

On the Erdős Discrepancy Problem

Ronan Le Bras, Carla P. Gomes, Bart Selman

Computer Science Dept., Cornell University

September 11, 2014 **CP'14**

Motivation

There has been **significant progress** in the area of **search**, **constraint satisfaction**, and **automated reasoning**.

These approaches have been evaluated on problems such as:

Magic squares

Graceful Graphs

Round-Robin Tournament

N-Queens

Motivation

There has been **significant progress** in the area of **search**, **constraint satisfaction**, and **automated reasoning**.

These approaches have been evaluated on problems such as:

Yet, a common denominator to these combinatorial problems is that there exists a polytime **construction** rule to build such combinatorial objects of any size. Typically, these combinatorial objects are **highly regular**, and exhibit additional **hidden structure**, beyond the original structure of the problem.

Motivation

There has been **significant progress** in the area of **search**, **constraint satisfaction**, and **automated reasoning**.

These approaches have been evaluated on problems such as:

Yet, a common denominator to these combinatorial problems is that there exists a polytime **construction** rule to build such combinatorial objects of any size.

Typically, these combinatorial objects are **highly regular**, and exhibit additional **hidden structure**, beyond the original structure of the problem.

How to **uncover** and **exploit** these regularities in the solutions?

5

- Outline
 - Motivation
 - Framework
 - Problem Definition
 - Streamliners
 - Recursive Construction Rule
 - Conclusions and Future Directions

- Goal -

Exploit the **structure of some solutions** to dramatically **boost** the effectiveness of the **propagation mechanisms.**

- Underlying Observation -

When one insists on maintaining the **full solution set**, there is a **hard practical limit** on the effectiveness of **constraint propagation** methods. Often, there is **no compact representation** for all the solutions.

- Underlying Conjecture -

For many intricate **combinatorial problems** – if **solutions exist** – there will often be **regular ones**.

Framework: User-guided Streamlined Search

constraints based on **structure properties**)

at **high levels** of the search tree.

[Gomes and Sellmann, CP'04]

CORNELL UNIVERSIT

Recognizing Patterns and Regularities:

[Source: Marijn J.H. Heule, 2009]

Correcting Irregularities:

Generalizing / Formalizing Regularities:

4

Cyclic Latin square of order 3 3 4 1 2 2 3 4 1 Cyclic Latin square of order 4

3

2 | 3

4

$\mathcal{O} \leftarrow \emptyset$:	// Conjectured streamliners
$\Gamma \leftarrow \emptyset$;	// Search streamliners
$\rho \leftarrow \rho_0;$	// Search parameter
$\mathcal{S} \leftarrow \emptyset;$	// Solutions found
$\tau \leftarrow false;$	// Timeout flag
repeat	
Solve $(P_{\rho}, \Gamma, t) \rightarrow (\mathcal{E})$	S', τ); // Search for new solutions
if $\mathcal{S}' \cap \mathcal{S} \neq \emptyset$ then	
$\mathcal{S} \leftarrow \mathcal{S} \cup \mathcal{S}';$	// Case 1: successful search
Analyze(S) $\rightarrow C$	<i>D'</i> ; // Conjecture new streamliners
$\mathcal{O} \leftarrow \mathcal{O} \cup \mathcal{O}';$	
$\rho \leftarrow \rho + 1;$	
else if τ is true then	
Select $\Gamma' \subseteq O$;	// Case 2: timed-out failed search
$\Gamma \leftarrow \Gamma \cup \Gamma';$	// Strengthen streamliners
else	_
Select $\Gamma' \subset \Gamma$;	// Case 3: exhaustive failed search
$\Gamma \leftarrow \Gamma \setminus \overline{\Gamma'};$	// Weaken streamliners
$\rho = max\{\rho : \mathcal{S}($	Γ) $\cap \mathcal{S}(P_{\rho}) \neq \emptyset$ +1;
Select $\Gamma'' \subseteq \Gamma';$	// Find next parameter of interest
$\mathcal{O} \leftarrow \mathcal{O} \setminus \overline{\Gamma}'';$	// Drop unpromising streamliners
until $\mathcal{O} = \emptyset$;	
-	

Algorithm : Discover-Construction procedure for a given problem P, with parameter set ρ and timeout *t*.

Outline:

- 1) Analyze smaller size solutions, and conjecture potential regularities in the solutions.
- 2) Validate through **streamlining** the observed regularities.
- 3) If the streamlined search **does not give a larger size solution**, the proposed regularity is quite likely **accidental** and one looks for a new pattern in the small scale solutions.
- 4) Otherwise, one proceeds by generating a number of new solutions that all contain the proposed structural regularity and are used to expand the solution set and to reveal new regularities.

Overview of the results

A simple yet effective approach...

1	2	3	4	5	6	7	8	9	10	11
2	4	6	8	10	11	9	7	5	3	1
3	6	9	11	8	5	2	1	4	7	10
4	8	11	7	3	1	5	9	10	6	2
5	10	8	3	2	7	11	6	1	4	9
6	11	5	1	7	10	4	2	8	9	3
7	9	2	5	11	4	3	10	6	1	8
8	7	1	9	6	2	10	5	3	11	4
9	5	4	10	1	8	6	3	11	2	7
10	3	7	6	4	9	1	11	2	8	5
11	1	10	2	9	3	8	4	7	5	6

Spatially Balanced Latin Squares	Weak Schur Numbers
[Smith et al., IJCAI'05] $n \le 35$	[Eliahou et al., Computers & Math Applications'12] $WS(6) \ge 575$
[L. et al, AAAI'12] Any n s.t. 2n+1 is prime	[L. et al, AAAI'12] WS(6) \geq 581

Overview of the results

A simple yet effective approach...

1	2	3	4	5	6	7	8	9	10	11
2	4	6	8	10	11	9	7	5	3	1
3	6	9	11	8	5	2	1	4	7	10
4	8	11	7	3	1	5	9	10	6	2
5	10	8	3	2	7	11	6	1	4	9
6	11	5	1	7	10	4	2	8	9	3
7	9	2	5	11	4	3	10	6	1	8
8	7	1	9	6	2	10	5	3	11	4
9	5	4	10	1	8	6	3	11	2	7
10	3	7	6	4	9	1	11	2	8	5
11	1	10	2	9	3	8	4	7	5	6

Spatially Balanced Latin Squares	Weak Schur Numbers	Graceful Double-Wheel Graphs	Diagonally ordered Magic Squares
[Smith et al., IJCAI'05] $n \le 35$	[Eliahou et al., Computers & Math Applications'12] $WS(6) \ge 575$	[Heule & Walsh, AAAI'10] $n \le 24$	[Gomes & Sellmann, CP'04] n ≤ 19
[L. et al, AAAI'12] Any n s.t. 2n+1 is prime	[L. et al, AAAI'12] WS(6) \geq 581	[L. et al, IJCAI'13] Any n > 3	[L. et al, IJCAI'13] Any n s.t. n is doubly even

Overview of the results

A simple yet effective approach...

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 4 8 11 22 3 5-7 19 21 23 9 10 12-18 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 20 71 40 51 41 70 50 90 91 92 12 23 62 45 50 32 73 62 53 8 83 24 83 53 44 63 74 63 73 63 94 17 74 44 75 76 64 24 75 64 74 76 74	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Spatially Balanced Latin Squares	Weak Schur Numbers	Graceful Double-Wheel Graphs	Diagonally ordered Magic Squares	Erdos Discrepancy Sequences
[Smith et al., IJCAI'05] $n \le 35$	[Eliahou et al., Computers & Math Applications'12] $WS(6) \ge 575$	[Heule & Walsh, AAAI'10] $n \le 24$	[Gomes & Sellmann, CP'04] $n \le 19$	[Konev & Lisitsa, SAT'14] n ≤ 13,900
[L. et al, AAAI'12] Any n s.t. 2n+1	[L. et al, AAAI'12] WS(6) \geq 581	[L. et al, IJCAI'13]	[L. et al, IJCAI'13] Any n s.t. n is	[L. et al, CP'14] n ≤ 127,645

Any n > 3

doubly even

is prime

Discrepancy theory: distributing points uniformly over some

geometric object, and studying how irregularities inevitably occur in these distributions.

Erdős Discrepancy Problem

Discrepancy theory: distributing points uniformly over some

geometric object, and studying how irregularities inevitably occur in these distributions.

Discrepancy: Given *m* subsets $S_1, S_2, ..., S_m$ of $\{1, ..., n\}$, the discrepancy of a two-coloring of the elements is the maximum difference between the number of elements of one color and the number of elements of the other color.

Erdős Discrepancy Problem

Discrepancy theory: distributing points uniformly over some geometric object, and studying how irregularities inevitably occur in these distributions.

Discrepancy: Given *m* subsets $S_1, S_2, ..., S_m$ of $\{1, ..., n\}$, the discrepancy of a two-coloring of the elements is the maximum difference between the number of elements of one color and the number of elements of the other color.

Erdős Discrepancy Problem: Given the subsets $S_{d,k} = \{d, 2d, ..., kd\}, 1 \le d \le n \text{ and } 1 \le k \le n/d$, does there exist a two-coloring of the elements $\{1, ..., n\}$ of discrepancy *C*?

1 2 3 4 5 6 7 8 9 10 11 12

1) Start with arbitrary color for *1* (say blue)

1 2 3 4 5 6 7 8 9 10 11 12

- 1) Start with arbitrary color for *1* (say blue)
- 2) 2 should be red given the set {1,2}

- 1) Start with arbitrary color for *1* (say blue)
- 2) 2 should be red given the set {1,2}
- 3) 4 should be blue given the set $\{2,4\}$

- 1) Start with arbitrary color for *1* (say blue)
- 2) 2 should be red given the set {1,2}
- 3) 4 should be blue given the set $\{2,4\}$
- 4) 8 should be red given the set {4,8}

 $\left(\begin{array}{c}1\\2\\3\end{array}\right)\left(\begin{array}{c}4\\5\end{array}\right)\left(\begin{array}{c}6\\6\end{array}\right)\left(\begin{array}{c}7\\8\\9\end{array}\right)\left(\begin{array}{c}9\\10\\11\end{array}\right)\left(\begin{array}{c}11\\12\end{array}\right)$

- 1) Start with arbitrary color for *1* (say blue)
- 2) 2 should be red given the set {1,2}
- 3) 4 should be blue given the set $\{2,4\}$
- 4) 8 should be red given the set {4,8}
- 5) 6 should be blue given the set $\{2,4,6,8\}$

 $\left(\begin{array}{c}1\\2\\3\end{array}\right)\left(\begin{array}{c}3\\4\end{array}\right)\left(\begin{array}{c}5\\6\end{array}\right)\left(\begin{array}{c}7\\8\end{array}\right)\left(\begin{array}{c}9\\9\end{array}\right)\left(\begin{array}{c}10\\11\end{array}\right)\left(\begin{array}{c}12\\12\end{array}\right)$

- 1) Start with arbitrary color for *1* (say blue)
- 2) 2 should be red given the set {1,2}
- 3) 4 should be blue given the set $\{2,4\}$
- 4) 8 should be red given the set {4,8}
- 5) 6 should be blue given the set $\{2, 4, 6, 8\}$
- 6) 3 should be red given the set $\{3,6\}$, and 12 should be red given $\{6,12\}$

 $\left(\begin{array}{c}1\\2\\3\end{array}\right)\left(\begin{array}{c}3\\4\end{array}\right)\left(\begin{array}{c}5\\6\end{array}\right)\left(\begin{array}{c}7\\8\end{array}\right)\left(\begin{array}{c}9\\9\end{array}\right)\left(\begin{array}{c}10\\11\end{array}\right)\left(\begin{array}{c}12\\12\end{array}\right)$

- 1) Start with arbitrary color for *1* (say blue)
- 2) 2 should be red given the set {1,2}
- 3) 4 should be blue given the set $\{2,4\}$
- 4) 8 should be red given the set {4,8}
- 5) 6 should be blue given the set $\{2, 4, 6, 8\}$
- 6) 3 should be red given the set $\{3,6\}$, and 12 should be red given $\{6,12\}$
- 7) 9 should be blue given the set $\{3, 6, 9, 12\}$

 $\left(\begin{array}{c}1\\2\\3\end{array}\right)\left(\begin{array}{c}3\\4\end{array}\right)\left(\begin{array}{c}5\\5\end{array}\right)\left(\begin{array}{c}6\\7\end{array}\right)\left(\begin{array}{c}8\\9\end{array}\right)\left(\begin{array}{c}9\\10\end{array}\right)\left(\begin{array}{c}11\\12\end{array}\right)$

- 1) Start with arbitrary color for *1* (say blue)
- 2) 2 should be red given the set {1,2}
- 3) 4 should be blue given the set $\{2,4\}$
- 4) 8 should be red given the set {4,8}
- 5) 6 should be blue given the set $\{2,4,6,8\}$
- 6) 3 should be red given the set $\{3,6\}$, and 12 should be red given $\{6,12\}$
- 7) 9 should be blue given the set $\{3, 6, 9, 12\}$
- 8) 5 should be red given the set $\{1, 2, 3, 4, 5, 6\}$

- 1) Start with arbitrary color for *1* (say blue)
- 2) 2 should be red given the set {1,2}
- 3) 4 should be blue given the set $\{2,4\}$
- 4) 8 should be red given the set {4,8}
- 5) 6 should be blue given the set $\{2,4,6,8\}$
- 6) 3 should be red given the set $\{3,6\}$, and 12 should be red given $\{6,12\}$
- 7) 9 should be blue given the set $\{3, 6, 9, 12\}$
- 8) 5 should be red given the set $\{1, 2, 3, 4, 5, 6\}$
- 9) 10 should be blue given the set $\{5, 10\}$

- 1) Start with arbitrary color for *1* (say blue)
- 2) 2 should be red given the set {1,2}
- 3) 4 should be blue given the set $\{2,4\}$
- 4) 8 should be red given the set {4,8}
- 5) 6 should be blue given the set $\{2,4,6,8\}$
- 6) 3 should be red given the set $\{3,6\}$, and 12 should be red given $\{6,12\}$
- 7) 9 should be blue given the set $\{3, 6, 9, 12\}$
- 8) 5 should be red given the set $\{1, 2, 3, 4, 5, 6\}$
- 9) 10 should be blue given the set $\{5, 10\}$
- 10) 7 should be blue given the set {1,2,3,4,5,6,7,8} and red given the set {1,2,3,4,5,6,7,8,9,10} *IMPOSSIBLE*

Theorem: For any two-coloring of $\{1, ..., n\}$ where n > 11, there is at least one subset $S_{d,k} = \{d, 2d, ..., kd\}$ of discrepancy strictly greater than 1.

In the following, we replace the two colors with the labels +1 and -1.

Erdos Conjecture 1 (1930s): For any *C*, in any infinite ± 1 -sequence (x_n) , there is at least one subset $S_{d,k} = \{d, 2d, ..., kd\}$ of discrepancy strictly greater than *C*.

Erdos Conjecture 2 (1930s): For any *C*, in any infinite ± 1 -sequence (x_n) *s.t.* $x_{pq} = x_p * x_q$ (*completely multiplicative*), there is at least one subset $S_{d,k} = \{d, 2d, ..., kd\}$ of discrepancy strictly greater than *C*.

The previous theorem proves that both conjectures are true for C=1.

[B. Konev and A. Lisitsa, A SAT Attack on the Erdos Discrepancy Conjecture, SAT'14] Recent development proved the first conjecture for C=2, and provided a ± 1 -sequence of length *1,160* as the longest sequence of discrepancy *2*.

They were also able to generate a ± 1 -sequence of discrepancy 3 of length **13,900** in about **214 hours** of CPU time, as the longest known sequence of discrepancy 3.

[B. Konev and A. Lisitsa, A SAT Attack on the Erdos Discrepancy Conjecture, SAT'14] Recent development proved the first conjecture for C=2, and provided a ± 1 -sequence of length *1,160* as the longest sequence of discrepancy *2*.

They were also able to generate a ± 1 -sequence of discrepancy 3 of length **13,900** in about **214 hours** of CPU time, as the longest known sequence of discrepancy 3.

In this work, using **streamlined search** to **boost a SAT solver**, we generate a sequence of discrepancy *3* of length *127,645* in about **1.5 hours** and claim it is tight bound for the completely multiplicative case.

	Size	Time
[Konev and Lisitsa]	13,900	214 hours
This work	127,645*	1.5 hours

Longest sequence of discrepancy 3. (*:tight bound for completely multiplicative sequence)

SAT Encoding

Given C, $a \pm 1$ sequence (x_1, \ldots, x_n) , Let p_i be the proposition corresponding to $x_i = +1$. A proposition that tracks the state of the automaton for $(x_d, x_{2d}, \ldots, x_{\lfloor n/d \rfloor d})$:

$$\phi(n, C, d) = s_0^{(1,d)} \bigwedge_{m=1}^{n/d} \left(\bigwedge_{-C \le j < C} \left(s_j^{(m,d)} \land p_{id} \to s_{j+1}^{(m+1,d)} \right) \land \right) \\ \left(\bigwedge_{-C < j \le C} \left(s_j^{(m,d)} \land \overline{p_{id}} \to s_{j+1}^{(m+1,d)} \right) \land \right) \\ \left(s_C^{(m,d)} \land p_{id} \to s_B \right) \land \\ \left(s_{-C}^{(m,d)} \land \overline{p_{id}} \to s_B \right) \right)$$

 $s_j^{(m,d)}$ is true if the automaton is in state $\sum_{i=1}^{m-1} x_{i \cdot d}$ after $(x_d, \ldots, x_{(m-1)d})$. s_B captures whether the sequence has exceeded the discrepancy C.

In addition, the automaton is in exactly one state:

$$\chi(n,C) = \bigwedge_{1 \le d \le n/C, 1 \le m \le n/d} \left(\bigvee_{-C \le j \le C} s_j^{(i,d)} \wedge \bigwedge_{-C \le j_1, j_2 \le C} \left(\overline{s}_{j_1}^{(i,d)} \vee \overline{s}_{j_2}^{(i,d)} \right) \right)$$

$$\mathbf{EDP}_1(n,C): \overline{s}_B \wedge \chi(n,C) \wedge \bigwedge_{d=1}^n \phi(n,C,d)$$

For the completely multiplicative case $(x_{id} = x_i x_d)$,

 $\mathcal{M}(i,d) = (p_i \lor p_d \lor p_{id}) \land (\overline{p_i} \lor \overline{p_d} \lor p_{id}) \land (p_i \lor \overline{p_d} \lor \overline{p_{id}}) \land (\overline{p_i} \lor p_d \lor \overline{p_{id}})$

$$\mathbf{EDP}_2(n,C): \overline{s}_B \wedge \chi(n,C) \wedge \phi(n,C,1) \bigwedge_{1 \le d \le n, 1 \le i \le n/d} \mathcal{M}(i,d)$$

Streamliners

Fig. : First elements of a sequence of length 1160 and of discrepancy 2

 $mult(x,m,l): x_{i\cdot d} = x_i x_d \ \forall 2 \leq d \leq m, 1 \leq i \leq n/d, i \leq l$

Streamliners

Fig. : First elements of a sequence of length 1160 and of discrepancy 2

$$period(x,p,t): x_i = x_{i \bmod p} \; \forall 1 \leq i \leq t, i \not\equiv 0 \bmod p$$

Streamliners

$$\mu_{3}(i) = \begin{cases} +1, & \text{if } i \text{ is } 1 \mod 3\\ -1, & \text{if } i \text{ is } 2 \mod 3\\ -\mu_{3}(i/3), & \text{otherwise.} \end{cases}$$

Fig. : First elements of a sequence of length 1160 and of discrepancy 2

$$walters(x,w): x_i = \mu_3(i) \; \forall 1 \leq i \leq w$$

Encoding	Streamliners	Size of sequence	Runtime (in sec)
	-	13,000	286,247
	-	13,500	560,663
	-	13,900	770,122
EDD	mult(120,2000)	15,600	4,535
EDP_1	mult(150,2000)	18,800	8,744
	mult(200,1000)	23,900	12,608
	mult(700,10000)	27,000	45,773
	mult(700,20000)	31,500	51,144
	walters(800)	81,000	1,364
EDD	walters(800)	108,000	4,333
EDP_2	walters(700)	112,000	5,459
	walters(730)	127,645	4,501

Table : Solution runtimes of searches with and without streamliners.

For **EDP**₂(n=127646,C=3):

- The SAT solver Lingeling proves **UNSAT** after about **60 hours** of computation.
- It generates a DRUP proof of approximately **29GB**.
- DRAT-trim, an independent satisfiability proof checker verifies the 88 million lemmas of the proof in about 45 hours.

Theorem: Any **completely multiplicative** sequence of **discrepancy 3** is **finite.** (Erdos Conjecture is true for C=3).

Let C be the discrepancy of $z = (z_1, z_2, ..., z_k)$ and C' the discrepancy of $(y_1, ..., y_{p-1})$.

$$x = (y_1, y_2, \dots, y_{p-2}, y_{p-1}, z_1$$

$$y_1, y_2, \dots, y_{p-2}, y_{p-1}, z_2$$

...

 $y_1, y_2, \ldots, y_{p-2}, y_{p-1}, z_k)$

Definition (Discrepancy mod p). *Given two integers* p and C', does there exist $a \pm 1$ sequence (y_1, \ldots, y_{p-1}) such that:

$$\begin{aligned} \left|\sum_{i=1}^{m} y_{i \cdot d \mod p}\right| &\leq C', \ \forall 1 \leq d \leq n, m < \frac{p}{gcd(d,p)} \\ \frac{1}{gcd(d,p)} \int_{q \cdot d \mod p}^{p} = 0, \ \forall 1 \leq d \leq n \end{aligned}$$

There exist sequences whose discrepancy mod p is 1 for: p = 1, 3, 5, 7, 9

There exist sequences whose discrepancy mod p is 2 for: p = 11, 13, 15, 17, 25, 27, 45, 81

Therefore, EDP_1 (n=9*127645,C=4) is satisfiable.

Lemma: The longest sequence of discrepancy 4 is of size at least 1,148,805.

Contributions

1) We improve the **lower bound** of the Erdos Discrepancy Problem for **discrepancy 3** from 13,901 to **127,646**.

2) We prove that this **bound is tight** for the **completely multiplicative** case.

3) We provide a **recursive construction** to inductively generate longer sequences of limited discrepancy.

Future Research Directions

- 1) Can we automate the **discovery of streamliners** and how to **combine them**?
- 2) Can we define **human intelligence tasks** for anyone to provide valuable **insights** about the problem **structure**?
- 3) How **small** can the **proof** of the conjecture be? What is the size of the smallest strong **backdoor** set?
- 4) Fundamental research question: Can any **combinatorial problem** whose sole **input** is its parameter **size** be solved in polynomial time?

Thank you.

+				+	+	-	+ ·	+ -		- +	_	+	+	-	-	+ -		• +	-	+	+	-	-	+			+ -	- +	+	-	+	+ -		+	-	+	+ -		+	-	-	+	-	+	+ ·	- +	- +	_
_	+ ·		+ +	-	+	+			+ -	- +	+	-	-	+	-		+ -	• +	+	-	+	+	-	-	+		+ +		+	+	_	- +		+	+	-		+ -		+	-	+	+	-		+ -		+
_	+ ·	+ -	- +	+	-	-	+ ·		+ +		-	+	-	-	+		+ +		+	+	-	-	+	-	+	+ -		+ +	-	-	+	- +	• +	_	-	+		- +	_	+	+	-	-	+	_ ·	- +		+
+		+ +		-	+	-	+ ·	+ -		- +	_	-	+	-	+	+ -		• +	-	-	+	-	+	+		+ +	+ -		+	-	+	+ -		+	-	-	+ -	- +	+	_	+	+	-	-	+ ·	- +	- +	_
+	+ ·		- +	-	+	+			+ -		+	-	+	+	_		+ -		+	-	+	+	-	+	+			+ -	+	+	-	- +		_	+	-	+ +	+ -	· _	+	-	-	+	-	+ ·	+ -	• +	+
_		+ -	- +	+	-	_	+ ·		- +		+	+	_	+	+				+	+	_	+	+	_	_ ·	+ -		+ +	-	-	+		• +	_	+	+	- +	+ +	_	_	+	-	+	+	_ ·	+ +		-
+		+ +		_	+	_	_ ·	+ -		- +	_	_	+	_	-	+ -		- +	_	+	+	_	-	+		+ +	+ -		+	-	_	+ -	• +	+	-	+	+ -		+	-	+	+	-	+	+ ·		+	· _
+	+ ·		- +	_	_	+	_ ·	+ +	+ -		+	_	_	+	-	+ -	+ -	• +	+	-	-	+	-	+	+			+ -	-	+	_	+ +		_	+	-	- +	+ -	+	+	-	+	+	-	_ ·	+ -	+	+
_		+ -		+	_	+	+ ·		+ +		-	+	-	+	+		+ +		-	+	-	+	+	-		+ -		- +	-	+	+	- +	• +	_	-	+		+ +	-	+	+	-	-	+		+ +		_
+				+	+	_		+ -		- +	_	+	+	-	+	+ -		• +	-	+	+	_	-	+			+ -	- +	+	-	+	+ -		+	-	+	+ -	- +	+	-	-	+	-	+	+ ·		• +	· _
_	+ ·		+ +	_	+	+			+ -	- +	+	-	+	+	-		+ -	• +	+	-	_	+	-	-	+		+ +	+ -	_	+	_	- +		+	+	-	+ +	+ -	· _	+	-	+	+	-		+ -		+
_	+ ·	+ -	- +	+	_	_	+ ·		+ +		+	+	-	_	+		+ +		-	+	_	_	+	-	+	+ -		- +	_	-	+	- +	• +	_	+	+		- +	-	+	+	-	-	+	_ ·	- +		+
+				_	+	_	+ ·	+ -		- +	_	-	+	_	+	+ -		• +	-	-	+	_	+	+		+ +	+ -		+	-	+	+ -	• +	+	_	-	+ -	- +	+	-	-	+	-	-	+ ·	- +	- +	-
+	+ ·		- +	_	+	+		+ -			+	-	+	+	-		+ -		+	-	+	+	_	-	+				+	+		+ +		_	+	-	+ +	+ -	-	+	-	-	+	-	+ ·	+ -	• +	+
_		+ -	- +	+	_	+	+ ·		- +		+	+	_	_	+				+	+	_	+	+	_		+ -		+ +	_	+	+		• +	_	+	+		- +	_	_	+	-	+	+	_ ·	- +		_
+		+ +		+	+	_		+ -	- +	- +	_	_	+	_	_	+ -		- +	_	+	+	_	_	+		+ +	+ -	- +	+	-	_	+ -	• +	+	+	-	+ -		• +	_	+	+	-	_	+ ·		• +	_
+	+ ·	- +	+ +	-	_	+		+ +	+ -		+	_	_	+	_	+ -	+ -		+	_	-	+	_	+	+	- +	+ +	+ -	-	+	_	+ +		_	+	-	- +	+ -	• +	+	-	+	+	_	_ ·	+ -	• +	+
_	+	+ •		+	_	+	+			+ -		+	_	+	+			+ -	_	+	_	+	+	_	+	+ -		- +	_	+	+		- +	_	_	+		+ +		_	+	_	_	+	-	+ +	+ -	• +

. . .

