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Cornell Fuel Cell Institute 

Mission: develop new materials for fuel cells. 

An Electrocatalyst must: 

1)  Be electronically conducting 

2)  Facilitate both reactions 

Platinum is the best known metal to 

fulfill that role, but: 

1) The reaction rate is still considered 

slow (causing energy loss) 

2)  Platinum is fairly costly, intolerant 

to fuel contaminants, and has a 

short lifetime. 

Goal: Find an intermetallic compound that is a better catalyst than Pt. 
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Recipe for finding alternatives to Platinum 

1) In a vacuum chamber, place a silicon wafer. 

2) Add three metals. 

3) Mix until smooth, using three sputter guns. 

4) Bake for 2 hours at 650ºC 

Ta 

Rh 

Pd 

(38% Ta, 45% Rh, 17% Pd) 

• Deliberately inhomogeneous 

composition on Si wafer   

• Atoms are intimately mixed 

 

[Source: Pyrotope, Sebastien Merkel] 

Motivation 
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Ta 

Rh 

Pd 

Figure 1: Phase regions of Ta-Rh-Pd Figure 2: Fluorescence activity of Ta-Rh-Pd 

Motivation 
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Identifying crystal structure using X-Ray Diffraction at CHESS 

• The XRD pattern characterizes the underlying lattice at a given point 

on the silicon wafer. 

Ta 

Rh 

Pd 

(38% Ta, 45% Rh, 17% Pd) 

[Source: Pyrotope, Sebastien Merkel] 
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 Bragg’s law: 
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 Bragg’s law: 
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INPUT: pure phase 

region 

Fe 

Al 

Si 

m phase regions 

     k pure regions 

     m-k mixed regions 

 

XRD pattern 

characterizing 

pure phases 

Mixed 

phase 

region 

OUTPUT: 

Additional Physical characteristics: 

• Phase Connectivity 

• Mixtures of  3 pure phases 

• Peaks shift by  15% within a region 

– Continuous and Monotonic 

• Noisy detection of peaks 
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Physical Characteristics 



Outline 

15 

 Motivation  

 Physical Characteristics 

• Problem Definition 

• Satisfiability Modulo Theory Approach 

• UDiscoverIt 

• Empirical Validation 

• Conclusions and Future Work 



Problem Definition 
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• Input: 

• A list of points on the silicon wafer 

 

 

 

 

 

• A real vector Di per vertex vi (diffraction patterns) 

• K = user specified number of pure phases  

• Goal: a basis of K vectors for  

 

 

 

 

v1 v2 v3 v4 
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D1 D2 … DN 

Di = ai1B1  + … + aiKBK  

D1 D4 
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• There is experimental noise 

 

 

• Non-negative basis vectors and coefficients 

 

 

• At most M (=3) non-zero coefficients per point 

 

 

• Basis patterns appear in contiguous locations on silicon wafer 

 

 

min ||Di – (ai1B1  + … + aiKBK ) || 

Minimize norm instead 

Bi ≥ 0 , aij ≥ 0 

Di = ai1B1  + … + aiKBK  

|{j | aij > 0}| ≤ M 

Build a graph G of the points on the silicon wafer 

The subgraph induced by |{i | aij > 0}| is connected 

v1 v2 v3 v4 

G 



Problem Definition 
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• Basis vector can be shifted 

 

 

• Shifts coefficients are bounded, continuous and monotonic 

 

 

 

 

S12 S13 S14 S11 

|S12 - S11| ≤ c 

≤ ≤ ≤ 

min || Di – ( ai1S(B1,si1) + … + aiKS(BK,siK) ) || 

Shift 

coefficients  

Shift 

operator 
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Satisfiability Modulo Theories Approach 
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v1
 

v2
 

v3
 

v4
 

v5
 

• Initial graph G and number K of basis patterns 

K=2 

basis 

patterns 
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v1
 

v2
 

v3
 

v4
 

v5
 

P1
 

P2
 

P3
 

P4
 

P5
 

• Initial graph G and number K of basis patterns 

• Peak detection to extract a set of peaks Pi for each  

  diffraction pattern Di 

K=2 

basis 

patterns 
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• Initial graph G and number K of basis patterns 

• Peak detection to extract a set of peaks Pi for each  

  diffraction pattern Di  

• Real variable ejk for the location of peak k in basis Bj 

e11 e12 e17 

e21 e22 e27 

K=2 

basis 

patterns 
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• Initial graph G and number K of basis patterns 

• Peak detection to extract a set of peaks Pi for each  

  diffraction pattern Di  

• Real variable ejk for the location of peak k in basis Bj 

• Real variable sij  for the shift coefficient of basis Bj in point Pi 

 

e11 e12 e17 

e21 e22 e27 

K=2 

basis 

patterns s11=0.00 

s12=0.05 

s13=0.10 

s14=0.20 

s15
 

s21=0.60 

s22=0.50 

s23=0.20 

s24=0.10 

s25=0.00 
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• An observed peak p is “explained” if there exists sij ,ejk s.t. |p-(sij + ejk)| ≤ ε 

• Every observed peak must be explained 
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v1
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v4
 

v5
 

• An observed peak p is “explained” if there exists sij ,ejk s.t. |p-(sij + ejk)| ≤ ε 

• Every observed peak must be explained 

• Some peaks might be missing (unobserved) 

• Bound the number of missing peaks ≤ T 

• Minimization by (binary) search on T 
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Satisfiability Modulo Theories Approach 
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• Linear phase usage constraints (up to M basis patterns per point) 

• Linear constraints for shift monotonicity and continuity ( sij ≤ slm ) 

• Lazy connectivity: add a cut if current solution is not connected 

 

 

 

 

• Symmetry breaking: 

• Renaming of pure phases 

• Ordering of the peak locations ejk (per basis pattern) 

 

       Quantifier-free linear arithmetic 

If disconnected regions 

explained with phase 1 

Then Phase 1 must 

appear in at least 

one of these points 



Experimental results for SMT 
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Research Questions 
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• Can human input be used to significantly boost the 

performance of combinatorial reasoning and optimization 

methods?. 

 

• Can human input provide useful global guidance to the solver, 

by identifying the setting of so-called backdoor variables in the 

SMT model? 
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• Graphical User Interface for providing user input to an SMT 

solver 

• Visualization of the X-ray diffraction data 

• User provides partial assignments of the variables of the 

SMT formulation 

… 

(let ((?x3935 (+ (+ ?x3913 (ite (and r_3_1 (not $x3920)) 1 0)) (ite (and r_3_1 (not $x3931)) 1 0)))) 

(let ((?x3957 (+ (+ ?x3935 (ite (and r_3_1 (not $x3942)) 1 0)) (ite (and r_3_1 (not $x3953)) 1 0)))) 

(let (($x994 (and (<= (+ e_1_9 S_2_1) 6442) (<= 6432 (+ e_1_9 S_2_1))))) 

(let ((?x991 (+ e_1_9 S_2_1))) 

(let (($x1080 (<= 7372 ?x991))) 

(let (($x1079 (<= ?x991 7382))) 

(let (($x1081 (and $x1079 $x1080))) 

(let (($x1168 (and (<= ?x991 7747) (<= 7737 ?x991)))) 

… 

r_3_1 = 1 



UDiscoverIt 
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• Graphical User Interface for providing user input to an SMT 

solver 

• Visualization of the X-ray diffraction data 

• User provides partial assignments of the variables of the 

SMT formulation 

• Representation inspired from how materials scientists 

analyze the data and address this problem 



UDiscoverIt 
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• Graphical User Interface for providing user input to an SMT 

solver 

• Visualization of the X-ray diffraction data 

• User provides partial assignments of the variables of the 

SMT formulation 

• Representation inspired from how materials scientists 

analyze the data and address this problem 

• No knowledge requirement about the underlying phase 

structure, and only very limited knowledge of diffraction 

methods. 



UDiscoverIt 
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UDiscoverIt 
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Experimental results for SMT with user input 
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Conclusions 
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• With limited effort and input, a user can provide insightful 

information about the structure of the problem, and dramatically 

speed up the performance of the SMT solver. 

 

• The approach leverages the complementary strength of human 

input, providing global insights about problem structure, and 

the power of combinatorial solvers to exploit complex local 

constraints.  
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• Aggregating input from multiple users 
 

• Guiding the search as a variable/value ordering heuristics, as 

opposed to pre-assignments of variables 
 

• Providing the user with explanation and feedback about 

inconsistencies 
 

• Adapting the GUI to a more ‘FoldIt’ spirit 
 

• Adapting this method to Mechanical Turk 
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THANK YOU! 
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Non-negative Matrix Factorization [Long et al., 2009] 
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Advantages: scales up very well, accurately solves simple systems 

Drawbacks: overlooks critical physical behavior, making the results physically 

 meaningless for more complex systems. 
 

 

Illustration on synthetic instances  

from the Al-Li-Fe ternary system 
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•Illustration on Al-Li-Fe system 



Runtime 
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# Points Unknown 

Phases 

Arithmetic + Z3 

(s) 

Set-based + CPLEX 

(s) 

10 3 8 0.5 

6 12 Timeout 

15 3 13 0.5 

6 20 Timeout 

18 3 29 384.8 

6 125 Timeout 

29 3 78 276 

6 186 Timeout 

45 6 518 Timeout 

Arithmetic encoding translated to CP and MIP: 

• MIP is appealing because it can optimize the objective 

• They don’t scale → SMT solving strategy 

 

Z3 scales to 

realistic sized 

problems! 



Precision/Recall 
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Recovers ground truth 

Size Precision Recall 

10 95.8 100 

15 96.6 100 

18 97.2 96.6 

29 96.1 92.8 

45 95.8 91.6 



Robustness 
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• Remove some peaks to simulate experimental noise 

• Size = 15 points 

Missing Peaks Precision Recall 

1 96.1 99.6 

2 96.3 99.3 

3 96.7 99.5 

4 95.3 98.9 

5 94.8 99.7 

Solutions are still accurate. Runtime increases approx linearly. 



Previous Work 1: Cluster Analysis [Long et al., 2007] 

50 

 

 

xi = 

 

 
Feature vector Pearson correlation coefficients 

 

 

Distance matrix 

 

 

PCA – 3 dimensional approx Hierarchical Agglomerative  Clustering 

Drawback: Requires sampling of pure phases, detects phase regions (not phases), 

overlooks peak shifts, may violate physical constraints (phase continuity, etc.). 



Previous Work 2: NMF [Long et al., 2009] 
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xi = 

 

 Feature vector Linear positive combination (A) 

of basis patterns (S) 

Minimizing squared 

Frobenius norm 

X = A.S + E 

 

 

Min ║E║ 

 

 

Drawback: Overlooks peak shifts (linear combination only), may violate 

physical constraints (phase continuity, etc.). 
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• Parameters 

• Number of pure phases K, tolerance ε 

• Key components 

• Variables peak positions per base 

• Shifts per point 

• Point p is explained by base k 



SMT formulation 
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• New arithmetic-based encoding: 

• Real variables eij for the peak locations in each Bi 

• Real variables for the shift coefficients sij  

   (per base, per point) 

• An observed peak p is explained if |p-sij - eij| ≤ ε 

  (Match the height of the peaks) 

• Bound the number of missing peaks ≤ T 

 

 


