

Robust Network Design for Multispecies Conservation

Ronan Le Bras

Bistra Dilkina

Yexiang Xue

Carla P. Gomes

Kevin S. McKelvey

Michael K. Schwartz

Claire A. Montgomery

Cornell University

Cornell University

Cornell University

Cornell University

US Forest Service

US Forest Service

Oregon State University

July 18, 2013

AAAI'13 - CompSustAI

Motivation: Biodiversity & Conservation

Key causes of biodiversity loss:

Habitat Loss and Fragmentation

urbanization

deforestation

agriculture

Maintaining landscape connectivity is critical to reduce inbreeding, increase genetic diversity and provide resilience

Motivation: Landscape Connectivity

Current approaches in conservation biology: measure

connectivity and identify likely linkages

- For a given species:
 - identify core areas
 - model landscape resistance landscape is represented as a raster of cells with associated species-specific "movement cost"
 - connectivity = shortest resistance-weighted path between pairs of core areas

Motivation: Landscape Connectivity

Cost-effective Conservation Planning

 Given limited budget, which parcels to buy to to ensure a path connecting each pair of core areas while minimizing resistance

Robustness

- Environmental disasters, wildfires, climate change, etc.
- Need to conserve multiple paths between each pair of core areas

Outline

Motivation

- Problem Definition
- MIP Formulation
- Local Search Approach
- Experimental Results
- Conclusions and Future work

Problem Definition: Minimum Delay Generalized Steiner Network

Given:

- Graph
- Node costs
- Node delay (or resistance)
- Set of terminals (or core areas)
- Set of terminal pairs
- Budget
- Connectivity

Find:

- A subset of nodes V' such that
- k vertex-disjoint paths between each pair in P in G(V')
- Minimize the resistance weight of selected paths

$$T \subseteq V$$

$$P \subset T \times T$$

B

k

Landscape connectivity vs. Network Design

Steiner tree problem, Survivable network design, etc

How do we choose which habitats to protect so that landscapes will stay robustly well-connected for wild animal species?

CORNELL

Network Design

New general models and methodologies

- Minimum Steiner Multigraph Problem
- Budget-Constrained Steiner Connected Subgraph Problem with Node Profits and Node Costs
- Upgrading Shortest Path
- Minimum Delay
 Generalized Steiner Network

Landscape Connectivity

How do factor in specific features of wildlife conservation, e.g., different species requirements, interactions of species, etc?

Multi-commodity flow-based MIP encoding (ics)

Variables:

- x_v binary variable for each node v; 1 if purchased
- f_{pe} flow variable for each pair/commodity p and directed edge e

Constraints

- Budget constraint
- For each commodity / pair p=(s,t):
 - Edges can be used only if both endpoints purchased
 - Make s the source of k units of commodity p, and t the only sink
 - Flow conservation at all nodes but s,t
 - Vertex-disjoint paths: enforce incoming flow in every node except s,t to be at most 1

Computing the objective:

- Minimize total resistance using traditional mincost flow formulation
- Flow cost on edges: $d(e = (u, v)) = \left[d(v) + d(u)\right]/2$

Synthetic Instances:

4 species on 30x30 grid

Each species has 2 core areas and specific resistance

Land cost: correlated with resistance, core areas are free

MIP scalability on synthetic benchmark

 Challenge: Intricate combinatorial structure (hard constraints for the budget-constrained connectivity requirements) with a complex path-based optimization component

Proposed Approach:

- Find an initial feasible solution (by looking at cost only)
- Propose moves based on replacing whole parts of the solution but maintaining feasibility (Large-Neighborhood Search)
- Choose best move available (Hill Climbing)
- Until no improving move found
- Two neighborhoods: HC-SP and HC-MIP

Definitions:

- Key-node: A terminal node, or a Steiner node of degree at least 3
- Key-path: A path whose end points are key nodes, and intermediate nodes are not (i.e. Steiner nodes of degree 2).

• Idea:

- All nodes of a key-path p are used by the same set of commodities.
- When substituting a key-path p, the new path(s) needs to exclude any node used by other paths of these commodities (keep disjoint).

- Neighborhood: Given a feasible solution G and a key-path p, a neighbor solution replaces p in G with:
 - HC-SP: the delay-aggregated shortest path connecting the end points of p, if its cost does not exceed the remaining budget
 - HC-MIP: a set of budget-constrained shortest paths connecting the end points of p
 - HC-MIP involves solving the proposed MIP encoding, but for much smaller subproblems (1 terminal pair, small remaining budget)
 - The neighborhood of HC-MIP contains the one of HC-SP
 - HC-MIP can find best replacement path that is within budget (not shortest)
 - HC-MIP can find replacement involving multiple paths (for separate commodities)

Quality of LS solutions for 4 species

Real Data: Wolverines in Montana

- Western Montana: 6km grid cells (4514 cells)
- Wolverine: 6 core areas forming 15 pairs, connectivity k=4

Results for wolverines 15 pairs

Conclusions & Future Work

- Robust conservation plans for landscape connectivity: problem formulation - Minimum Delay Generalized Steiner Network
- MIP encoding that provides optimal solutions and scales to small number of pairs
- Local Search methods that scale extremely well, but have no quarantees
- Solutions to a large-scale landscape connectivity problem:
 Wolverine conservation in West Montana
- Minimum Delay Generalized Steiner Network applications in other domains
- Other issues in robustness climate change

Thank you!

Ronan Le Bras Cornell University

Bistra Dilkina Cornell University

Yexiang Xue Cornell University

Carla P. Gomes Cornell University

Kevin S. McKelvey US Forest Service

Michael K. Schwartz US Forest Service

Claire A. Montgomery Oregon State University

Solutions for B=\$115M

Real data:

West Montana

Multi-species

Multigraph GSN

Two species with 1 pair each

Wildlife Corridors

Loss of a single parcel will disconnect corridor

Landscape Connectivity

Current approaches in conservation biology: measure

connectivity and identify likely linkages

- For a given species:
 - identify core areas
 - model landscape resistance landscape is represented as a raster of cells with associated species-specific "movement cost"
 - connectivity = shortest resistance-weighted path between pairs of core areas
- Cost-effective Conservation Planning
 - Given limited budget, which parcels to buy to to ensure a path connecting each pair of core areas while minimizing resistance
- Robustness

- Environmental disasters, wildfires, climate change, etc

Need to conserve multiple naths between each pair of core areas

Multi-commodity flow-based MIP encoding (ics)

- For each pair, the existence of k vertex-disjoint paths can be enforced using flow constraints
 - Transform the graph into a directed graph with unit capacities on all edges
 - For each terminal pair p=(s,t) create a separate commodity p
 - Make s the source of k units of commodity p
 - Make t the only sink in the graph for commodity p
- Computing the objective:
 - Minimize total resistance using traditional mincost flow formulation
 - Flow cost on edges: d(e = (u, v)) = [d(v) + d(u)]/2

Multi-commodity flow-based MIP encoding (ics)

Variables:

- $-x_v$ binary variable for each node v; 1 if purchased
- f_{pe} flow variable for each directed edge e and pair p

Constraints

- **Budget constraint**
- For each commodity / pair p=(s,t):
 - Edges can be used only if both endpoints purchased
 - Flow conservation at all nodes but s,t
 - Vertex-disjoint paths: enforce incoming flow in every node except s,t to be at most 1

Example of HC-SP move:

Example of HC-SP move:

Example of HC-MIP move:

Example of HC-MIP move:

These nodes are no longer used by the pair (s1,t1). The original key node became a node of degree 2

• Example of HC-SP move:

