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Motivation

There has been significant progress in the area of search, constraint
satisfaction, and automated reasoning.

These approaches have been evaluated on problems such as:

Magic squares Graceful Graphs Round-Robin Tournament N-Queens
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Motivation

There has been significant progress in the area of search, constraint
satisfaction, and automated reasoning.

These approaches have been evaluated on problems such as:
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Magic squares Graceful Graphs Round-Robin Tournament N-Queens

Yet, a common denominator to these combinatorial problems is that there exists
a polytime construction rule to build such combinatorial objects of any size.

Typically, these combinatorial objects are highly regular, and exhibit
additional hidden structure, beyond the original structure of the problem.
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Motivation

There has been significant progress in the area of search, constraint
satisfaction, and automated reasoning.

These approaches have been evaluated on problems such as:
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Magic squares Graceful Graphs Round-Robin Tournament N-Queens

Yet, a common denominator to these combinatorial problems is that there exists
a polytime construction rule to build such combinatorial objects of any size.

Typically, these combinatorial objects are highly regular, and exhibit
additional hidden structure, beyond the original structure of the problem.

How to uncover and exploit these regularities in the solutions?
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Framework: User-guided Streamlined Search

- Goal -

Exploit the structure of some solutions to dramatically boost the
effectiveness of the propagation mechanisms.

- Underlying Observation -

When one insists on maintaining the full solution set, there is a hard
practical limit on the effectiveness of constraint propagation
methods. Often, there is no compact representation for all the
solutions.

- Underlying Conjecture -

For many intricate combinatorial problems — if solutions exist —
there will often be regular ones.
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Framework: User-guided Streamlined Search

Initial Search Space

Subproblem:
Streamlined subproblem: S does not hold

S holds

P]

P, is substantially standard
. variable
smaller than its branching

complement P, and it

) . oo Streamlined subproblem: Subproblem:
will benefit from a S’ holds / \ S’ d%es not h

stronger filtering _ _
thereafter. Streamlined Search:

Strong branching mechanisms (by adding
constraints based on structure properties)
at high levels of the search tree.
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Framework: User-guided Streamlined Search

Recognizing Patterns and Regularities:

[Source: Marijn J.H. Heule, 2009]

Correcting Irregularities:

= 3¢

Generalizing / Formalizing Regularities:
1023 112]3]4
3012 —> [4]1]2]3
2(3]1 314112
Cyclic Latin square 213141
of order 3 Cyclic Latin square
of order 4
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Framework: User-guided Streamlined Search

O« 0 /1 Conjectured streamliners
T« /I Search streamliners
£+ Pol N Search parameter
S+ // Solutions found
T + false; [l Timeout flag
I'E‘l)f‘at

Solve(P,,T',t) — (8',7): {/ Search for new solutions
if ' NS # () then
S+—Sus, 1/ Case 1: successful search
Analyze(S§) — O'; J/ Conjecture new streamliners
O+~ 0uo.
p—p+1:
else if 7 is rrue then
Select I" € @:  # Case 2: timed-out failed search

I'«—Tul" /f Strengthen streamliners
else

Select I € I';  // Case 3: exhaustive failed search

TFeT\I"; {/{ Weaken streamliners

p=max{p: S(I)NSE(F,) & D}+1:
Select I'"" C IY;  // Find next parameter of interest
O+ ONT"; I/ Drop unpromising streamliners

until O =0 ;

Algorithm : Discover-Construction procedure

for a given problem P, with parameter set p and timeout t.
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Qutline;

1) Analyze smaller size solutions, and conjecture potential
regularities in the solutions.

2) Validate through streamlining the observed regularities.

3) If the streamlined search does not give a larger size
solution, the proposed regularity is quite likely accidental
and one looks for a new pattern in the small scale solutions.

4) Otherwise, one proceeds by generating a number of new
solutions that all contain the proposed structural
regularity and are used to expand the solution set and to
reveal new regularities.



Overview of the results

A simple yet effective approach...

1]2]3fa]5][6[7]8]s]mn]n
2468 0[1]a|7]5 ]3]
3l6(a[nfe[5[2[1]e]7]0
48|17 3|1 [5]3]w]s ]2 12481122
5108 |3[2]7[1]61]4]a
6[11]5[1[7]w[a[2]s]s]3 357192123
709 (2[5 [1[4[3][w0]s][1]s
87[1]9[6]2][n][s5]3]n]e 91012-18 20
5(5|a|w[1]8]6]3|n]2]7
w[3[7]s|ala|1]11]2]a]5
1[1]w|2]s|3]s|4|7]5

Spatially . Weak Schur
Balanced Latin
Numbers
Squares
[Smith et al., [Eliahou et al.,
[JCATI’05] Computers & Math
Applications’12]
n<35 WS(6) > 575

[L.ctal, AAAI’12] [L.etal, AAAT’12]

Any n s.t. 2n+1 WS(6) > 581
1s prime
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Overview of the results

A simple yet effective approach...
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Spatially Graceful Diagonally

Balanced Latin Weak Schur Double-Wheel | ordered Magic
Numbers
Squares Graphs Squares
[Smith et al., [Eliahou et al., [Heule & Walsh, [Gomes &
IJCATI’05] Computers & Math AAAT’10] Sellmann, CP’04]
Applications’12] n<24 n<19
n<35 WS(6) =575

[L.etal, AAAI’'12] [L.etal, AAAI’12] [L. et al, [L. etal, JCAI’13]
Any n s.t. 2n+1 WS(6) > 581 NCAL3] Anyns.t.nis

is prime Anyn>3 doubly even
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Overview of the results

A simple yet effective approach...
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Spatially Graceful Diagonally Erdos

Balanced Latin Weak Schur Double-Wheel | ordered Magic Discrepancy
Numbers
Squares Graphs Squares Sequences
[Smith et al., [Eliahou et al., [Heule & Walsh, [Gomes & [Konev & Lisitsa,
[JCAI’05] Computers & Math AAATI’10] Sellmann, CP’04] SAT’14]
Applications’12] n <24 n<19 - 13.900
n<35 WS(6) > 575 n=19,

[L.etal, AAAI'12] [L.etal, AAAI’12] [L. et al, [L.etal, ICAI’13]  [L.etal, CP’14]
Any n s.t. 2n+1 WS(6) > 581 NCAL3] Anyns.t.nis n < 127,645

is prime Anyn>3 doubly even
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Erdos Discrepancy Problem

Discrepancy theory: distributing points uniformly over some

geometric object, and studying how irregularities inevitably occur in these
distributions.
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Erdos Discrepancy Problem

Discrepancy theory: distributing points uniformly over some

geometric object, and studying how irregularities inevitably occur in these

distributions.
S,

Discrepancy: Given m subsets S,,S,, ...,S,, of {1,...,n}, the
discrepancy of a two-coloring of the elements is the @ @ @
maximum difference between the number of elements of
one color and the number of elements of the other color. @ @
S

S S;
Discrepancy=0
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Erdos Discrepancy Problem

Discrepancy theory: distributing points uniformly over some

geometric object, and studying how irregularities inevitably occur in these
distributions.

S,
Discrepancy: Given m subsets S,,S,, ...,S,, of {1,...,n}, the
discrepancy of a two-coloring of the elements is the
maximum difference between the number of elements of
one color and the number of elements of the other color. @ @ @
S

r” . - S4 S3

Erdds Discrepancy Problem: Given the subsets Discrepancy=0

Sqx=1d,2d,....kd}, I <d <mand 1< k <n/d, does there exist
a two-coloring of the elements {1, ...,n} of discrepancy C?

OOOOOOOOOOO®E®

S3,={,6,9,17} has discrepancy 2, so this coloring is of discrepancy at least 2.

15
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Erdos Discrepancy Problem

Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

@@@@@@@C@C@@

1) Start with arbitrary color for 1 (say

16
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Erdos Discrepancy Problem

Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

@@@@@@@C@C@@

1) Start with arbitrary color for 1 (say
2) 2 should be rec given the set {1,2}
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Erdos Discrepancy Problem

Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

@@@@@@@C@C@@

1) Start with arbitrary color for 1 (say
2) 2 should be rec given the set {1,2}
3) 4 should be given the set {7,4}
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Erdos Discrepancy Problem

Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

@@@@@@@C@C@@

Start with arbitrary color for 1 (say
2) 2 should be red given the set {1,2}
3) 4 should be given the set {7,4}
4) 8 should be red given the set {4,8}
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Erdos Discrepancy Problem

Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

@@@@@@@C@C@@

Start with arbitrary color for 1 (say
2) 2 should be red given the set {1,2}
3) 4 should be given the set {7,4}
4) 8 should be red given the set {4,8}
5) 6 should be given the set {7,4,6,2}

0



Erdos Discrepancy Problem

Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

@@@@@@@C@C@@

2)
3)
4)
5)
6)

rrrrrrrrrr

Start with arbitrary color for 1 (say

2 should be red given the set {1,2}

4 should be given the set {7,4}

8 should be red given the set {4,8}

6 should be given the set {7,4,6,2}

3 should be red given the set {3,6}, and 12 should be red given {6,12}
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Erdos Discrepancy Problem

Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

@@@@@@@C@C@@

2)
3)
4)
5)
6)
/)

rrrrrrrrrr

Start with arbitrary color for 1 (say

2 should be red given the set {1,2}

4 should be given the set {7,4}

8 should be red given the set {4,8}

6 should be given the set {7,4,6,2}

3 should be red given the set {3,6}, and 12 should be red given {6,12}
9 should be given the set {3,6,9,17}
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Erdos Discrepancy Problem

Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

@@@@@@@C@C@@

Start with arbitrary color for 1 (say

2)
3)
4)
5)
6)
/)
8)

2 should be
4 should be
8 should be
6 should be
3 should be
9 should be
5 should be

given the set {1,2}

given the set {7,4}

given the set {4,8}

given the set {~,4,6,5}

given the set {3,6}, and 12 should be red given {6,12}
given the set {3,6,9,1”}

given the set {1,7,3,4,5,6}
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Erdos Discrepancy Problem

Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

@@@@@@@C@C@@

Start with arbitrary color for 1 (say

2)
3)
4)
5)
6)
/)
8)
9)

2 should be
4 should be
8 should be
6 should be
3 should be
9 should be
5 should be
10 should be

given the set {1,2}
given the set {7,4}
given the set {4,8}
given the set {~,4,6,5}
given the set {3,6}, and 12 should be red given {6,12}
given the set {3,6,9,1”}
given the set {1,7,3,4,5,6}
given the set {5,10}
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Erdos Discrepancy Problem

Constructing a two-coloring of {1,..,12} of discrepancy at most 1:

@@@@@@CC@C@@

Start with arbitrary color for 1 (say

2) 2 should be red given the set {1,2}

3) 4 should be given the set {7,4}

4) 8 should be red given the set {4,8}

5) 6 should be given the set {7,4,6,2}

6) 3should be red given the set {3,6}, and 12 should be rec given {6,12}
7) 9 should be given the set {3,6,9,17}

8) 5 should be red given the set {1,2,3,4,5,6}

9) 10 should be given the set {5,10}

10) 7 should be given the set {1,”,3,4,5,6,7,5} and given the set

rrrrrrrrrr

7,5,9,10} - IMPOSSIBLE -



Erdos Discrepancy Problem

Theorem: For any two-coloring of {/,...,n! where n>11, there is at least one
subset S, ={d,2d, ...,.kd} of discrepancy strictly greater than 1.

In the following, we replace the two colors with the labels +1 and -1.

Erdos Conjecture 1 (1930s): For any C, in any infinite +1-sequence (x,), there
Is at least one subset S, ={d,2d, ...,.kd} of discrepancy strictly greater than C.

Erdos Conjecture 2 (1930s): For any C, in any infinite +1-sequence (x,) S.t.

Xpq=Xp X, (COmpletely multiplicative), there is at least one subset
Sqx={d,2d, ....kd} of discrepancy strictly greater than C.

The previous theorem proves that both conjectures are true for C=1.

26
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Erdos Discrepancy Problem

[B. Konev and A. Lisitsa, A SAT Attack on the Erdos Discrepancy Conjecture, SAT’14]

Recent development proved the first conjecture for C=2, and provided a +1-
sequence of length 1,160 as the longest sequence of discrepancy 2.

They were also able to generate a +1-sequence of discrepancy 3 of length
13,900 in about 214 hours of CPU time, as the longest known sequence of

discrepancy 3.

27
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Erdos Discrepancy Problem

[B. Konev and A. Lisitsa, A SAT Attack on the Erdos Discrepancy Conjecture, SAT’14]

Recent development proved the first conjecture for C=2, and provided a +1-
sequence of length 1,160 as the longest sequence of discrepancy 2.

They were also able to generate a +1-sequence of discrepancy 3 of length
13,900 in about 214 hours of CPU time, as the longest known sequence of

discrepancy 3.

In this work, using streamlined search to boost a SAT solver, we generate a
sequence of discrepancy 3 of length 127,645 in about 1.5 hours and claim it is
tight bound for the completely multiplicative case.

[Konev and Lisitsa] 13,900 214 hours
This work 127,645* 1.5 hours

Longest sequence of discrepancy 3. (*:tight bound for
CORNELL completely multiplicative sequence)

rrrrrrrrrr
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SAT Encoding

Given C, a +1 sequence (r1,...,Ty),
Let p; be the proposition corresponding to x; = +1.
A proposition that tracks the state of the automaton for (x4, xo4,.... 7 In/d| q)
n/d
o(n,C,d) = s,gl"d) /\ ( /\ (ng’d) A Pid — ETTI d));’\
m=1 * -C<j<C
(m,d) , —— (m—l—l d)
/\ (Sj ADPid = Sjtq )f\
—C<j<C

(s8D A pia — sB)A

(q )f\ptd—}qB))

Wd) - . . m—1
H;m ) is true if the automaton is in state Yo wiqafter (xq,. ... T(m_1)a)
sp captures whether the sequence has exceeded the discrepancy C.

29
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SAT Encoding

ion, L UK
X Y 8, 4
& S, [5
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{1ICS |
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In addition, the automaton is in exactly one state:

X('”'?C) — /\

l<d<n/C,l<m<n/d "—-C=j<C

—C<j1.,J2=C

EDP{(n,.C) :3g A x(n,C) A /\ o(n,C.d)
d=1

For the completely multiplicative case (1;9 = 2;24) -

M(i,d) = (pi VpaV pia) N (PiVDPaV pia) N (pi VPa NV Pia) N (Pi V pa V Pid)

i,d —(1.,d —(1.d
(V sa A e

EDPy(n.C') :Sg A x(n.C) A p(n.C. 1)

A

M(i,d)

CORNELL
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Streamliners

BEENENNEERERD
-+ + -+ + - -+ -+ + =
++ - -+ -++--+-F
L R
- -+ - -+ -+ + -+ +
- - -+ + -+ + - -+ -F
+——++—+—++——I
- -+ -+ - -4+ + - -+ B
+ 4+ -+ + - -+ -+ + -F
+- -+ -+ + - -+ -+ B
-+ + -+ - -+ -+ + =
-+ - - ++ - -+ + - F

Fig.: First elements of a sequence of length 1160

i

and of discrepancy 2.

mult(x,m,l) : x,.q9g =x,04V2 <d<m,1 <i<n/di<lI

31




Streamliners

T
THHE
BEEHEHEEH
THEE
THHEL
FEENENNEE
IEENENNE]D
REE_ENNEN
L
ELELEY
THHEL
EEFERRETE

Fig.: First elements of a sequence of length 1160
and of discrepancy 2.

period(x.p,t) 1 2; = i mod p V1 < i < t,i Z0mod p

CORNELL 32
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Streamliners

FEENENNEE

THHIH

FEENENNEE (41, if 7 is 1 mod 3
BEEECEECE | o
E::i:ii:i p3(i) = —1. if 7 is 2 mod 3
el s (i wis
e —n3(i/3), otherwise.
B

FEENEN-EN

EEENENNER

Fig.: First elements of a sequence of length 1160
and of discrepancy 2.

walters(x,w) : x; = puz(i) V1 <i < w
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Results
Encoding  Streamliners  Size of sequence Runtime (in sec)
- 13.000 286,247
- 13,500 560.663
- 13,900 770,122
EDP mult(120,2000) 15,600 4,535
L mult(150,2000) 18,800 8,744
mult(200,1000) 23,900 12.608
mult(700,10000) 27,000 45,773
mult(700,20000) 31,500 51.144
walters(800) 81,000 1,364
EDP walters(800) 108,000 4,333
2 walters(700) 112,000 5,459
walters(730) 127,645 4,501
Table : Solution runtimes of searches with and without streamliners.
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For EDP,(n=127646,C=3):

- The SAT solver Lingeling proves UNSAT after about 60 hours of
computation.

- It generates a DRUP proof of approximately 29GB.

- DRAT-trim, an independent satisfiability proof checker verifies the
88 million lemmas of the proof in about 45 hours.

Theorem: Any completely multiplicative sequence of discrepancy 3
Is finite. (Erdos Conjecture is true for C=3).

35
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Recursive Construction Rule

i

Let C be the discrepancy of 2 = (21. 29. ..., 23 ) and C” the discrepancy of (1. .... yp_1).

r = (y1,Y2,-- s Yp—2, Yp—1, 21

ylﬁyz.‘- L yp—21 yp—l_-_zz

=
=
=
]
=
L]
I
bJ
=
7
=t
L

k)

Definition (Discrepancy mod p). Given two integers p and C", does there exist a +1
sequence (Y1, . ...Yp—1) such that:

T
p
E Yi-d <", Vi<d<nm<
| — Yi-d mod p| < - ged(d, p)

P —
gc P 1

Z Yi-d mod p = 0, V1 < d<n
i=1

CORNELL 36
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Recursive Construction Rule - Results

There exist sequences whose discrepancy mod p 1s 1 for:
p=1,3,5,7,9

There exist sequences whose discrepancy mod p 1s 2 for:
p=11,13,15,17,25,27,45, 81

Therefore, EDP,(n=9*127645,C=4) 1s satisfiable.

Lemma: The longest sequence of discrepancy 4 is of size
at least 1,148,805.

rrrrrrrrrr
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Conclusions and Future Direction

Contributions

1) We improve the lower bound of the Erdos Discrepancy Problem for
discrepancy 3 from 13,901 to 127,646.

2) We prove that this bound is tight for the completely multiplicative case.

3) We provide a recursive construction to inductively generate longer sequences
of limited discrepancy.

Future Research Directions
1) Can we automate the discovery of streamliners and how to combine them?

2) Can we define human intelligence tasks for anyone to provide valuable
Insights about the problem structure?

3) How small can the proof of the conjecture be? What is the size of the
smallest strong backdoor set?

4) Fundamental research question: Can any combinatorial problem whose sole
Input is its parameter size be solved in polynomial time?
38
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