

Ronan Le Bras

Motivation

[Goals]

- Discover **new materials** with improved catalytic activity for **fuel cell** applications.
- **Reduce** the processing **time** of the **data** analysis to dynamically optimize expen-sive Synchrotron experiments.

[Characteristic of Combinatorial Materials Discovery]

- Complex local **physical constraints**, that require a **sophisticated optimiza**tion approach
- Interpretation of complex high-intensity X-ray **diffraction data**, that appears to be well-suited for a human computation approach

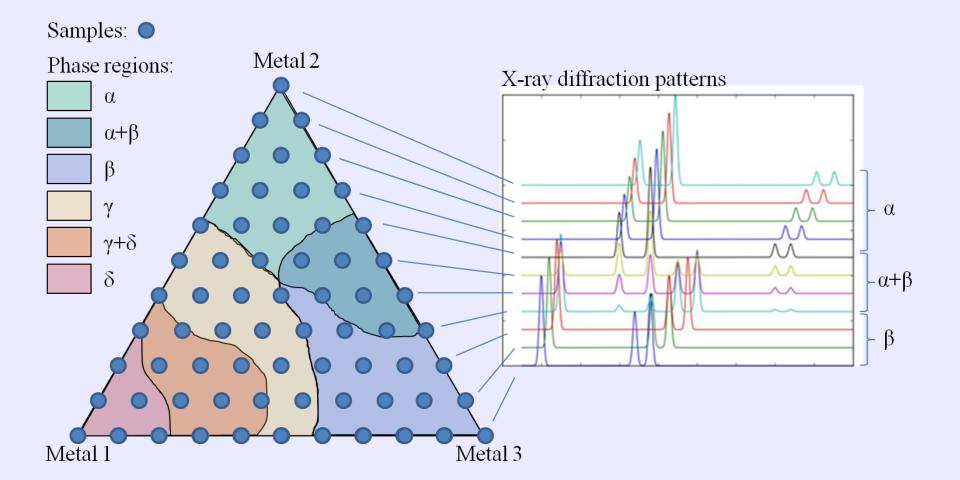
[Research Question]

Can human input significantly **boost** the performance of combinatorial reasoning and optimization methods?

Phase-Map Identification Problem

Combinatorial Method: sputtering 3 metals (or oxides) onto a silicon wafer (which produces a *thin-film*) and using x-ray diffraction to obtain structural information about crystal lattice.

Input: Diffraction patterns $D_1, ..., D_n$ of *n* sample points on the thin-film.



Output: Set of *K* basis patterns (or *phases*) $B_1, ..., B_K$ (along with weights a_{ii} and shifts s_{ii} of basis pattern *j* in point *i*).

Human Computation for **Combinatorial Materials Discovery**

Richard Bernstein

Carla P. Gomes

Bart Selman

Physical Characteristics

Each diffraction point D_i is explained by the basis patterns:

$$\boldsymbol{D}_i = \boldsymbol{a}_{i1}\boldsymbol{B}_1 + \ldots + \boldsymbol{a}_{iK}\boldsymbol{B}_K$$

There is experimental noise:

$$\min \|\boldsymbol{D}_i - \boldsymbol{a}_{i1}\boldsymbol{B}_1 + \ldots + \boldsymbol{a}_{iK}\boldsymbol{B}_K\|$$

Non-negative basis patterns and coefficients:

$$B_i \ge 0$$
, $a_{ij} \ge 0$

At most M non-zero coefficients per point:

 $|\{j \mid a_{ij} > 0\}| \leq M$

Basis patterns appear in contiguous locations on the silicon wafer:

The subgraph induced by $|\{i \mid a_{ij} \ge 0\}|$ *is connected*

Basis patterns can be shifted:

Shift operator Shift coefficients

 $\|D_i - a_{il}S(B_{l}S_{il}) + \dots + a_{ik}S(B_{k}S_{ik})\|$

Shifts coefficients are bounded, continuous and monotonic:

$$S_{11} \leq S_{12} \leq S_{13} \leq S_{14}$$

$$S_{12} - S_{11} \leq c$$

Satisfiability-Modulo-Theories Formulation

Integer variables e_{ii} for the **peak locations** in each B_i

Integer variables for the shift coefficients s_{ij}

An observed peak p is "explained" if there exists s_{ii} , e_{il} s.t. $|p - (s_{ii} + e_{il})| \le \varepsilon$

Every observed peak must be "*explained*"

Bound the number of missing peaks $\leq T$

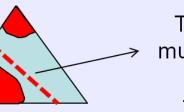
Minimization by (binary) search on T

Linear phase usage constraint (up to M basis patterns per point)

Linear constraint for shift monotonicity and continuity ($s_{ij} \leq s_{lm}$)

Lazy connectivity: add a cut if current solution is not connected

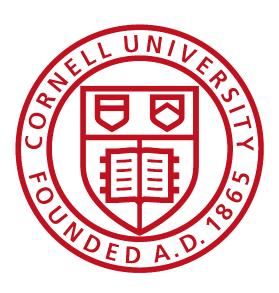
If disconnected regions explained with phase



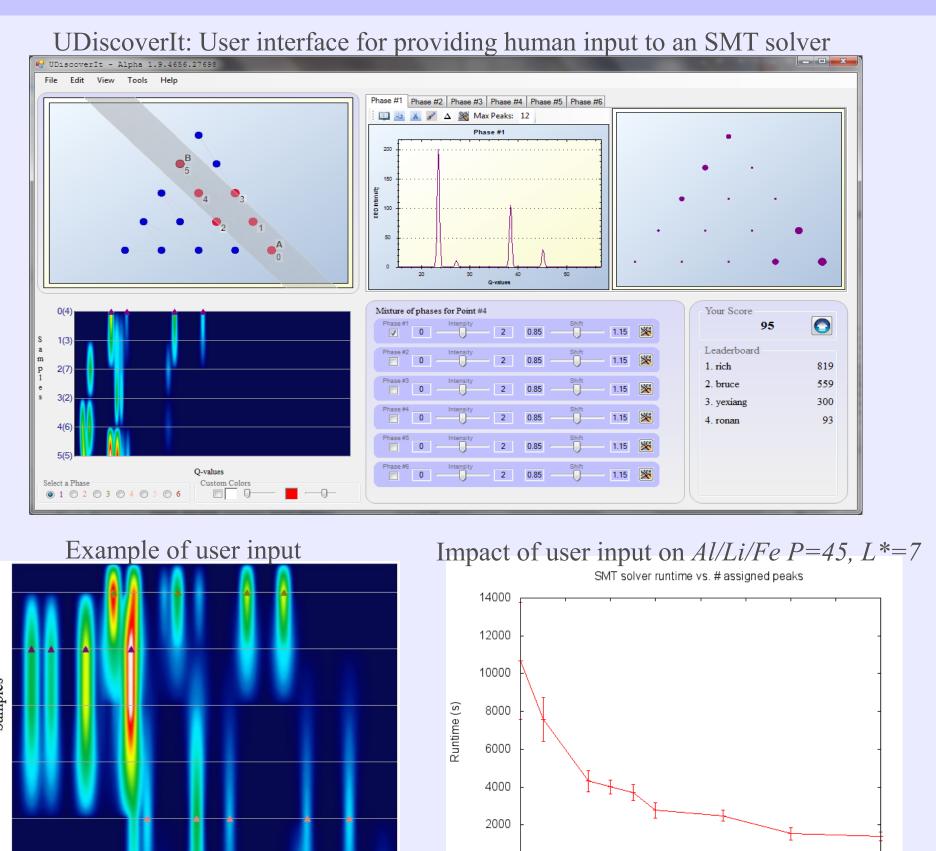
Then Phase 1 must appear in at least one of these points

Symmetry breaking: Renaming of pure phases, ordering the peaks location e_{ii} (per phase)

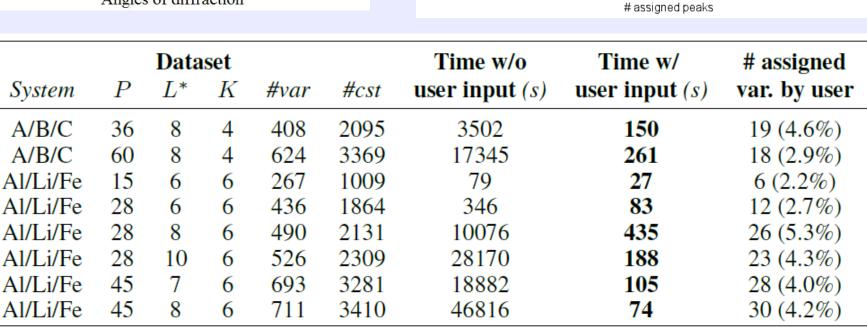
 \Rightarrow {quantifier-free linear integer arithmetic theory}



Experimental Results



Angles of diffraction



Human computation can dramatically **speed up** the performance of combinatorial optimization methods

■ Our approach leverages the **complementary strength** of **human in**put, providing global insights into problem structure, and the power of combinatorial solvers to exploit complex local constraints.

Acknowledgments

The authors gratefully acknowledge the support of the National Science Foundation, award number 0832782.