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Abstract

Newly-discovered materials have been central to recent
technological advances. They have contributed signif-
icantly to breakthroughs in electronics, renewable en-
ergy and green buildings, and overall, have promoted
the advancement of global human welfare. Yet, only a
fraction of all possible materials have been explored.
Accelerating the pace of discovery of materials would
foster technological innovations, and would potentially
address pressing issues in sustainability, such as energy
production or consumption.
The bottleneck of this discovery cycle lies, however,
in the analysis of the materials data. As materials sci-
entists have recently devised techniques to efficiently
create thousands of materials and experimentalists have
developed new methods and tools to characterize these
materials, the limiting factor has become the data anal-
ysis itself. Hence, the goal of this paper is to stimu-
late the development of new computational techniques
for the analysis of materials data, by bringing together
the complimentary expertise of materials scientists and
computer scientists.
In collaboration with two major research laboratories
in materials science, we provide the first publicly avail-
able dataset for the phase map identification problem.
In addition, we provide a parameterized synthetic data
generator to assess the quality of proposed approaches,
as well as tools for data visualization and solution eval-
uation.

Introduction
The discovery of new advanced materials has made possi-
ble recent technological inventions, from silicon circuits and
batteries to solar and fuel cells. As underlined by the Materi-
als Genome Initiative (Patel 2011; White 2012), accelerating
the discovery and deployment cycle of new advanced mate-
rials is essential to improving human welfare and to achiev-
ing sustainable, clean energy.

While most inter-metallic compounds or oxides involving
up to two elements have now been studied, it only represents
a very small fraction of all possible materials that can be ob-
tained by mixing three elements or more, and by varying the
synthesis conditions (e.g. temperature and pressure). Out of
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billions of candidate materials, there are potentially thou-
sands of materials with interesting physical properties, such
as conductivity, light absorbency or catalytic properties, that
remain to be uncovered.

The field of materials discovery requires a deep under-
standing of the underlying crystallographic process that
governs a material formation. Experts in materials science
have developed elaborate deposition processes to efficiently
create so-called composition libraries in a high-throughput
regime (Takeuchi, Dover, and Koinuma 2002; Gregoire et
al. 2007, e.g.). For example, the High-Throughput Experi-
mentation research program at the Joint Center for Artificial
Photosynthesis (JCAP) is capable, at full capacity, of out-
putting about one million materials a day. Once synthesized,
the promising composition libraries need to be characterized
using X-ray diffraction and X-ray fluorescence (Chu et al.
2004; Vogt et al. 2004; Gregoire et al. 2009) in order to map
the composition and structure of a library. This data collec-
tion step requires an X-ray source such as a synchrotron,
where the experimentation cost amounts to about $1M for a
week of data collection.

Nevertheless, as the data collection reaches a high-
throughput regime, the bottleneck of the discovery cycle be-
comes the data interpretation itself. Indeed, this task remains
a laborious manual inspection that relies on materials scien-
tists expertise. The goal of this paper is to encourage com-
puter scientists to propose new computational methods for
this data interpretation, by providing synthetic and real data,
as well as a problem description and evaluation metrics that
transcend materials science research.

This work is in collaboration with two major research
centers in materials science. The High-Throughput Experi-
mentation research program at JCAP focuses on automated,
high-throughput discovery of materials that can act as light
absorbers or catalysts for solar-fuel generation, in collabora-
tion with the Stanford Synchrotron Radiation Lightsource.
The Energy Materials Center at Cornell (emc2) aims at im-
proving energy conversion and storage by understanding and
exploiting fundamental properties of materials, and conducts
experiments at the Cornell High Energy Synchrotron Source
(CHESS).

There are several existing sources of tabulated X-ray
diffraction data from crystallographic studies of materials.
Both the National Institute of Standards and Technology



(Bergerhoff and Brown 2002) and the International Cen-
tre for Diffraction Data offer libraries (pdf 2004) charac-
terizing hundreds of thousands of individual inorganic crys-
talline compounds, including X-ray patterns. These libraries
can be useful for matching experimental data to previously
measured compounds, however they are not suitable for de-
veloping methods to analyze composition spreads involving
mixtures of compounds and solid solutions. The Materials
Project (Jain et al. 2013) and the aflowlib.org reposi-
tory (Curtarolo et al. 2013) also provide data characterizing
inorganic crystalline materials, as well as phase map infor-
mation, derived using ab-initio and other simulation meth-
ods. However, these simulate only low-temperature synthe-
sis, and have limited capabilities to describe solid solutions.

The paper is structured as follows. The next section
presents the phase map identification problem, while Sec-
tion 3 describes the data format of the datasets. In Section 4,
we present the data visualization user interface as well as
the solution evaluation tool. Sections 5 and 6 present the
synthetic and real world datasets, respectively, while con-
clusions and comments are given in the last section.

Problem Definition
The goal in the phase map identification problem is to pro-
duce a model for the crystal structures that form under equi-
librium conditions, as a function of material composition.
The model should correspond to certain constraints that de-
scribe the physical processes. The experimental generation
of the data under consideration can be described as the de-
position of material library and subsequent X-ray diffraction
measurements.

To generate a given data set, materials scientists create
an array of thin-film depositions of two or more chemical
elements on one substrate (or multiple substrates), consist-
ing of different mixtures within the composition space of
interest. The resulting material library consists of hundreds
to thousands of unique composition samples, and typically
each sample crystallizes into a collection of millions of small
crystallites. Despite the vast number of crystallites present in
the library, the number of distinct crystal structures is rela-
tively small and approximately equal to the number of ele-
ments. For the present purposes, we consider each sample
in the material library as a unique composition of matter de-
posited at a discrete location on a planar substrate.

The diffraction of an X-ray beam by the thin-film is then
measured for each sample. The diffracted X-ray intensity
is recorded as a function of scattering direction (angle).
Diffraction intensity peaks occur at directions (angles) de-
termined primarily by regular spacing of electrons within
individual crystallites. Therefore the angular dependence of
the diffracted intensity (diffraction pattern) contains infor-
mation about the crystal structures stable for a given compo-
sition.

Data preprocessing additionally consists of:

1. Removal of background signal originating from the X-ray
detector, as well as scattering from the substrate, air and
apparatus

2. Integration of 2-dimensional detector signal by diffraction
direction

3. Further filtering and diffraction peak detection

The phase map identification problem can then be de-
scribed as:

Given A set of X-ray diffraction signals (in the form of a
diffraction pattern, and/or detected peak parameters) rep-
resenting different material compositions; and K, the ex-
pected number of material phases present.

Find A model for K phases (basis functions that change
gradually with composition, in terms of structure and in-
tensity), and their parameters at each sampled composi-
tion.

Subject to Physical constraints from the known properties
of crystals, such as:

1. Gibbs Phase Rule, which says that (assuming constant
temperature and pressure), that ks ≤ M , where ks ≤
K is the number of phases present in sample s, and
M is the number of different material elements in the
system

2. The compositions at which a phase is observed should
be a connected region and its parameters should vary
smoothly as a function of composition

This definition is intended as a guideline, and could be
reasonably modified, for example to treat K as an estimated
parameter, or to incorporate other knowledge from the ma-
terials science or solid state physics literature. It is impor-
tant, however, that a solution model or its predictions have
a reasonable physical interpretation (potentially after post-
processing or reconstruction), and are consistent with the
underlying physics.

An output model should be evaluated using prediction ac-
curacy on the diffraction curve or peak parameters of held-
out samples. For synthetically generated data, model param-
eters can be compared directly with those that follow from
the generator parameters.

Challenges
Many challenges arise as data is collected and as it is pro-
cessed. The first challenge to overcome relates to the noise in
the data. The uncertainty in the diffracted intensities comes
from multiple factors, such as measurement errors, back-
ground noise, and detector ghosting. There is also uncer-
tainty in the composition values, arising from the analysis
of the X-ray fluorescence data.

Another challenge relates to the model assumptions. For
example, while thermodynamic equilibrium is usually as-
sumed to solve this problem, it is possible that the equilib-
rium conditions have not been reached. Other issues might
arise from imperfections in the thin-film, variable thickness
of the deposited film, or preferred orientation adopted by the
crystallites in the thin-film. Finally, for approaches that are
based on the discretization of the x-ray patterns into peaks,
the peak detection algorithm itself is not a trivial task and
might lead to additional uncertainties.



One main challenge is to capture the physical rules that
govern the underlying crystallographic process (Long et al.
2007; 2009; Le Bras et al. 2011; Ermon et al. 2012) while
allowing the solution approach to scale up to real-sized in-
stances (Le Bras et al. 2011; 2013; Finger et al. 2013). Fi-
nally, while structural changes in the crystals typically occur
in a linear fashion in composition space, there might be non-
linear changes in shifts, peak widths or relative intensities
(peak heights).

Data format
Each data set includes 3 basic types of information:

1. Metadata, such as the chemical elements used in the
system. This metadata is useful to retrieve the atomic
numbers of the elements, as well as to correlate the pro-
posed phases of a solution with powder patterns of known
phases involving these elements.

2. Composition data for each experimental sample, in one
of two forms:

(a) Deposition location, x and y coordinates which are
topologically related to the relative concentrations of
the constituent elements

(b) Amount of each element present in the sample (esti-
mated), in scaled absolute units reflecting the thickness
of the film as well as relative concentration

3. Diffraction intensity for each sample, in one or both of
the following forms. In both cases, the intensity values are
scaled by the total amount of X-ray exposure.

(a) Integrated X-ray counts at each scattering direction
in a given range. We provide the filtered curves, which
represent a better overall estimate of the signal. Never-
thess, we also provide the unfiltered curves, as it might
be more suitable for methods sensitive to artifacts in the
shapes of the curves.

(b) Diffraction peak locations, heights and widths ex-
tracted using a wavelet-based peak detection algorithm
(Gregoire, Dale, and van Dover 2011).

Listing 1 provides a high-level description of the data for-
mat. The metadata contains the system dimension M , the
elements involved, the number of samples N , as well as ex-
perimentation setup and calibration data such as the beam
wavelength λ or detector distance d. Next, the composition
data provides the location of the samples on the thin-film
(here in the format “[X,Y ]”). For the diffraction intensity
for each sample, the vector Q corresponds to the range of
qvalues for which the beam intensities are reported (i.e. x-
axis of Fig. 2), and each X-ray pattern is given with respect
to these values (i.e. y-axis of Fig. 2). Finally, the detected
peaks are listed as triplets (location, height, width).

Figure 1: Map of selectable sample points in deposition-
space coordinates for the instance inst5.

Listing 1: Data format example for the instance inst5
// Metadata
M=3
Elements=Fe,Bi,V
N=177
Lambda=0.9185
...

// Composition data
X=-42.0,-36.0,-30.0,-24.0,-18.0,...
Y=-12.0,-12.0,-12.0,-12.0,-12.0,...
...

// Integrated counts data
Q=10.0,10.1,10.2,10.3,10.4,...
I1=222.27,167.79,163.02,99.733,...
I2=177.57,161.73,177.19,123.15,...
I3=153.22,189.00,124.71,56.34,...
...

// Diffraction peaks data
P1=[12.6,8079.6,0.12],...
P2=[12.5,3604.9,0.14],...
P3=[12.6,2767.9,0.11],...
...

Visualization and Evaluation Tools
We have developed a graphical user-interface application for
exploring and visualizing input datasets as well as solutions
to the phase map identification problem1. For visualizing in-
put data, it provides:

1. A map of selectable sample points arranged by deposition
or composition-space coordinates (Fig. 1)

2. An interface for viewing diffraction curves from individ-
ual sample points (Fig. 2)

3. An interface for viewing diffraction curves from multiple
sample points together at once (Fig. 3)

The application can also load solutions provided by a
solver.

1Available at http://www.udiscover.it



Figure 2: Diffraction curve (in blue) of a selected sample
point (sample point #166) for the instance inst5. The other
curves (purple, red, and green) correspond to the component
phases involved in that point for a given solution, while the
shaded-blue area represents the mixture of these phases, and
approximates the diffraction curve.

Figure 3: Heat map of the diffraction curves of the 14 se-
lected points of Fig. 1, where bright colors mean high beam
intensity. This visualization helps identify the component
phases and their boundaries. The x-axis corresponds to the
diffraction angles, while the y-axis refers to the samples in
the selected slice.

Listing 2 gives a description of the format of a solution.
First, it provides the pattern of each one of the K phases as
a vector of intensities. Next, it provides the phase concen-
trations, namely the fraction of the phases that are involved
in each one of the N samples, and how the phase patterns
should be shifted in each sample.

Figure 4: Diffraction pattern of phase 1 in the loaded so-
lution (left panel) and its concentration on the film (right
panel) for the instance inst5.

Listing 2: Solution format example for the instance inst5
// Number of phases
K=3

// Phase patterns (basis)
Q=10.0,10.1,10.2,10.3,10.4,...
B1=153.02,164.52,127.68,87.34,...
B2=166.70,178.54,153.51,98.02,...
...

// Phase concentrations at each sample
C1=0.00,0.72,0.85
C2=0.00,0.87,0.79
C3=0.00,0.92,0.71
...

// Phase shifts at each sample
S1=0.00,1.00,1.02
S2=0.00,1.01,1.02
S3=0.00,1.01,1.01
...

The solution can then be visualized with:

1. A map showing the estimated concentration (and other
parameters) of each phase, arranged by deposition or
composition-space coordinates (Fig. 4)

2. An interface showing the actual, estimated, component,
and residual diffraction curves for each sample point
(Fig. 2)

The application can calculate an evaluation measure
based on absolute error, however other error models are pos-
sible, and therefore it is preferable for quantitative evalua-
tion to design a custom measure (incorporating model com-
plexity) to accompany each particular solution structure.

Synthetic Data Generator
In order to assess the quality of proposed approaches and
validate them, we have created a synthetic data genera-
tor. This generator can create basic artificial binary systems
(M = 2), as well as complex artificial ternary systems
(M = 3), and a theoretical ternary Aluminum-Lithium-
Iron (Al-Li-Fe) system, where the component phases (the
patterns and their parameters) have been theoretically calcu-
lated.



The generator has a set of user-specified parameters that
allow controlling the complexity of the generated instances,
as follows:

1. Underlying system that governs the number of phases K
and their concentration on the film.

2. Spacing (in atomic percent) of the data points, which de-
termines the total number N of points.

3. Total number of peaks of the component phases, up to
the theoretically defined number of peaks.

4. Number of diffraction angles of the X-ray patterns,
which corresponds to the x-axis precision of the patterns.

5. Noise level as a total number (or total amount) of removed
peaks from the original constructed patterns.

Using this generator, we provide a benchmark of 100 in-
stances, with varying complexity2.

Real World Data
While the previous datasets are made of artificial and the-
oretical diffraction patterns, the datasets we present in this
section has been collected empirically. Nonetheless, for
standardization purposes, it follows the same format as de-
scribed in the previous section. The instances of this dataset
have been acquired under various condition. Table 1 shows
the dataset of real instances and their parameters. Each in-
stance is characterized by its system dimension M , which
represents the number of different elements, its design stoi-
chiometry at the center of the film (i.e. the relative propor-
tion of theM elements), the type of substrate it was obtained
on, the total number N of sample points, and the gas used in
the vacuum chamber during the deposition, if any.

While this dataset is meant to be a stable benchmark and
a first building block towards a unified and standardized dis-
covery cycle methodology, it is also meant to be expanded
as more data gets collected.

Conclusions
We provide the first publicly available dataset for the phase
map identification problem. This problem is central to the
discovery cycle of new materials, as it aims to provide struc-
ture and composition maps that can be correlated with in-
teresting physical properties within an inorganic library. In
addition, we provide a synthetic generator in order to evalu-
ate the quality of proposed approaches. Finally, we propose
a graphical user interface for the visualization of the data
and of its solutions. We hope this paper will motivate com-
puter scientists to propose new computational methods for
the phase map identification problem.
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