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Abstract

Accurately estimating the distribution of solutions to a problem, should such
solutions exist, provides efficient search heuristics. We propose new ways of
computing such estimates, with different degrees of accuracy and complexity. We
build on the Expectation-Maximization Belief-Propagation (EMPB) framework
proposed by Hsu et al. to solve Constraint Satisfaction Problems (CSPs). We
propose two general approaches within the EMBP framework: we firstly derive
update rules at the constraint level while enforcing domain consistency and then
derive update rules globally, at the problem level. The contribution is two-fold:
first, we derive new generic update rules suited to tackle any CSP; second, we
propose an efficient EMBP-inspired approach, thereby improving this method
and making it competitive with the state of the art.

Running Example & Motivation

Figure: A choice point in
a QWH instance

Then, if we were enumerating all the solutions, we
could deduce:

I P(x13) =

P(x13 = 1) = 2/5
P(x13 = 4) = 2/5
P(x13 = 5) = 1/5

Instead, we try to approximate this probability distri-
bution:

I θx13 =

θx13(1) = 0.391
θx13(4) = 0.472
θx13(5) = 0.137

The EMBP Framework

Definitions. The EMBP framework introduces the following definitions:

Θ Probability distribution of the variables
y Binary-vector random variable indicating whether

the constraints are satisfied
z Satisfying configurations of the constraints

Essentially, EMBP aims at maximizing the loglikelihood of P(y, z|Θ).

Intuition. We observe a solution of the CSP (y) but we do not really
know how the constraints are satisfied (z). Thus, we are asking EMBP to
figure out how the variables are set (Θ).

Additional definition. Let Q(z) be the distribution function P(z|y,Θ),
representing each solution probability given the biases Θ and given the
observation y that the constraints are satisfied.

EMBP (Hsu et al.) iteratively adjusts Θ in a two-step process:

Figure: EMBP Steps

In the E-Step, we compute the probability of the
satisfying configurations given the variable
distribution:
Q(z) =

∏m
i=1(q(Ci)),

where q(Ci) is the probability of a given configuration for Ci.

In the M-Step, the variables adjust their distribution
taking into account the probability of the valid
tuples of the constraints:
θxi(v) = 1

η

∑
Ck∈C:xi∈X(Ck)

(∑
z∈Sz:xi=v Q(z)

)
Computing EMBP. Within the EMBP framework, the definition of Q(z)
remains however unspecified. Computing Q(z) exactly implies expressing
every single solution of the problem, which is clearly intractable. Hence, we
approximate Q(z) and the following methods gradually improve the
accuracy of the estimation of Q(z).

EMBPa for the alldifferent constraint

Within the alldifferent constraint, the probability that variable xi is assigned
the value v can be approximated by the probability that no other variable in
the constraint takes the value v.

Figure: EMBPa on
the running example

θxi(v) =
1

η

∑
Ck∈C:xi∈X(Ck)

 ∏
xj∈X(C)\xi

(
1− θxj(v)

)
where η is a normalizing constant.

(Hsu et al., 2007)

EMBP-Lsup - First Contribution

We propose to derive local X-consistency EMBP methods, which are a fairly
natural extension to EMBPa, to improve the accuracy of EMBPa and
extend this approach to any constraint.
We consider all assignments y = b that are X-consistent with the
assignment x = a within a constraint to compute θx(a) for a given
constraint.

Figure: EMBP-Lsup on
the running example

θxi(v) =
1

η

∑
Ck∈C:xi∈X(Ck)

 ∏
xj∈X(Ck)\xi

∑
v′∈D̃xi=v(xj)

θxj(v′)


where D̃xi=v(xj) represents the reduced domain
of the variable xj after assigning xi = v and
enforcing X-consistency on Ci.

EMBP-Gsup - Second Contribution

We suggest to go one step further in terms of accuracy for the computation
of Q(z). With EMBP-Gsup, the problem is considered as a whole and the
method directly exploits the dependence between constraints when
computing Q(z). EMBP-Gsup improves the quality of the approximation
taking into account supports that are X consistent after propagating every
constraint of the problem.

Figure: EMBP-Gsup on
the running example

θxi(v) =
1

η

∏
xj∈X\xi

∑
v′∈D̂xi=v(xj)

θxj(v′)

where D̂xi=v(xj) represents the reduced domain
of the variable xj after assigning xi = v and
enforcing X-consistency on the CSP.

Experiment Results on 40 hard QWH instances of order 30

Table: Time, bkts and % of solved inst.
heuristics total time avg btk solved

rndMinDom 26328.2 1300056 56.8%

MaxSD 4939.1 3503 100.0%

IlogIBS 29017.0 1001570 45.0%

IlogAdvIBS 13795.8 914849 85.0%

RSC-LA 14019.9 856 95.0%

RSC2-LA 7178.7 4880 95.0%

EMBPa 13932.2 82158 79.0%

EMBP-Lsup 12814.2 6642 82.5%

EMBP-Gsup 3946.9 55 99.5%

Figure: % of solved instances vs time

Experiment Results on 40 Magic Square instances

Table: Time, bkts and % of solved inst.
heuristics total time avg btk solved

rndMinDom 7397.0 4018251 97.0%

MaxSD 8895.7 242290 95.0%

IlogIBS 72078.2 22396381 50.0%

IlogAdvIBS 5067.9 2224191 97.5%

RSC-LA 39612.4 48759 75.0%

RSC2-LA 34524.3 1180456 80.0%

EMBP-Lsup 98910.7 20572 43.0%

EMBP-Gsup 3758.2 895 98.8%

Figure: % of solved instances vs time

Summary

I We propose new efficient extensions to the EMBP framework that present
better accuracy, due to the propagation at the constraint level
(EMBP-Lsup) and at the problem level (EMBP-Gsup).

I The methods are generic and can be applied to any constraint
(EMBP-Lsup) or any CSP (EMBP-Gsup).

I EMBP-Gsup tends to be consistent on the problems we experimented and is
really competitive with existing approaches.

Future Work

I What is the most efficient way to use biases information?
I How can we make EMBP-Gsup faster?
I Could we exploit Expectation-Maximization Survey Propagation to derive

similar EMSP-based update rules?
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