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There has been significant progress in the area of search, constraint 

satisfaction, and automated reasoning.

These approaches have been evaluated on problems such as:

Yet, a common denominator to these combinatorial problems is that there exists 

a polytime construction rule to build such combinatorial objects of any size.

Typically, these combinatorial objects are highly regular, and exhibit 

additional hidden structure, beyond the original structure of the problem.

How to uncover and exploit these regularities in the solutions?

N-QueensMagic squares Round-Robin TournamentGraceful Graphs



Outline

5

• Motivation 

• Framework

• Problem Definition

• Streamliners

• Recursive Construction Rule

• Conclusions and Future Directions



Framework: User-guided Streamlined Search

6

- Goal -

Exploit the structure of some solutions to dramatically boost the 

effectiveness of the propagation mechanisms.

- Underlying Observation -

When one insists on maintaining the full solution set, there is a hard 

practical limit on the effectiveness of constraint propagation 

methods. Often, there is no compact representation for all the 

solutions.

- Underlying Conjecture -

For many intricate combinatorial problems – if solutions exist –

there will often be regular ones.
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P1 is substantially 

smaller than its 

complement P2 and it 

will benefit from a 

stronger filtering 

thereafter.
Streamlined Search:

Strong branching mechanisms (by adding 

constraints based on structure properties)

at high levels of the search tree.

[Gomes and Sellmann, CP’04]
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Recognizing Patterns and Regularities:

Correcting Irregularities:

Generalizing / Formalizing Regularities:

[Source: Marijn J.H. Heule, 2009]

1 2 3

3 1 2

2 3 1

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1Cyclic Latin square 

of order 3 Cyclic Latin square 

of order 4
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Outline:

1) Analyze smaller size solutions, and conjecture potential 

regularities in the solutions. 

2) Validate through streamlining the observed regularities. 

3) If the streamlined search does not give a larger size 

solution, the proposed regularity is quite likely accidental 

and one looks for a new pattern in the small scale solutions.

4) Otherwise, one proceeds by generating a number of new 

solutions that all contain the proposed structural 

regularity and are used to expand the solution set and to 

reveal new regularities.
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A simple yet effective approach…
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Discrepancy theory: distributing points uniformly over some

geometric object, and studying how irregularities inevitably occur in these 

distributions.

Discrepancy: Given m subsets S1,S2,…,Sm of {1,…,n}, the 

discrepancy of a two-coloring of the elements is the 

maximum difference between the number of elements of 

one color and the number of elements of the other color.

Erdős Discrepancy Problem: Given the subsets 

Sd,k={d,2d,…,kd}, 1 ≤ d ≤ n and 1 ≤ k ≤ n/d, does there exist 

a two-coloring of the elements {1,…,n} of discrepancy C?

1

2

3

4

5

6

S1

S2

S3S4
Discrepancy=0

1 2 3 4 5 6 7 8 9 10 11 12

S3,4={3,6,9,12} has discrepancy 2, so this coloring is of discrepancy at least 2. 
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Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

1 2 3 4 5 6 7 8 9 10 11 12

1) Start with arbitrary color for 1 (say blue)

2) 2 should be red given the set {1,2}

3) 4 should be blue given the set {2,4}
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Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

1 2 3 4 5 6 7 8 9 10 11 12

1) Start with arbitrary color for 1 (say blue)

2) 2 should be red given the set {1,2}

3) 4 should be blue given the set {2,4}

4) 8 should be red given the set {4,8}
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Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

1 2 3 4 5 6 7 8 9 10 11 12

1) Start with arbitrary color for 1 (say blue)

2) 2 should be red given the set {1,2}

3) 4 should be blue given the set {2,4}

4) 8 should be red given the set {4,8}

5) 6 should be blue given the set {2,4,6,8}



Erdős Discrepancy Problem

21

Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

1 2 3 4 5 6 7 8 9 10 11 12

1) Start with arbitrary color for 1 (say blue)

2) 2 should be red given the set {1,2}

3) 4 should be blue given the set {2,4}

4) 8 should be red given the set {4,8}

5) 6 should be blue given the set {2,4,6,8}

6) 3 should be red given the set {3,6}, and 12 should be red given {6,12}
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Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

1 2 3 4 5 6 7 8 9 10 11 12

1) Start with arbitrary color for 1 (say blue)

2) 2 should be red given the set {1,2}

3) 4 should be blue given the set {2,4}

4) 8 should be red given the set {4,8}

5) 6 should be blue given the set {2,4,6,8}

6) 3 should be red given the set {3,6}, and 12 should be red given {6,12}

7) 9 should be blue given the set {3,6,9,12}
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Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

1 2 3 4 5 6 7 8 9 10 11 12

1) Start with arbitrary color for 1 (say blue)

2) 2 should be red given the set {1,2}

3) 4 should be blue given the set {2,4}

4) 8 should be red given the set {4,8}

5) 6 should be blue given the set {2,4,6,8}

6) 3 should be red given the set {3,6}, and 12 should be red given {6,12}

7) 9 should be blue given the set {3,6,9,12}

8) 5 should be red given the set {1,2,3,4,5,6}
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Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

1 2 3 4 5 6 7 8 9 10 11 12

1) Start with arbitrary color for 1 (say blue)

2) 2 should be red given the set {1,2}

3) 4 should be blue given the set {2,4}

4) 8 should be red given the set {4,8}

5) 6 should be blue given the set {2,4,6,8}

6) 3 should be red given the set {3,6}, and 12 should be red given {6,12}

7) 9 should be blue given the set {3,6,9,12}

8) 5 should be red given the set {1,2,3,4,5,6}

9) 10 should be blue given the set {5,10}
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Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

1 2 3 4 5 6 7 8 9 10 11 12

1) Start with arbitrary color for 1 (say blue)

2) 2 should be red given the set {1,2}

3) 4 should be blue given the set {2,4}

4) 8 should be red given the set {4,8}

5) 6 should be blue given the set {2,4,6,8}

6) 3 should be red given the set {3,6}, and 12 should be red given {6,12}

7) 9 should be blue given the set {3,6,9,12}

8) 5 should be red given the set {1,2,3,4,5,6}

9) 10 should be blue given the set {5,10}

10) 7 should be blue given the set {1,2,3,4,5,6,7,8} and red given the set 

{1,2,3,4,5,6,7,8,9,10} - IMPOSSIBLE
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Theorem: For any two-coloring of {1,…,n} where n>11, there is at least one 

subset Sd,k={d,2d,…,kd} of discrepancy strictly greater than 1.

In the following, we replace the two colors with the labels +1 and -1.

Erdos Conjecture 1 (1930s): For any C, in any infinite  ±1-sequence (xn), there 

is at least one subset Sd,k={d,2d,…,kd} of discrepancy strictly greater than C.

Erdos Conjecture 2 (1930s): For any C, in any infinite  ±1-sequence (xn) s.t.

xpq=xp*xq (completely multiplicative), there is at least one subset 

Sd,k={d,2d,…,kd} of discrepancy strictly greater than C.

The previous theorem proves that both conjectures are true for C=1.
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[B. Konev and A. Lisitsa, A SAT Attack on the Erdos Discrepancy Conjecture, SAT’14]

Recent development proved the first conjecture for C=2, and provided a ±1-

sequence of length 1,160 as the longest sequence of discrepancy 2. 

They were also able to generate a ±1-sequence of discrepancy 3 of length 

13,900 in about 214 hours of CPU time, as the longest known sequence of 

discrepancy 3.
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[B. Konev and A. Lisitsa, A SAT Attack on the Erdos Discrepancy Conjecture, SAT’14]

Recent development proved the first conjecture for C=2, and provided a ±1-

sequence of length 1,160 as the longest sequence of discrepancy 2. 

They were also able to generate a ±1-sequence of discrepancy 3 of length 

13,900 in about 214 hours of CPU time, as the longest known sequence of 

discrepancy 3.

In this work, using streamlined search to boost a SAT solver, we generate a 

sequence of discrepancy 3 of length 127,645 in about 1.5 hours and claim it is 

tight bound for the completely multiplicative case.

Size Time

[Konev and Lisitsa] 13,900 214 hours

This work 127,645* 1.5 hours

Longest sequence of discrepancy 3. (*:tight bound for 

completely multiplicative sequence)
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For EDP2(n=127646,C=3):

- The SAT solver Lingeling proves UNSAT after about 60 hours of 

computation.

- It generates a DRUP proof of approximately 29GB.

- DRAT-trim, an independent satisfiability proof checker verifies the 

88 million lemmas of the proof in about 45 hours.

Theorem: Any completely multiplicative sequence of discrepancy 3 

is finite. (Erdos Conjecture is true for C=3).
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There exist sequences whose discrepancy mod p is 1 for:

p = 1, 3, 5, 7, 9

There exist sequences whose discrepancy mod p is 2 for:

p = 11, 13, 15, 17, 25, 27, 45, 81

Therefore, EDP1(n=9*127645,C=4) is satisfiable.

Lemma: The longest sequence of discrepancy 4 is of size 

at least 1,148,805.
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Contributions

1) We improve the lower bound of the Erdos Discrepancy Problem for 

discrepancy 3 from 13,901 to 127,646.

2) We prove that this bound is tight for the completely multiplicative case.

3) We provide a recursive construction to inductively generate longer sequences 

of limited discrepancy.

Future Research Directions

1) Can we automate the discovery of streamliners and how to combine them?

2) Can we define human intelligence tasks for anyone to provide valuable

insights about the problem structure?

3) How small can the proof of the conjecture be? What is the size of the 

smallest strong backdoor set?

4) Fundamental research question: Can any combinatorial problem whose sole 

input is its parameter size be solved in polynomial time?
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