impact: Aé

New problems at the intersection of
constraint reasoning & machine learning

-=> clustering under hard & soft
constraints (imposed by underlying physics)
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Ongoing project

CORNELL CROCS'10, June 15, 2010 36

U NIV ERSITY



