Efficient Generic Search Heuristics
within the EMBP framework

Ronan Le Bras'?, Alessandro Zanarini'2, and Gilles Pesant!2

1 Ecole Polytechnique de Montréal, Montreal, Canada
2 CIRRELT, Université de Montréal, Montreal, Canada

{Ronan .LeBras,Alessandro.Zanarini,Gilles. Pesant}@cirrelt .ca

Abstract. Accurately estimating the distribution of solutions to a prob-
lem, should such solutions exist, provides efficient search heuristics. The
purpose of this paper is to propose new ways of computing such esti-
mates, with different degrees of accuracy and complexity. We build on the
Expectation-Maximization Belief-Propagation (EMPB) framework pro-
posed by Hsu et al. to solve Constraint Satisfaction Problems (CSPs).
We propose two general approaches within the EMBP framework: we
firstly derive update rules at the constraint level while enforcing domain
consistency and then derive update rules globally, at the problem level.
The contribution of this paper is two-fold: first, we derive new generic
update rules suited to tackle any CSP; second, we propose an efficient
EMBP-inspired approach, thereby improving this method and making
it competitive with the state of the art. We evaluate these approaches
experimentally and demonstrate their effectiveness.

Key words. Constraint Satisfaction; Search Heuristics; Probabilistic
Reasoning; Expectation Maximization; Belief Propagation

1 Introduction

In this paper we address Constraint Satisfaction Problems (CSPs). To guide the
backtrack search, we estimate the percentages of solutions that have a given vari-
able assigned a particular value. Accurately estimating this distribution of the
solutions, should such solutions exist, provide efficient search heuristics. Previous
work [4] already shows a positive correlation between accuracy of the estimates
and efficiency of the heuristic. The more accurate the estimations are, the more
efficient the heuristic is. On one side of this accuracy spectrum, a distribution
in which every variable-value assignment is equally probable represents a totally
random heuristic. On the other side lie exact marginal probabilities for a ran-
domly sampled solution of the problem. The first approach is trivial whereas the
second remains intractable for hard problems. Indeed, finding the proportion
of solutions that assign a variable a particular value is a generalization of the
problem of detecting backbone variables. (A backbone variable is defined as a
variable that takes the same value in every solution of a given problem; thus,
the marginal distribution of such a variable corresponds to a probability of 1

for this particular value, and 0 for the other values in its domain.) Since even
an approximation of a backbone is intractable in general [6], the problem of
estimating the distribution of solutions is a fortiori also intractable in general
for hard problems. The purpose of this paper is therefore not to present exact
estimation methods for these distributions but to specify approximate methods,
with different degrees of accuracy and of complexity.

In this probabilistic environment, inference methods such as message-passing
algorithms were proven to be very effective. Even if they are more traditionally
applied in probabilistic inference, their aptitude to estimate marginal probability
makes them particularly suitable for a backtrack search framework. For instance,
Belief Propagation (BP) [10, 8] (and later on Generalized Belief Propagation [13])
was developed to tackle inference problems such as problems arising in computer
vision or error-correcting coding theory. Kask et al. [5] then demonstrated that
BP was especially efficient when applied to CSPs and used as a value-ordering
heuristic. Mezard et al. [9] invented Survey Propagation, which eventually turned
out to be nothing less than the state of the art to solve large random Boolean
satisfiability (SAT) problems [1,7]. More recently, Hsu et al. [3,4] suggested
Expectation Maximization (EM) variants of these two major message-passing
algorithms.

Here we exploit Expectation-Maximization Belief Propagation (EMBP) which
was proposed by [3] to address the Quasigroup with Holes (QWH) problem.
The contribution of this paper is two-fold: first, we derive new generic update
rules suited to tackle any CSP; second, we propose an efficient EMBP-inspired
approach, thereby improving this method and making it competitive with the
state of the art. We evaluate these approaches experimentally and demonstrate
their effectiveness.

The following section presents the EMBP algorithm. Section 3 then intro-
duces the local consistency extensions of this algorithm, while Section 4 describes
the global consistency approach. Section 5 reports the experimental results on
three problems. Section 6 discusses connections between the EMBP framework
and search heuristics from the literature. Final comments are given in Section 7.

2 Expectation-Maximization Belief Propagation

A Constraint Satisfaction Problem (CSP) consists of a finite set of variables
X = {x1,22,...,2,} with finite domains D = {Dy, Da,...,D,} such that
x; € D; for all i, together with a finite set of constraints C, each on a sub-
set of X. A constraint C; € C is a subset T'(C;) of the Cartesian product of the
domains of the variables that are in C;. We write X (C;) to denote the set of
variables involved in C; and we call tuple 7 € T'(C;) an allowed combination of
values of X (C;).

This problem can be modeled indifferently as a Factor Graph, a Pairwise Markov
random field or a Bayesian Network [13]. These models then define a joint prob-
ability function P(x1,xa,...,x,). Thus, estimating the distribution of solutions

boils down to approximating marginal probabilities P(x;), Vi € 1..n. Here lies the
purpose of inference methods, and particularly of message-passing algorithms.

2.1 EMBP Framework

Like other message-passing algorithms, EMBP [3] iteratively adjusts the proba-
bility for a variable x; to be assigned a particular value v in a randomly chosen
solution. We will denote 0, (v) and call bias such a probability. Hence, 0, rep-
resents a probability distribution over the values in D(x;) which approximates
the exact marginal distribution P(x;). The EMBP framework also introduces a
binary-vector random variable y that indicates whether each constraint is sat-
isfied. EMBP proceeds by sending two kind of messages (thus falling into the
" message-passing” category), as illustrated on Figure 1. First, a variable sends
its probability distribution to the constraints (Figure 1(a)) so that the latter hy-
pothetically compute the probability of satisfying tuples. Then, every variable
retrieves this information from its relevant constraints (Figure 1(b)) in order to
update its probability distribution.

Fig. 1. Illustrating Expectation-Maximization messages for the following example:
X = {x1,$2,$3,$4,l‘5}, C = {01,02}, with X(C1) = {xl,xg,xg} and X(Cg) =
{z3,24,25}}.

2.2 EMBP General Update Rule

Let © be the vector of variable biases 6,,. In essence, the basic goal of the EM
algorithm consists of finding the variable biases © that maximize the probability
P(y|©) that the constraints are satisfied. However, the EMBP methodology
assumes that the vector of variables y was originally generated by using not
only the parameters @, but also hidden variables that we did not observe. In
a CSP environment, these latent variables (that we will call z) are actually
the satisfying configurations, i.e. tuples, of the constraints. In other words, the
variable z ranges over all valid solutions of the problem. We denote by S, the
support of the distribution of z.

Hence, we now want to maximize P(y, z|@). The difficulty lies in the fact
that we cannot marginalize on z since it would assume that we can observe the

solutions of the problem. Instead, we divide this computation into two iterative
steps. In the first step of the EM algorithm (the E-Step), we hypothesize the
distribution Q(z) = P(z|y, ©). The distribution function Q(z) represents each
solution probability given the biases @ and given the observation y that the
constraints are satisfied. Figure 1(a) illustrates this step, in which every con-
straint C' receives the probability distribution 6, (where z; € X(C)) and com-
putes the probability of the satisfying configurations given these distributions.
In the second step (the M-Step), we revise the variable biases ©. As illustrated
in Figure 1(b), the variables adjust their distribution taking into account the
probability of the valid tuples of the constraints.

Within the Expectation-Maximization (EM) methodology, the E-step firstly
assumes the independence between constraints to compute Q(z) as we hypothet-
ically consider only satisfying configurations. Thus, Q(z) becomes the product of
the probabilities of the constraints, given a particular set of biases ©. Therefore,
Q(z) =TI~ (q(Cy)), where ¢(C;) is the probability of a given configuration for
the constraint C;.

The M-step then enforces the dependence between constraints, and yields
the following general formula:

b=~ Y (Z Q(Z)> &)

CkEC:TL'iGX(Ck) z€S,:xi=v

Here 7 is a normalizing constant and equals the summation of the numerator
over all values of v. For more details about how to derive Equation (1), please
refer to [3].

As a result, EMBP provides a general algorithm to compute variable biases.
Within this framework, the definition of Q(z) remains however unspecified. The
methods presented in the following section exploit this degree of freedom.

2.3 Computing EMBP: a tradeoff between accuracy and complexity

One might consider determining S, the solution space of the problem, and then
computing Q(z) exactly. This approach is however intractable since it implies
expressing each solution of the problem to estimate the biases in order to find a
solution. Hence, an approximation of Q(z) is required. The methods described
in this paper (summarized in Table 1) gradually improve the accuracy of the
estimation of Q(z) and, by doing so, increase the complexity of its computation.
In that regard, the methods need to find the supports either locally (i.e. at the
constraint level - Lsup) or globally (i.e. after propagating the whole constraint
network - Gsup) enforcing a level of consistency denoted by X.?

3 Note that the constraints involved can even implement different levels of consistency,
as is common in practice.

Table 1. EMBP-based search heuristics

Heuristics Consistency
EMBP-a local Arc-Consistency

EMBP-Lsup local X-Consistency
EMBP-Gsup global X-Consistency

3 EMBP and local consistency

Whereas Equation (1) sums over the probabilities of all satisfying tuples, the
following local X-consistency methods (EMBP-a and EMBP-Lsup) are designed
to approximate this summation by simplifying it.

3.1 EMBP-a for the alldifferent Constraint

Originally, Hsu et al. [3] suggest such an approximation for the alldifferent
constraint. The probability that variable x; is assigned the value v can be ap-
proximated by the probability that no other variable in the constraint takes the
value v. The approach is therefore ensuring pairwise consistency between x; and
the other variables in the alldifferent constraint. Thus, the authors obtain
the following update rule for a set C, of alldifferent constraints:

bo) =~ % I 3 o

K CreCa:zi €X(Cr) \z; €X(Cr)\zi v/ €D(x;)\v

Y [T @-6.,w) (2)

K Cr€Cq:z; €X(Ck) \z;€EX(Cr)\z;i

where 7 is again a normalizing constant.

3.2 EMBP-Lsup

We propose to derive local X-consistency EMBP methods, which are a fairly
natural extension of EMBP-a. The reasoning behind these methods to compute
0z, (v) for a given constraint is to consider all assignments z; = v’ that are X-
consistent with the assignment x; = v within this constraint. In other words,
these methods take into account domain reductions at the constraint level when
enforcing X-consistency. Essentially, the method processes one constraint at a
time, and for each variable-value assignment looks for the supports that are
X-consistent and updates the biases using the following formula:

Hmi(v)zl > 11 S 0.,(0) (3)

n CreCiai €X(Cr) \2;€X(Ci)\Ti v/ €Dy, =y ()

where bwi:y(xj) represents the reduced domain of the variable x; after as-
signing x; = v and enforcing X-consistency on Cj.

Considering that ensuring pairwise consistency between one variable and
the others is reminiscent of arc consistency, EMBP-a indeed falls into the set
of local X-consistency EMBP methods, with X standing for arc consistency.
Nonetheless if we consider stronger consistency, such as domain consistency, the
improvement is twofold: it provides better accuracy since the variable biases
rely only on supports that are domain consistent (rather than arc consistent
for EMBP-a) and it is easily implementable for any constraint for which we
can enforce domain consistency. The method can be easily extended to consider
any form of consistency. As in the general EMBP update rule, EMBP-Lsup still
assumes independent constraints and only the M-Step enforces the dependence
between the constraints.

Algorithm 1 shows the pseudo-code to update 0,,(v) at iteration ¢t. Pg, rep-
resents the contribution of C; to 6,,(v) and S, the summation for the variable
x;. Firstly, the algorithm picks up a constraint C; whose variable set contains
x;, then propagates the assignment x; = v (line 3). For every variable x; in the
constraint’s scope, we add up the value biases of the reduced domain (line 8)
and multiply the result with Pe, (line 9). Once the algorithm is done with pro-
cessing constraint C;, it adds the contribution of this constraint to 6,,(v), rolls
back the effect of the propagation (lines 10-11), and continues to iterate over
the remaining constraints. Note that when all the 6,,(-) have been computed,
they have to be normalized.

1 057 (v) = 0;
2 for each constraint C; € C': z; € X(C;) do
enforce X-consistency on C; with x; = v;
Pc, =1,
for each variable x; € X(C;) \ z; do
Sz; = 0;
for each value v' € Dy,—(z;) do
Sz; = Sz; + 0;_7 (v');
Pc,i = Pc,i X Szj;
10 0;7(v) = 0: (v) + Poy;
11 rollback propagation Cj;
12 normalize 05" (v);

Algorithm 1: EMBP-Lsup update algorithm for 6, (v) at iteration ¢

© 00N O kW

Given k the number of constraints in which z; is involved, n their maximum
arity, d the maximum cardinality of the variable domains and P the worst-
case complexity of the constraints’ propagation algorithms, the worst-case time
complexity of Algorithm 1 is O(kP+knd). To reach convergence, the code shown
in Algorithm 1 should be run for every variable-value pair at each iteration of
the EMBP. In order to improve the efficiency of the procedure, the propagation

of the constraints is performed once and the information related to Dmi:y is
cached since the reduced domains remain constant over the iterations.

This method aims to be a tradeoff between accuracy and performance: at
any given time no propagation other than the one of the processed constraint is
performed, which is less expensive than propagating the whole model, but also
less accurate.

4 EMBP and global consistency

Introducing a new method that we call EMBP-Gsup, we suggest to go one step
further in terms of accuracy for the computation of Q(z). Indeed, in EMBP-
Gsup, the problem is considered as a whole and the method directly exploits the
dependence between constraints when computing Q(z). EMBP-Lsup considers
supports that are X-consistent for one constraint at a time whereas EMBP-Gsup
will improve the quality of the approximation by taking into account supports
that are X-consistent after propagating each problem’s constraint. In the new
representation underlying the approximation of Q(z), instead of having m con-
straints (see Figure 1), we now consider only one, in which every variable in X
is involved.
The update formula is then:

9%,(@):% 11 > 0.,

z;€X\T; 1),6Dmi:1, (x5)

:% I (- 3 0., (v') (4)

z; €X\xi v €D(w;)\ Dy = (@)

where D(z;) is the domain of x; before assigning x; = v and Dy,—,(z;)
stands for the reduced domain of the variable x; after assigning x; = v and
enforcing X-consistency on each problem constraint.

The method indirectly depends on the problem modelling since it depends
on the overall inference power underlying the specific modelling. However, this
approach also offers the possibility of using different levels of consistency during
the probing phase (when we compute ﬁmi:v) and during the effective propaga-
tion phase of the search.

Algorithm 2 shows the pseudo-code to update 6,,(v) at iteration ¢. The main
difference with Algorithm 1 lies in the fact that there is no summation over
the constraints since the contribution of each constraint is implicitly reflected
in D,,—,(2;) due to the initial propagation over the whole problem (line 2).
In practice the experiments revealed that it is faster to iterate over the delta
domain of the variables (which is the complementary set of D,,—,(x;)) rather
than over D,,—,(z;) itself (line 5).

10,7 (v) = 1;

2 enforce X-consistency on the whole problem with z; = v;
3 for each variable z; € X \ z; do

4 Smj =1

5 for each value v' € D(z;) \ Day,=o(z;) do

6 Sz; = Su; — ﬁij (v');

7 05t (v) = 05T (v) % Sa s

8 rollback propagation of z; = v;

9 normalize 05" (v);

Algorithm 2: EMBP-Gsup update algorithm for 6,,(v) at iteration ¢

Given K the total number of constraints, IV the total number of variables, d
the maximum cardinality of the variable domains and P the worst-case complex-
ity of the constraints’ propagation algorithms, the worst-case time complexity
of Algorithm 2 is O(K P + Nd). Even though not obvious from the worst-case
complexities, Algorithm 2 happens to be more time consuming than Algorithm 1
since we usually have K > k and NV > n. In order to avoid propagation at each
iteration of the EMBP, the information related to D(z;) \ Dy,—, is also com-
puted once and then cached, as in Algorithm 1.

5 Experiments

In this section we evaluate search heuristics based on the methods we propose.
Fundamentally, at each node of the search tree, after computing the variable
biases according to EMBP-a, EMBP-Lsup, or EMBP-Gsup, the search heuristic
branches on the variable-value pair that presents the highest bias. We evaluate
the proposed search heuristics on three benchmark problems - the Nonogram
problem, the Quasigroup With Holes problem and the Magic Square problem.
We then compare our results with six other heuristics, rndMinDom, MaxSD,
llogIBS, llogAdvIBS, RSC-LA, and RSC2-LA. Before presenting the results of the
experiments, we detail these heuristics and explain the rationale behind the
selection of these six other search heuristics:

- rndMinDom randomly picks up a variable with the smallest domain size and
then randomly selects a value from its domain. We present the results for this
heuristic as a benchmark for fairly uninformed yet very common heuristics.

- MaxSD stands for maximum Solution Density and belongs to the family of
solution counting based heuristics. This heuristic exploits counting information
provided by the constraints in order to branch on the part of the search tree
where it is likely to find a higher number of solutions [14]. MaxSD is considered
the state-of-the-art for solving the hard QWH problems.

- Impact Based Search [11] methods first choose the variable whose instantia-
tion triggers the largest search space reduction (highest impact) that is approxi-

mated as the reduction of the Cartesian product of the domains of the variables.
The impact is either approximated as the average reduction observed during the
search or computed exactly at a given node of the search (the exact computa-
tion provides better information but is more time consuming). lloglBS represents
Impact Based Search where the impacts are approximated. llogAdvIBS chooses
a subset of 5 variables with the best approximated impacts and then it breaks
ties based on the exact impacts while further ties are broken randomly [11].

- RSC-LA stands for restricted singleton consistency look-ahead heuristic [2].
RSC-LA maintains restricted singleton consistency during the search while RSC2-
LA maintains this level of consistency for a subset of variables whose domain size
equals 2. While enforcing singleton consistency, the method collects look-ahead
information under the form of impacts and uses it in a manner similar to [11].
RSC-LA is similar to EMBP-Gsup since they both perform a complete look-
ahead procedure at every choice point. Hence, it is definitely worth comparing
the results for these two approaches, as they only differ on how to aggregate the
look-ahead information.

All tests were performed with Ilog Solver 6.5 on a AMD Opteron 2.4GHz
with 1GB of RAM; for the heuristics that have some sort of randomization we
present the arithmetic averages over 10 runs. In the heuristics based on EMBP,
the bias computation is performed at every node. At each node, we randomly
initialize the biases and iterate until convergence or until a fixed number of it-
erations is reached. Even though EMBP methods do guarantee convergence [3],
they converge to a local optimum, which might differ from the exact marginal-
izations. Nonetheless, convergence is relatively fast and every iteration is quite
time consuming so we decided to limit to 5 the number of iterations during these
experiments.

Nonogram A Nonogram (problem 12 of CSPLib) is built on a rectangular n x m
grid and requires filling in some of the squares in the unique feasible way ac-
cording to some clues given on each row and column. As a reward, one gets
a pretty monochromatic picture. Each individual clue indicates how many se-
quences of consecutive filled-in squares there are in the row (column), with their
respective size in order of appearance. Each sequence is separated from the oth-
ers by at least one blank square but we know little about their actual position
in the row (column). Such clues can be modeled with regular constraints (the
actual automata A7, A5 are not difficult to derive but lie outside the scope of
this paper):

regular((z;j)i<j<m,A}) 1<i<n

regular((xij)lgign,/l;) 1<j<m

Z‘ijE{O,l} 1§z§n,1§]§m

We experimented with 180 instances® of sizes ranging from 16 x 16 to 32 x 32.

We enforced domain consistency on the constraints and set a timeout of 10
minutes for each run.

4 Instances taken from http://www.blindchicken.com/~ali/games/puzzles.html

0.9

0.8
. /’—"'—

—RSC2LA
5 %6 —RSCLA
% 05 —llogIBS
:’e —ilogAdvIBS
0.4 «=EMBP-Gsup
03 ==EMBP-Lsup
==MaxSD
0.2 ~=RndMinDom
0.1

0 T T T
0 60 120 180 240 300 360 420 480 540 600

Time (secs)

Fig. 2. Percentage of solved instances vs time for 180 Nonogram instances

Figure 2 shows the percentage of instances solved within a given time. In
Nonograms the additional constraint inference performed by EMBP does not
bring a clear advantage over simply using information such as impacts. In fact,
as shown in the plot, this problem is a fairly easy one, most of the instances are
solved within few seconds; yet EMBP-Gsup, despite its inherent overhead, per-
forms basically the same as RSC-based and IBS-based heuristics. MaxSD and
EMBP-Lsup are slightly behind in this test, being able to solve fewer instances.
Finally, our baseline RndMinDom is significantly slower compared to the rest
of the heuristics. What the figure doesn’t show is that our proposed heuristics
dramatically improve the total number of backtracks (by three orders of magni-
tude) over any other heuristic tested except RSC-LA methods, even if it does not
translate to the best overall total running time (mainly due to a single instance
that timed out).

Quasigroup with Holes A Latin Square of order n is defined on a n x n grid
whose cells each contain an integer from 1 to n such that each integer appears
exactly once per row and column. The Quasigroup with Holes (QWH) problem
gives a partially-filled Latin Square instance and asks to complete it. It can be
modeled easily as follows:

alldifferent((z;;)i<j<n) 1 <i<mn

alldifferent((z;j)1<i<n) 1<j<n

{Eij:d (i,j,d)ES

{El‘je{l,Q,...,TL} 1<i,j7<n

where S represents the set of pre-assigned cells.

The set of instances is the same as in [14]: 40 instances with n = 30 and a
percentage of holes around 42% (near the phase transition). We enforced domain
consistency on the constraints and set a timeout of 20 minutes for each run.

For this test we also added the heuristic dom/ddeg; min conflicts that chooses
the variable with the lowest ratio of domain size over dynamic degree and then
selects the value with the minimum number of conflicts (this has been considered
for years one of the best custom heuristics for QWH). For the heuristic MaxSD,
the counting algorithm has been set as in [14].

100%

90%

80%

==MaxSD
=——EMBP-Gsup
==RSC2LA

—RSCLA

—=|logAdvIBS
==EMBP-Lsup
—=EMBP-a
~=Dom/Ddeg;min conf.
20% RndMinDom
~=|logIBS

70%

60%

50%

% Solved

40%

30%

10%

0%

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Time (secs)

Fig. 3. Percentage of solved instances vs time for 40 hard QWH instances of order 30

Figure 3 shows the results (presented as in the Nonogram problem). Despite
the fact that EMBP-Lsup is significantly more lightweight than EMBP-Gsup, its
performance does not match that of EMBP-Gsup because of poorer heuristic
guidance. EMBP-Gsup performs very well in terms of number of backtracks (at
least one order of magnitude better than any other heuristic) and scores the
best total time. Again most of the computation time is spent at each node of the
search tree in propagating the whole problem for each variable-value pair but
the accuracy of the variables’ biases definitely pays off. This overhead can be
seen in Figure 3: the heuristic takes some time to get close to the leaves of the
search tree to find solutions. Therefore the heuristic hardly solves any instance
within the first minute. However it is able to solve about 75% of the instances in
90 seconds. MaxSD presents the same behavior, due to the sampling algorithm
used to count the number of solutions of the alldifferent constraints which
causes a significant overhead. Nonetheless, the total running time of EMBP-
Gsup is significantly lower. The heuristics that were scoring the best running
times on the Nonogram problem (RSC-based and IBS-based heuristics) strug-
gle more here and their running time goes from almost two to seven times the
running time of EMBP-Gsup to solve the same number of instances. The total
number of instances solved is also significantly lower compared to EMBP-Gsup.
Finally, it is interesting to see how Hsu et al.’s approach behaves with respect to
EMBP-Lsup: the two methods are similar (although Hsu et al.’s only applies to

alldifferent constraints), the only difference being that ours enforces domain
consistency on the constraints whereas EMBP-a keeps a weak form of arc con-
sistency. Hence, EMBP-a is able to perform more backtracks w.r.t. EMBP-Lsup
in the same amount of time but has poorer heuristic guidance.

Magic Square This very old puzzle is built on a n x n grid. The task is to place
the first n? integers in the grid so that each row, column and main diagonal
sums up to the same value. A partially filled Magic Square Problem asks for a
solution, if one exists. It can be made harder to solve than the traditional version
starting from a blank grid. More formally, here is a model for the Magic Square
Problem:

alldifferent((mi,j)19”5”)

doi<j<n Tiy = Sum 1<i<n

Zlgign T = sum 1<j<n

Di<icn Tii = Sum

Zlgign T(nti—i),i = SUM
z;; € {1,n?} 1<i<n, 1<j<n

where sum = % On the alldifferent constraint, domain consistency
is enforced, while for the equality knapsack constraint, bound consistency is
enforced. The set of instances is the same as in [12]: 40 instances with prefilled
cells (in order to avoid trivial solutions) — half of the instances have 10 preset
variables and the other half, 50. A timeout of one hour was set for each run.

100%

I —— ==y
90% |
80% I
L
70%
=——EMBP-Gsup
o o0% —llogAdvIBS
(4 .
§ 50% ==RndMinDom
< s PPE— ==MaxSD
b

‘_’_‘_,_/_’_’_,_' RecA

0% —RSCLA
/—'_"’ —llogIBS

20% ~—EMBP-Lsup

10%

0% T T T T T T
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

Time (secs)

Fig. 4. Percentage of solved instances vs time for 40 Magic Square instances

Figure 4 shows the results as presented on the previous two problems. EMBP-
Gsup is the best performing heuristic, outperforming by about 35% the second
best heuristic (ilogAdvIBS) in terms of total time (including timeouts). As shown

in the plot, in this problem the heuristic is well suited both for hard and easy
instances. Again, the number of backtracks is the lowest among the group of
heuristics by at least one order of magnitude. Despite being fairly good on the
QWH problem, MaxSD falls far behind in this test taking more than double the
time of EMBP-Gsup.

As before, EMBP-Lsup was not able to provide an interesting performance
with respect to EMBP-Gsup. However, it is worth mentioning that the EMBP-
Gsup underlying algorithm provides at no extra cost a reduced form of singleton
consistency whereas EMBP-Lsup does not enforce implicitely such form of con-
sistency.

Overall, compared to some state-of-the-art heuristics, EMBP-Gsup turns out
to be the most consistent heuristic on the problems considered. RSC2-LA per-
forms better on Nonogram instances but not on QWH and it fails to solve 20%
of the Magic Square instances. Impact-Based Search heuristics achieve compara-
ble performance on Nonogram but finish far behind on QWH instances. Finally,
MaxSD performs very well on QWH but not as well as EMBP-Gsup when con-
sidering Nonogram and Magic Square.

6 Discussion

In this section we draw connections between some of the heuristics used in this
paper.

Solution counting algorithms [14] propose an approach which is closely re-
lated to the EMBP method. Indeed, constraint-centered solution counting also
offers marginals of the variables for a specific constraint. This method however
considers constraints separately. In the EMBP framework, this would be equiv-
alent to considering one independent factor graph for each constraint. Hence,
constraint-level solution counting estimates marginal distributions of a priori
independent constraints. Within a backtrack search tree, this approach then
suggests to consider a basic aggregation of these marginals but misses a more
global reasoning that considers the dependence between the constraints. Also,
the first iteration of the local X-consistency EMBP method would give the exact
computation of the solution densities as defined in [14] (again assuming variable
biases are uniformly initialized) if we were able to exactly compute Q(z).

The RSC-LA methods proposed by Correia and Barahona in [2] also present
strong similarities with EMBP-Gsup. In our case, we are building search heuris-
tics using look-ahead information which in return provides restricted singleton
consistency. Conversely, in [2], the authors ensure restricted singleton consisten-
cies and take advantage of the information provided during look-ahead proce-
dures to derive search heuristics. Compared to [2], when computing EMBP-Gsup,
we thus also benefit from restricted singleton consistency that allows us to shave
the search tree with every variable-value pair that is inconsistent. As a result,
both methods present a similar overhead of computation time at each node.

The difference in the search heuristics lies in the fact that [2] exploits impact
information whereas we are performing inference reasoning.

There are also some interesting connections between IBS and EMBP meth-
ods. Were we to uniformly initialize the variable biases, the first iteration of
EMBP-Gsup would compute the impact of every variable-value pair as the re-
duction of the Cartesian product of the domain, as [11, 2] would do. Subsequent
iterations further refine this impact, thereby generating a sort of ”weighted”
impact.

7 Conclusion and Open Issues

This paper provided generic and efficient heuristics built upon the EMBP frame-
work. Whereas previous EMBP proposals in [3] addressed problems involving
only alldifferent constraints, we lifted that restriction with our contribu-
tion. Furthermore, we provided a more efficient formulation that achieves very
promising performance and is competitive with the state of the art — it was
the most consistent on the problems considered. The number of backtracks for
our proposed heuristics was also consistently much lower, thus indicating excel-
lent heuristic guidance and some potential for runtime improvement if parts of
the computation are optimized or approximated (e.g. see the next paragraph).
An important step ahead has been achieved compared to the approaches pre-
sented in [3] and [14]. While these previous approaches respectively require
constraint-specific update rules and constraint-specific solution counting algo-
rithms, EMBP-Gsup and EMBP-Lsup are completely general and easily plug-
gable into any model.

Several important open issues still remain. First, even though accurate biases
certainly provide useful information for an underlying search framework, the
question remains of determining the most efficient way to use it. Indeed, when
used within a variable-ordering heuristic, a method providing a set of biases still
needs to define a branching strategy. Here the possibilities are numerous. For
example, we can choose to branch on the highest bias as we have done during
these experiments, but we could also choose the highest strength (difference
between a bias and the reciprocal of the domain size) or even remove the value
with the lowest bias from a variable domain. Second, instead of computing a
survey at each node of the search tree, we could use previous information. For
instance, we could set more than one variable at once, or also compute partial
surveys and keep track of the domain reduction information, as an IBS heuristic
would do. Finally, in future work, we would like to derive equivalent update rules
for the Expectation-Maximization Survey Propagation (EMSP) [4] and exploit
the promising potential of Survey Propagation.

Acknowledgements

The authors would like to thank Eric Hsu for useful comments about the EMBP
framework and the anonymous referees for their constructive comments. The

authors also thank the FCI-Releve program for financing the equipment on which
the experiments were partially conducted. This research was supported in part
by an NSERC discovery grant and an FQRNT doctoral scholarship.

References

10.

11.

12.

13.

14.

. BRAUNSTEIN, A., MEZARD, M., AND ZECCHINA, R. Survey propagation: An al-

gorithm for satisfiability. Random Structures Algorithms 27, 2 (2005), 201-226.
CORREIA, M., AND BARAHONA, P. On the integration of singleton consistencies
and look-ahead heuristics. In CSCLP (2007), pp. 62-75.

Hsu, E. I., KitcHiNnGg, M., Baccuus, F., AND McCILRAITH, S. A. Using expec-
tation maximization to find likely assignments for solving csp’s. In AAAT (2007),
pp. 224-230.

Hsu, E. 1., Muisge, C. J., BEck, J. C., AND McILRAITH, S. A. Applying prob-
abilistic inference to heuristic search by estimating variable bias. In Proceedings
of the 1st International Symposium on Search Techniques in Artificial Intelligence
and Robotics (at AAAIO8) (Chicago, IL, USA, July 13-14 2008), vol. WS-08-10,
pp- 68 — 75.

Kask, K., DECHTER, R., AND GOGATE, V. Counting-based look-ahead schemes
for constraint satisfaction. In Proc. of 10th International Conference on Constraint
Programming (CP 04) (2004), pp. 317-331.

KiLBy, P., SLANEY, J. K., THIBAUX, S., AND WALSH, T. Backbones and back-
doors in satisfiability. In AAAT (2005), M. M. Veloso and S. Kambhampati, Eds.,
AAAT Press / The MIT Press, pp. 1368-1373.

Kroc, L., SABHARWAL, A., AND SELMAN, B. Survey propagation revisited. In
28rd UAI (Vancouver, BC, July 2007), pp. 217-226.

KscHiscHANG, F. R., FREY, B. J., AND LOELIGER, H. A. Factor graphs and the
sum-product algorithm. Information Theory, IEEE Transactions on 47, 2 (2001),
498-519.

MEZARD, M., PARIsI, G., AND ZECCHINA, R. Analytic and algorithmic solution
of random satisfiability problems. Science 297, 5582 (August 2002), 812-815.
PEARL, J. Probabilistic Reasoning in Intelligent Systems:Networks of Plausible
Inference. Morgan Kaufmann, 1988.

REFALO, P. Impact-based search strategies for constraint programming. In CP
(2004), pp. 557-571.

TRrICK, M. A. A dynamic programming approach for consistency and propagation
for knapsack constraints. In Annals of Operations Research (2003), vol. 118, pp. 73—
84.

YEDIDIA, J. S., FREEMAN, W. T., AND WEISS, Y. Understanding belief propa-
gation and its generalizations. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

ZANARINI, A., AND PESANT, G. Solution counting algorithms for constraint-
centered search heuristics. Constraints 14, 3 (2009), 392-413.

