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In material sciences, a combinatorial method for discovering new materials consists in sputtering three
metals (or oxides) onto a silicon wafer, resulting in what we call a thin film. The goal is to identify structural
regions in thin films, which might lead to material discoveries and to a better understanding of material
properties. This is an important direction in the emerging field of computational sustainability [4], and aims
to achieve the best possible use of our available material resources.

A key incentive directly comes from the industry, as the discovery of a new material might lead to
a cheaper substitute to a widely-used (or over-used) material. A cheaper substitute might translate to
footprint reduction if its extraction is easier than the original product, especially if the latter gets scarce.
Moreover, knowing the crystallographic structure is central to understanding the underlying mechanism of
interesting material properties, such as catalyst activity for fuel cells. For example, a recent study of a
platinum-tantalum library revealed an important correlation between crystallographic phase and improved
catalytic activity for fuel cell applications [6]. Finally, new electromagnetic radiation tools have led to an
extensive physical characterization of thin films, and consequently to an immense library of data. However,
the analysis of this data remains a laborious manual task.

Any location on a thin film corresponds to a crystal with a particular composition of the three sputtered
metals (or oxides); see left pane of Figure 1. The structural information of this crystal lattice is usually
characterized by its x-ray diffraction pattern—a continuous waveform obtained by electromagnetic radiation.
The diffraction pattern represents the intensity of the electromagnetic waves as a function of the incidence
angle of radiation. Typically, a diffraction pattern of a thin film is in fact a combination of a total of about
half a dozen of basis patterns (or phases). In other words, a thin film involves a small number of basis
crystallographic phases, and every crystal corresponds either to one of these structures (i.e., a pure phase)
or to a combination of them (i.e., a mixture of phases).

Given the diffraction patterns for a sample of a few dozen to a few hundred locations, the problem is to
compute the most likely phase map, i.e., the set of basis patterns that are involved at any sampled location
of the thin film and in which proportion. A subproblem of this is to only cluster the sample locations such
that points in a cluster can be explained using the same set of basis patterns.

Previous Work and Challenges

In 2007, Long et al. [9] suggested a hierarchical agglomerative clustering (HAC) approach which aims to
solve the aforementioned clustering subproblem. In a follow-up paper, Long et al. [8] applied non-negative
matrix factorization, which approximates (through gradient descent) the observed diffraction patterns with a
linear combination of positive basis patterns. The main limitation of both approaches lies in the assumption
that peaks of a phase will always appear at the same position in any spectrum. Physical crystallographic
property, however, strongly corroborates the presence of shifts of peaks within a phase as we move from one
sample point to another. These two approaches also assume that the diffraction intensities vary uniformly
over the patterns, which often does not hold.

Our goal is to take the actual physics behind the crystallographic process (e.g., the nature of shifts in
the patterns) into account in order to design robust algorithms for solving this problem in the presence of
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Figure 1: Left: Pictorial depiction of the problem. Right: Kernel-based similarity detection.

experimental noise.

Different Approaches

This section presents the approaches that we successively considered to solve this problem. The first two
approaches strongly rely on the following observation: every peak in intensity indicates a preferable orienta-
tion of the crystal structure, and therefore peak locations capture the underlying parameters of the crystals.
As a result, it is more the actual location of a peak that characterizes a crystal than the absolute intensity
of the peak. Thereafter, we rely on well-studied peak detection algorithms [3, 10] to first determine the peak
locations.

Greedy Approach. Instead of considering the entire diffraction pattern, we discretize any spectrum
into a list of detected peaks. The problem is no longer to match the spectra but instead to match the
(relatively few) peaks—while taking shifts explicitly into account. We first propose a greedy approach that
proceeds as follows. Starting with the pattern with the fewest peaks, it extends this pattern to neighboring
points that share the same possibly-shifted pattern. Thus, it creates a pure-phase connected region. It
then repeats this step with the remaining pattern with the fewest peaks. Every time a pure-phase region is
identified, the algorithm tries to discover any mixture region that might lie between two pure-phase regions.

Constraint Programming Formulation. The greedy algorithm, unfortunately, breaks as soon as a
pure-phase is not sampled at all. In fact, we prove that this discretized version is actually NP-complete,
using a reduction from the Normal Set Basis Problem [7] (which is itself reduced from the Vertex Cover
Problem [2]). We then propose a constraint satisfaction formulation, with the desired number of phases as
a parameter. The key of this representation is that it relies on a single normalizing peak for every phase,
and computes possible shifts relative to this peak. We show that this information is enough to maintain
connectivity within a region, and to bound the number of phases involved in any point as well as the shifts.
The other peaks are only used to match the set of peaks of any pattern. The main advantage of this
approach is its ability to capture the underlying physical properties that characterize the behavior of the
crystallographic phases.

Kernel Methods from Machine Learning. The pure CP approach however does not perform very
well when there is noise in the data, for example in the form of missing peaks or measurement errors in
the location of peaks. In order to tackle this issue, we turn to methods from machine learning, specifically
for designing similarity matrices using kernels. The right pane of Figure 1 shows a sample “heat map” of
similarities for a problem instance with two pure phases and one mixed phases in-between. Red denotes high
similarity (usually along the diagonal) while blue shows dis-similarity. Moving rightwards, we obtain better
identification of the 3 regions by taking shifts and normalization into account. The bottom row shows the
“kernelized” version of the top row, depicting further improvement in the identification of the three regions.
A traditional clustering such as k-means then exploits this similarity matrix and attempts to cluster points
that belong to the same phase region. The main advantage of this approach is that it provides a data-driven
rough global picture of the problem and tends to incorporate complex dependencies of the data. However,
this approach might also miss critical details (e.g. connectivity or the fact that small peaks can be in fact
discriminating).

Integrating CP and ML: a New Methodology

The motivation that guides us into a fusion of CP and ML stems from the aforementioned distinct strengths
of these separate streams of research. A very specialized and detailed view of the problem (CP) can be



guided by a data-driven statistical view (ML). This is especially attractive and suitable for the material
discovery scenario that effectively has a two-fold goal: Identify generic phase regions and reconstruct the
component phases. The intuition behind our methodology is depicted in Figure 2. The clustering approach
generates clusters of points, where each cluster defines a sub-problem that the CP model attempts to solve.
Each of these sub-problems is significantly smaller than the original problem both in terms of the number
of points and the number of phases that compose these points. After solving all sub-problems, the resulting
phases are merged and any replicate one is removed, leading us to the global solution.
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Figure 2: Schematic representation of the integration of CP and ML.

Empirical Validation

For the investigation of the algorithm, synthetic xray diffraction data was generated for the Al2O3-Li2O-
Fe2O3 phase diagram using diffraction patterns from the JCPDS database [1] with parameter reflecting
those of a recently developed combinatorial crystallography technique [5]. This sample experiment indicates
that the NMF algorithm fails to capture the underlying phases and tends to combine similar but distinct
(and disconnected) phases. On the other hand, our algorithm produces phase concentration maps that are
connected in composition space and match closely with those of the synthetic phase maps.
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