On the Erdős Discrepancy Problem

Ronan Le Bras, Carla P. Gomes, Bart Selman

Computer Science Dept., Cornell University

There has been significant progress in the area of search, constraint satisfaction, and automated reasoning.
These approaches have been evaluated on problems such as:

Magic squares

Graceful Graphs

Round-Robin Tournament

N-Queens

There has been significant progress in the area of search, constraint satisfaction, and automated reasoning.
These approaches have been evaluated on problems such as:

Magic squares

Graceful Graphs

Round-Robin Tournament

N-Queens

Yet, a common denominator to these combinatorial problems is that there exists a polytime construction rule to build such combinatorial objects of any size.
Typically, these combinatorial objects are highly regular, and exhibit additional hidden structure, beyond the original structure of the problem.

There has been significant progress in the area of search, constraint satisfaction, and automated reasoning.
These approaches have been evaluated on problems such as:

Magic squares

Graceful Graphs

Round-Robin Tournament

N-Queens

Yet, a common denominator to these combinatorial problems is that there exists a polytime construction rule to build such combinatorial objects of any size.
Typically, these combinatorial objects are highly regular, and exhibit additional hidden structure, beyond the original structure of the problem.
How to uncover and exploit these regularities in the solutions?

- Motivation
- Framework
- Problem Definition
- Streamliners
- Recursive Construction Rule
- Conclusions and Future Directions

Framework: User-guided Streamlined Search

- Goal -

Exploit the structure of some solutions to dramatically boost the effectiveness of the propagation mechanisms.

- Underlying Observation -

When one insists on maintaining the full solution set, there is a hard practical limit on the effectiveness of constraint propagation methods. Often, there is no compact representation for all the solutions.

- Underlying Conjecture -

For many intricate combinatorial problems - if solutions exist there will often be regular ones.

Framework: User-guided Streamlined Search

Strong branching mechanisms (by adding constraints based on structure properties)
at high levels of the search tree.

Framework: User-guided Streamlined Search

Recognizing Patterns and Regularities:

[Source: Marijn J.H. Heule, 2009]

Correcting Irregularities:

Generalizing / Formalizing Regularities:

1	2	3
3	1	2
2	3	1

Cyclic Latin square of order 3

$\leadsto \quad$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 4 | 1 | 2 | 3 |
| 3 | 4 | 1 | 2 |
| 2 | 3 | 4 | 1 |

Cyclic Latin square of order 4

Framework: User-guided Streamlined Search

Algorithm : Discover-Construction procedure
for a given problem P, with parameter set ρ and timeout t.

Outline:

1) Analyze smaller size solutions, and conjecture potential regularities in the solutions.
2) Validate through streamlining the observed regularities.
3) If the streamlined search does not give a larger size solution, the proposed regularity is quite likely accidental and one looks for a new pattern in the small scale solutions.
4) Otherwise, one proceeds by generating a number of new solutions that all contain the proposed structural regularity and are used to expand the solution set and to reveal new regularities.

Overview of the results

A simple yet effective approach...

1	2	3	4	5	6	7	8	9	10	11
2	4	6	8	10	11	9	7	5	3	1
3	6	9	11	8	5	2	1	4	7	10
4	8	11	7	3	1	5	9	10	6	2
5	10	8	3	2	7	11	6	1	4	9
6	11	5	1	7	10	4	2	8	9	3
7	9	2	5	11	4	3	10	6	1	8
8	7	1	9	6	2	10	5	3	11	4
9	5	4	10	1	8	6	3	11	2	7
10	3	7	6	4	9	1	11	2	8	5
11	1	10	2	9	3	8	4	7	5	6

12481122
$35-7192123$
$91012-1820$

Spatially Balanced Latin Squares	Weak Schur Numbers
[Smith et al., IJCAI'05]	[Eliahou et al., Computers \& Math Applications'12] WS(6) ≥ 575
$\mathrm{n} \leq 35$	WS. et al, AAAI'12] WS(6) ≥ 581
[L. et al, AAAI'12] Any n s.t. $2 \mathrm{n}+1$ is prime	

Overview of the results

A simple yet effective approach...
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Spatially } \\
\text { Balanced Latin } \\
\text { Squares }\end{array} & \begin{array}{c}\text { Weak Schur } \\
\text { Numbers }\end{array} & \begin{array}{c}\text { Graceful } \\
\text { Double-Wheel } \\
\text { Graphs }\end{array} & \begin{array}{c}\text { Diagonally } \\
\text { ordered Magic } \\
\text { Squares }\end{array} \\
\hline \begin{array}{c}\text { [Smith et al., } \\
\text { IJCAI'05] }\end{array} & \begin{array}{c}\text { [Eliahou et al., } \\
\text { Computers \& Math } \\
\text { Applications'12] } \\
\mathrm{W} \leq 35\end{array} & \begin{array}{c}\text { [Heule \& Walsh, } \\
\text { AAAI'10] }\end{array} & \begin{array}{c}\text { [Gomes \& } \\
\text { Sellmann, CP'04] }\end{array}
$$

\hline n \leq 24\end{array}\right]\)| $\mathrm{n} \leq 19$ |
| :---: |

Overview of the results

A simple yet effective approach...

366911855214410				
88117315	12481122			
	$35-7192123$			
	$91012-1820$			
				--+-++-++--
Spatially Balanced Latin Squares	Weak Schur Numbers			
		Graceful	Diagonally	Erdos
		Double-Wheel	ordered Magic	Discrepancy
		Graphs	Squares	Sequences
[Smith et al., IJCAI'05]	[Eliahou et al., Computers \& Math Applications'12]$\mathrm{WS}(6) \geq 575$	[Heule \& Walsh,	[Gomes \&	[Konev \& Lisitsa,
		AAAI'10]	Sellmann, CP'04]	SAT' 14$]$
		$\mathrm{n} \leq 24$	$\mathrm{n} \leq 19$	
$\mathrm{n} \leq 35$				$\mathrm{n} \leq 13,900$
[L. et al, AAAI' 12]	[L. et al, AAAI'12]$\mathrm{WS}(6) \geq 581$	[L. et al,	[L. et al, IJCAI' 13]	[L. et al, CP'14]
Any n s.t. $2 \mathrm{n}+1$ is prime		IJCAI'13]	Any n s.t. n is	$\mathrm{n} \leq 127,645$
		Any $\mathrm{n}>3$	doubly even	

Erdős Discrepancy Problem

Discrepancy theory: distributing points uniformly over some
geometric object, and studying how irregularities inevitably occur in these distributions.

Erdős Discrepancy Problem

Discrepancy theory: distributing points uniformly over some
geometric object, and studying how irregularities inevitably occur in these distributions.

Discrepancy: Given m subsets $S_{l}, S_{2}, \ldots, S_{m}$ of $\{1, \ldots, n\}$, the discrepancy of a two-coloring of the elements is the maximum difference between the number of elements of one color and the number of elements of the other color.

Erdős Discrepancy Problem

Discrepancy theory: distributing points uniformly over some
geometric object, and studying how irregularities inevitably occur in these distributions.

Discrepancy: Given m subsets $S_{l}, S_{2}, \ldots, S_{m}$ of $\{1, \ldots, n\}$, the discrepancy of a two-coloring of the elements is the maximum difference between the number of elements of one color and the number of elements of the other color.

Erdős Discrepancy Problem: Given the subsets
 $S_{d, k}=\{d, 2 d, \ldots, k d\}, 1 \leq d \leq n$ and $1 \leq k \leq n / d$, does there exist a two-coloring of the elements $\{1, \ldots, n\}$ of discrepancy C ?

$S_{3,4}=\{3,6,9,12\}$ has discrepancy 2, so this coloring is of discrepancy at least 2.

Erdős Discrepancy Problem

Constructing a two-coloring of $\{1, . ., 12\}$ of discrepancy at most 1 :

1) Start with arbitrary color for l (say blue)

Erdős Discrepancy Problem

Constructing a two-coloring of $\{1, . ., 12\}$ of discrepancy at most 1 :

1) Start with arbitrary color for l (say blue)
2) 2 should be red given the set $\{1,2\}$

Erdős Discrepancy Problem

Constructing a two-coloring of $\{1, . ., 12\}$ of discrepancy at most 1 :

1) Start with arbitrary color for l (say blue)
2) 2 should be red given the set $\{1,2\}$
3) 4 should be blue given the set $\{2,4\}$

Erdős Discrepancy Problem

Constructing a two-coloring of $\{1, ., 12\}$ of discrepancy at most 1:

1) Start with arbitrary color for l (say blue)
2) 2 should be red given the set $\{1,2\}$
3) 4 should be blue given the set $\{2,4\}$
4) 8 should be red given the set $\{4,8\}$

Erdős Discrepancy Problem

Constructing a two-coloring of $\{1, ., 12\}$ of discrepancy at most 1 :

1) Start with arbitrary color for l (say blue)
2) 2 should be red given the set $\{1,2\}$
3) 4 should be blue given the set $\{2,4\}$
4) 8 should be red given the set $\{4,8\}$
5) 6 should be blue given the set $\{2,4,6,8\}$

Erdős Discrepancy Problem

Constructing a two-coloring of $\{1, ., 12\}$ of discrepancy at most 1 :

1) Start with arbitrary color for l (say blue)
2) 2 should be red given the set $\{1,2\}$
3) 4 should be blue given the set $\{2,4\}$
4) 8 should be red given the set $\{4,8\}$
5) 6 should be blue given the set $\{2,4,6,8\}$
6) 3 should be red given the set $\{3,6\}$, and 12 should be red given $\{6,12\}$

Erdős Discrepancy Problem

Constructing a two-coloring of $\{1, ., 12\}$ of discrepancy at most 1 :

1) Start with arbitrary color for l (say blue)
2) 2 should be red given the set $\{1,2\}$
3) 4 should be blue given the set $\{2,4\}$
4) 8 should be red given the set $\{4,8\}$
5) 6 should be blue given the set $\{2,4,6,8\}$
6) 3 should be red given the set $\{3,6\}$, and 12 should be red given $\{6,12\}$
7) 9 should be blue given the set $\{3,6,9,12\}$

Erdős Discrepancy Problem

Constructing a two-coloring of $\{1, ., 12\}$ of discrepancy at most 1:

1) Start with arbitrary color for l (say blue)
2) 2 should be red given the set $\{1,2\}$
3) 4 should be blue given the set $\{2,4\}$
4) 8 should be red given the set $\{4,8\}$
5) 6 should be blue given the set $\{2,4,6,8\}$
6) 3 should be red given the set $\{3,6\}$, and 12 should be red given $\{6,12\}$
7) 9 should be blue given the set $\{3,6,9,12\}$
8) 5 should be red given the set $\{1,2,3,4,5,6\}$

Erdős Discrepancy Problem

Constructing a two-coloring of $\{1, ., 12\}$ of discrepancy at most 1:

1) Start with arbitrary color for l (say blue)
2) 2 should be red given the set $\{1,2\}$
3) 4 should be blue given the set $\{2,4\}$
4) 8 should be red given the set $\{4,8\}$
5) 6 should be blue given the set $\{2,4,6,8\}$
6) 3 should be red given the set $\{3,6\}$, and 12 should be red given $\{6,12\}$
7) 9 should be blue given the set $\{3,6,9,12\}$
8) 5 should be red given the set $\{1,2,3,4,5,6\}$
9) 10 should be blue given the set $\{5,10\}$

Erdős Discrepancy Problem

Constructing a two-coloring of $\{1, ., 12\}$ of discrepancy at most 1 :

1) Start with arbitrary color for l (say blue)
2) 2 should be red given the set $\{1,2\}$
3) 4 should be blue given the set $\{2,4\}$
4) 8 should be red given the set $\{4,8\}$
5) 6 should be blue given the set $\{2,4,6,8\}$
6) 3 should be red given the set $\{3,6\}$, and 12 should be red given $\{6,12\}$
7) 9 should be blue given the set $\{3,6,9,12\}$
8) 5 should be red given the set $\{1,2,3,4,5,6\}$
9) 10 should be blue given the set $\{5,10\}$
10) 7 should be blue given the set $\{1,2,3,4,5,6,7,8\}$ and red given the set \{1,2,3,4,5,6,7,8,9,10\} - IMPOSSIBLE

Erdős Discrepancy Problem

Theorem: For any two-coloring of $\{1, \ldots, n\}$ where $n>11$, there is at least one subset $S_{d, k}=\{d, 2 d, \ldots, k d\}$ of discrepancy strictly greater than 1 .

In the following, we replace the two colors with the labels +1 and -1 .

Erdos Conjecture 1 (1930s): For any C, in any infinite $\pm l$-sequence $\left(x_{n}\right)$, there is at least one subset $S_{d, k}=\{d, 2 d, \ldots, k d\}$ of discrepancy strictly greater than C.

Erdos Conjecture 2 (1930s): For any C, in any infinite ± 1-sequence (x_{n}) s.t. $x_{p q}=x_{p}{ }^{*} x_{q}$ (completely multiplicative), there is at least one subset $S_{d, k}=\{d, 2 d, \ldots, k d\}$ of discrepancy strictly greater than C.

The previous theorem proves that both conjectures are true for $C=1$.

Erdős Discrepancy Problem

[B. Konev and A. Lisitsa, A SAT Attack on the Erdos Discrepancy Conjecture, SAT'14] Recent development proved the first conjecture for $C=2$, and provided a ± 1 sequence of length $\mathbf{1 , 1 6 0}$ as the longest sequence of discrepancy 2.
They were also able to generate $\mathrm{a} \pm 1$-sequence of discrepancy 3 of length 13,900 in about 214 hours of CPU time, as the longest known sequence of discrepancy 3 .

Erdős Discrepancy Problem

[B. Konev and A. Lisitsa, A SAT Attack on the Erdos Discrepancy Conjecture, SAT' 14] Recent development proved the first conjecture for $C=2$, and provided a ± 1 sequence of length $\mathbf{1 , 1 6 0}$ as the longest sequence of discrepancy 2.
They were also able to generate $\mathrm{a} \pm 1$-sequence of discrepancy 3 of length 13,900 in about 214 hours of CPU time, as the longest known sequence of discrepancy 3.

In this work, using streamlined search to boost a SAT solver, we generate a sequence of discrepancy 3 of length 127,645 in about $\mathbf{1 . 5}$ hours and claim it is tight bound for the completely multiplicative case.

	Sive	Tlime
[Konev and Lisitsa]	13,900	214 hours
This work	$127,645^{*}$	1.5 hours

Longest sequence of discrepancy 3. (*:tight bound for completely multiplicative sequence)

SAT Encoding

Ics

Given $C, a \pm 1$ sequence $\left(x_{1}, \ldots, x_{n}\right)$,
Let p_{i} be the proposition corresponding to $x_{i}=+1$.
A proposition that tracks the state of the automaton for $\left(x_{d}, x_{2 d}, \ldots, x_{\lfloor n / d\rfloor d}\right)$:

$$
\begin{aligned}
\phi(n, C, d)=s_{0}^{(1, d)} \bigwedge_{m=1}^{n / d}(& \bigwedge_{-C \leq j<C}\left(s_{j}^{(m, d)} \wedge p_{i d} \rightarrow s_{j+1}^{(m+1, d)}\right) \wedge \\
& \bigwedge_{-C<j \leq C}\left(s_{j}^{(m, d)} \wedge \overline{p_{i d}} \rightarrow s_{j+1}^{(m+1, d)}\right) \wedge \\
& \left(s_{C}^{(m, d)} \wedge p_{i d} \rightarrow s_{B}\right) \wedge \\
& \left.\left(s_{-C}^{(m, d)} \wedge \overline{p_{i d}} \rightarrow s_{B}\right)\right)
\end{aligned}
$$

$s_{j}^{(m, d)}$ is true if the automaton is in state $\sum_{i=1}^{m-1} x_{i \cdot d}$ after $\left(x_{d}, \ldots, x_{(m-1) d}\right)$.
s_{B} captures whether the sequence has exceeded the discrepancy C.

SAT Encoding

In addition, the automaton is in exactly one state:

$$
\chi(n, C)=\bigwedge_{1 \leq d \leq n / C, 1 \leq m \leq n / d}\left(\bigvee_{-C \leq j \leq C} s_{j}^{(i, d)} \wedge \bigwedge_{-C \leq j_{1}, j_{2} \leq C}\left(\bar{s}_{j_{1}}^{(i, d)} \vee \bar{s}_{j_{2}}^{(i, d)}\right)\right)
$$

$\mathbf{E D P}_{1}(n, C): \bar{s}_{B} \wedge \chi(n, C) \wedge \bigwedge_{d=1}^{n} \phi(n, C, d)$

For the completely multiplicative case $\left(x_{i d}=x_{i} x_{d}\right)$,

$$
\mathcal{M}(i, d)=\left(p_{i} \vee p_{d} \vee p_{i d}\right) \wedge\left(\overline{p_{i}} \vee \overline{p_{d}} \vee p_{i d}\right) \wedge\left(p_{i} \vee \overline{p_{d}} \vee \overline{p_{i d}}\right) \wedge\left(\overline{p_{i}} \vee p_{d} \vee \overline{p_{i d}}\right)
$$

$\mathbf{E D P}_{2}(n, C): \bar{s}_{B} \wedge \chi(n, C) \wedge \phi(n, C, 1) \bigwedge_{1 \leq d \leq 1 \leq i \leq n} \mathcal{M}(i, d)$

Fig. : First elements of a sequence of length 1160 and of discrepancy 2 .

$$
\operatorname{mult}(x, m, l): x_{i \cdot d}=x_{i} x_{d} \forall 2 \leq d \leq m, 1 \leq i \leq n / d, i \leq l
$$

Streamliners

Fig. : First elements of a sequence of length 1160 and of discrepancy 2 .

$$
\operatorname{period}(x, p, t): x_{i}=x_{i \bmod p} \forall 1 \leq i \leq t, i \not \equiv 0 \bmod p
$$

Streamliners

if i is $1 \bmod 3$
if i is $2 \bmod 3$ otherwise.

Fig. : First elements of a sequence of length 1160 and of discrepancy 2 .

$$
\text { walters }(x, w): x_{i}=\mu_{3}(i) \forall 1 \leq i \leq w
$$

Encoding	Streamliners	Size of sequence Runtime (in sec)	
EDP $_{1}$	-	13,000	286,247
	-	13,500	560,663
	-	13,900	770,122
	$\operatorname{mult}(120,2000)$	15,600	4,535
	$\operatorname{mult}(150,2000)$	18,800	8,744
	$\operatorname{mult}(700,1000)$	23,900	12,608
	$\operatorname{mult}(700,20000)$	27,000	45,773
EDP $_{2}$	walters(800)	31,500	51,144
	walters(800)	108,000	1,364
	walters(700)	112,000	4,333
	walters(730)	127,645	5,459

Table: Solution runtimes of searches with and without streamliners.

For $\mathbf{E D P}_{2}$ ($\mathrm{n}=127646, \mathrm{C}=3$):

- The SAT solver Lingeling proves UNSAT after about $\mathbf{6 0}$ hours of computation.
- It generates a DRUP proof of approximately 29GB.
- DRAT-trim, an independent satisfiability proof checker verifies the 88 million lemmas of the proof in about 45 hours.

Theorem: Any completely multiplicative sequence of discrepancy 3 is finite. (Erdos Conjecture is true for $\mathrm{C}=3$).

Recursive Construction Rule

Let C be the discrepancy of $z=\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ and C^{\prime} the discrepancy of $\left(y_{1}, \ldots, y_{p-1}\right)$.

$$
\begin{aligned}
x= & \left(y_{1}, y_{2}, \ldots, y_{p-2}, y_{p-1}, z_{1}\right. \\
& y_{1}, y_{2}, \ldots, y_{p-2}, y_{p-1}, z_{2} \\
& \cdots \\
& \left.y_{1}, y_{2}, \ldots, y_{p-2}, y_{p-1}, z_{k}\right)
\end{aligned}
$$

Definition (Discrepancy mod p). Given two integers p and C^{\prime}, does there exist $a \pm 1$ sequence (y_{1}, \ldots, y_{p-1}) such that:

$$
\begin{aligned}
& \left\lvert\, \sum_{i=1}^{m} y_{i \cdot d \bmod p \mid \leq C^{\prime}, \forall 1 \leq d \leq n, m<\frac{p}{\operatorname{gcd}(d, p)}}^{\substack{\frac{p}{g c d(d, p)}-1}} y_{i \cdot d \bmod p}=0\right., \quad \forall 1 \leq d \leq n
\end{aligned}
$$

Recursive Construction Rule - Results

There exist sequences whose discrepancy mod p is 1 for:

$$
\mathrm{p}=1,3,5,7,9
$$

There exist sequences whose discrepancy mod p is 2 for:

$$
\mathrm{p}=11,13,15,17,25,27,45,81
$$

Therefore, $\mathbf{E D P}_{\mathbf{1}}(\mathrm{n}=9 * 127645, \mathrm{C}=4$) is satisfiable.
Lemma: The longest sequence of discrepancy 4 is of size at least $1,148,805$.

Contributions

1) We improve the lower bound of the Erdos Discrepancy Problem for discrepancy 3 from 13,901 to $\mathbf{1 2 7 , 6 4 6}$.
2) We prove that this bound is tight for the completely multiplicative case.
3) We provide a recursive construction to inductively generate longer sequences of limited discrepancy.

Future Research Directions

1) Can we automate the discovery of streamliners and how to combine them?
2) Can we define human intelligence tasks for anyone to provide valuable insights about the problem structure?
3) How small can the proof of the conjecture be? What is the size of the smallest strong backdoor set?
4) Fundamental research question: Can any combinatorial problem whose sole input is its parameter size be solved in polynomial time?

Thank you.

\qquad

