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Abstract

We present the first polynomial time construc-
tion procedure for generating graceful double-
wheel graphs. A graph is graceful if its ver-
tices can be labeled with distinct integer val-
ues from {0, ..., e}, where e is the number of
edges, such that each edge has a unique value
corresponding to the absolute difference of its
endpoints. Graceful graphs have a range of
practical application domains, including in ra-
dio astronomy, X-ray crystallography, cryptog-
raphy, and experimental design. Various fam-
ilies of graphs have been proven to be grace-
ful, while others have only been conjectured
to be. In particular, it has been conjectured
that so-called double-wheel graphs are grace-
ful. A double-wheel graph consists of two cycles
of N nodes connected to a common hub. We
prove this conjecture by providing the first con-
struction for graceful double-wheel graphs, for
any N > 3, using a framework that combines
streamlined constraint reasoning with insights
from human computation. We also use this
framework to provide a polynomial time con-
struction for diagonally ordered magic squares.

1 Introduction

In graph theory, graceful labelings and graceful graphs
have been studied for over forty years, since their intro-
duction by [Rosa, 1966]. Given a graph G = (V,E), a
graceful labeling assigns a unique integer in the range
from 0 to |E| to each vertex in V such that each edge
is assigned a unique number from 1 through E corre-
sponding to the absolute difference of the numbers of its
endpoints. Figure 1 gives an example of a graceful label-
ing. A graph is said to be graceful if it admits a graceful
labeling. Not all graphs are graceful. Intuitively speak-
ing, the gracefulness property reveals a certain hidden
regularity of the graph. More formally, a graceful label-
ing of a graph is defined as follows:

Definition (Graceful Labeling). Given a graph G =
(V,E), a labeling of the nodes l : V → {0, ..., |E|} is
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Figure 1: Example of a graceful graph. Each node is
assigned a unique label from 0 to 8, where 8 is the num-
ber of edges. The label of an edge corresponds to the
absolute difference of the labels of its endpoints and is
unique among all 8 edges.

graceful if no two vertices share a label and each edge is
uniquely identified by the absolute difference of the labels
of its endpoints.

Although graceful graphs are primarily theoretical
structures in graph theory and discrete mathematics,
they have a broad range of practical application do-
mains, including in radio astronomy, X-ray crystallogra-
phy, cryptography and experimental design. For exam-
ple, in the area of radar pulse codes, a graceful labeling
(or a semi-graceful labeling, in which the vertices might
take values larger than |E|) of a complete graph can be
used to accurately assess the elapsed time between the
emission of a sequence of pulses and its reception. The
graceful labeling of the graph then corresponds to the
times at which the various pulses of the code should be
emitted.

A major open research challenge in discrete math-
ematics is to characterize what families of graphs are
graceful. This challenge is part of a larger effort to fully
classify all types of graphs based on different properties.
In particular, cycle-related graphs have received a lot
of attention. For example, [Frucht, 1979] proved that
a wheel, obtained when all vertices of a cycle are con-
nected to a central vertex, is graceful. Moreover, a gear,
obtained from a wheel by adding a vertex between every
pair of adjacent vertices in the cycle, is also graceful [Ma
and Feng, 1984]. Another family of graceful graphs is
helm graphs, obtained by attaching a pendant edge at
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Figure 2: Some classes of graphs and their gracefulness.

each vertex of the cycle of a wheel [Ayel and Favaron,
1981]. Furthermore, a web graph, obtained by joining
the pendant vertices of an helm to form a cycle and
adding pendant vertices to the new cycle, is also graceful
[Q.D. et al., 1996]. Figure 2 illustrates these definitions
of graphs. These families of graceful graphs, among oth-
ers, appear in a dynamic survey, that maintains a com-
prehensive list of the various classes of graceful graphs
[Gallian, 1998].

In addition, other families of graphs have been proven
not to be graceful, such as cycles of size n ≡ {1, 2}
(mod 4) [Rosa, 1966] or double cones of size n ≡ 2
(mod 4) [Redl, 2003]. Moreover, Rosa provides neces-
sary conditions for a graph to be graceful based on the
number of vertices and edges of the graph, as well as the
parity of the degrees of the vertices [Rosa, 1966].

Finally, certain classes of graphs are conjectured to be
graceful. In particular, a long-standing open problem in
graph theory asks whether all trees are graceful. This
problem is well-known as the Ringel–Kotzig conjecture
[Bloom, 1979, e.g.] which, despite many attempts, re-
mains unsolved. Another famous conjecture, known as
the Truszczynski conjecture, hypothesizes that all uni-
cyclic graphs (namely, graphs with exactly one cycle) are
graceful [Truszczynski, 1984]. Finally, it has been con-
jectured that so-called double-wheel graphs are graceful
[Heule and Walsh, 2010]. In this paper, we confirm this
conjecture by providing the first constructive procedure
for generating double-wheel graceful graphs of any size
N ≥ 4. This result also answers a research challenge
posed in 2006 by Barbara Smith, in a panel discussion on
“The Next Ten Years of CP,” to use constraint program-
ming techniques to prove or disprove the gracefulness of
classes of graphs.

A double-wheel graph of size N is defined as follows:

Definition (Double-Wheel Graph). A double-wheel
graph DWN of size N can be composed of 2CN + K1,
i.e. it consists of two cycles of size N , where the vertices
of the two cycles are all connected to a common hub.

Figure 2 shows a double-wheel graph of size 5. Find-
ing graceful labelings for double-wheel graphs has be-
come an interesting challenge problem for constraint
solvers. In 2003, Petrie and Smith applied various sym-

metry breaking methods in constraint programming to
graceful graphs and provided solution symmetries for the
double-wheel graceful graph problem [Petrie and Smith,
2003]. They show that no labeling of DW3 is graceful.
In addition, they were able to find the number of non-
isomorphic graceful labellings for sizes 4 and 5. In 2010,
Heule and Walsh analyzed symmetries within solutions
in order to boost the search for double-wheel graceful
graphs [Heule and Walsh, 2010]. Their approach allowed
them to find a graceful double-wheel graph of size 24, the
largest reported in the literature so far. The construc-
tive procedure we present in this paper provides grace-
ful labelings for any double-wheel graph with N ≥ 4.
As we describe in the next section, the procedure was
discovered using an new approach to constraint solving
that incorporates a human computation component. By
providing a constructive procedure for labeling double-
wheel graphs of any size (≥ 4), we also go beyond stan-
dard constraint solving approaches, which generally pro-
vide solutions only for specific instances, each of a fixed
size.

2 Framework

Constraint reasoning has been successfully applied to
find graceful labellings for some particular graphs that
were not known to be graceful [Lustig and Puget, 2001;
Petrie and Smith, 2003; Smith, 2006; Benhamou et al.,
2007; Heule and Walsh, 2010]. In addition, this problem
has extensively been studied for symmetry evaluation
in constraint programming. For example, [Puget, 2006]
proposes an efficent way to break all combinations of
variable and value symmetries in graceful graphs. More-
over, [Gent et al., 2005] introduce the concept of con-
ditional symmetry breaking (namely, that occurs dur-
ing the search itself) and evaluate it on graceful label-
ings. Furthermore, [Cohen et al., 2005] explore different
definitions of symmetry in the graceful labeling prob-
lem. Finally, constraint programming has also been used
on closely related problems, such as the Golomb ruler
[Galinier et al., 2003].

In this work, we use the framework developed by [Le
Bras et al., 2012b]. This framework combines streamlin-
ing constraint reasoning with insights from human com-



Figure 3: User interface for human-guided search to discover constructions for graceful double-wheel graphs. Each
selected solution (middle panel) is a labeling of the double-wheel graph of the corresponding order (N = 11), where
the three rows correspond to the labels of the center, the inner cycle, and the outter cycle, respectively.

putation in order to discover constructions for generat-
ing an entire family of combinatorial structures. Via
this framework, Le Bras et al. discovered the first con-
struction procedure for a combinatorial structure called
spatially-balanced Latin square and provided a new
lower bound for weak Schur numbers. In this work, we
are interested in discovering whole families of graceful
graphs.

Streamlining [Gomes and Sellmann, 2004] is an effec-
tive combinatorial search strategy that intentionally im-
poses additional structure to a combinatorial problem in
order to focus the search on a highly structured subspace,
therefore boosting constraint reasoning and propagation.
(For a related search technique, called “tunneling,” see
[Kouril and Franco, 2005].) In other words, streamlining
consists in adding specific desired regularities, such as a
partial pattern of a solution, to the search engine, which
then proceeds to search for solutions with these regular-
ities. In any case, the effectiveness of streamlining relies
on the quality of the suggested regularities.

In this work, we couple streamlining with a human
computation component to identify possible patterns in
solutions and suggest insightful regularities. This work is
in part inspired by the exciting new area of human com-
putation [Law and von Ahn, 2011], that concedes that
humans still outperform fully automated approaches on
certain tasks, especially those involving visual (pattern
recognition) abilities.

The approach combines streamlining combinatorial
search with human insights in a complementary and it-
erative approach, as follows. For a given combinatorial
problem, we generate all solutions, or at least a signifi-
cant fraction of them, for parameter sizes that are within
the reach of traditional constraint reasoning techniques.
In one or more of these solutions, one may be able to

spot some regularity or partial pattern, which will be
used to streamline the search. If the streamlined search
does not give a larger size solution, the suggested reg-
ularity is likely accidental and we look for a new pat-
tern in the smaller-size solutions. However, if the search
succeeds, we now have larger size solutions that share
some basic regularity. Furthermore, new regularities of-
ten reveal themselves at larger scales, and can be used
to try and find yet larger solutions. Overall, the goal is
to refine a set of regularities that generalizes to larger
sizes within the user-allocated search time, until it fully
characterizes combinatorial objects for a large number
of parameter sizes.

Figures 3 and 6 illustrate the graphical user interface
of the framework on the graceful double-wheel graph prob-
lem and the diagonally-ordered magic squares problem
(defined in Section 4), respectively. The top panel of the
user interface contains a table with the solutions found
for each parameter size and each suggested streamliner.
The middle panel allows the user to select, visualize and
compare a subset of these solutions. The dialog window
on the right of Fig. 6 illustrates how the user may spec-
ify new observed regularities. Finally, the bottom panel
allows the user to select a subset of the suggested regular-
ities, as well as the parameter sizes, for the streamlined
search.

In the following, we describe how this framework was
applied to the graceful double-wheel graph problem. Ta-
ble 1 presents the various streamliners that were defined,
as well as the largest solution size that was found with
these streamliners. Within a 60-second time limit, stan-
dard constraint reasoning techniques were able to gen-
erate solutions of size up to 9. Enforcing that the inner
cycle C1 only contains odd numbers allows to generate
solutions of size 11. Next, observing that many solutions



60 32 
45 

0 

19 

43 29 

35 

33 

63 

21 

41 

23 

39 25 
37 

27 

5 

3 

59 

57 

13 

64 

47 

62 
1 

11 
51 

49 55 

53 
9 

Figure 4: Double-wheel graph of size 16 (DW16) with the
graceful labeling generated by the proposed constructive
procedure (case N is even).

have 0 at the center of the wheels, we find solutions of
size 19. At this point, some of the generated solutions
partially exhibit the pattern named ’Inc. steps of 2’, in
which a sequence (x, x+2, x+4, ...) appears on the nodes
of a circle, skipping a node each time. For example, the
inner circle in Figure 4 shows a sequence (1, 3, 5, 7, ...) of
length up to N/2− 1, when looking at every other node,
starting from the top and counting clockwise. Neverthe-
less, when we combine this pattern to the previously for-
mulated streamliners, the search fails, as shown in Table
1. Therefore, we need to weaken the set of streamliners
and we decide to require that most of the nodes, namely
the first N−2 nodes, have an odd label. In that case, the
search successfully generates solutions of size 21. Finally,
we impose similar sequences (increasing and decreasing)
on both circles, which leads to solutions of size 38.

Table 1: Size of the largest graceful double-wheel graphs
generated by each set of streamliners. The number of so-
lutions found appears in parenthesis. A 60-second time-
out was used.

Set of streamliners Size

Γ0 : ∅ 9 (251)
Γ1 : {C1 is Odd} 11 (8)
Γ2 : {0 at center} 18 (1)
Γ3 : Γ1 ∪ Γ2 19 (6)
Γ4 : Γ3 ∪ {Inc. steps of 2 in C1} -
Γ5 : Γ2 ∪ {Inc. steps of 2 in C1} 21 (5)

∪ {C1 Mostly-Odd}
Γ6 : Γ5 ∪ {Dec. steps of 2 in C1} 22 (2)
Γ7 : Γ6 ∪ {Inc. steps of 2 in C2} 23 (1)
Γ8 : Γ7 ∪ {Dec. steps of 2 in C2} 38 (2)

3 Construction for graceful DWN

The constructive procedure that we propose is based on
the various streamliners mentioned in the previous sec-
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Figure 5: Double-wheel graph of size 25 (DW25) with the
graceful labeling generated by the proposed constructive
procedure (case N is odd). This is the largest graceful
double-wheel graph ever reported in the literature.

tion. We formally define this construction as follows.
Let xi be the label of vertex i on the first (inner) cycle,

yi the label of vertex i on the second (outer) cycle, and z
the label of the central vertex. Our proposed construc-
tion distinguishes two cases, based on whether N is odd.
In both cases, however, we set z = 0. The labels of the
vertices on the two cycles are defined as follows:

Case N is even, N ≥ 4:

xi =


i if i is odd, 1 ≤ i ≤ N − 3
4N − 3− i if i is even, 2 ≤ i ≤ N − 2
4N if i = N − 1
4N − 2 if i = N

yi =


4N − 4 if i = 1
N + i if i is odd, 3 ≤ i ≤ N − 3
3N − 1− i if i is even, 2 ≤ i ≤ N − 2
4N − 1 if i = N − 1
2N if i = N

Figure 4 illustrates this construction in the case where
N is even. For the case where N is odd, a similar con-
struction can be derived from the same set of streamlin-
ers. Figure 5 shows the graceful graph of size 25 obtained
with this construction.

Case N is odd, N ≥ 5:

xi =


i if i is odd, 1 ≤ i ≤ N − 2
4N + 1− i if i is even, 2 ≤ i ≤ N − 3
2N if i = N − 1
2N + 4 if i = N

yi =


4N if i = 1
2N + 2 + i if i is odd, 3 ≤ i ≤ N − 2
2N + 1− i if i is even, 2 ≤ i ≤ N − 3
3N + 2 if i = N − 1
2N + 2 if i = N



We now prove the correctness of the construction in
the case where N is even. Interestingly, it has been ob-
served in [Le Bras et al., 2012b] that the proof of the con-
struction of so-called spatially-balanced Latin squares
makes extensive use of the proposed streamliners (for
a complete proof, see [Le Bras et al., 2012a]). Similarly,
the streamliners used to find the construction of grace-
ful double-wheel graphs provide insights on how to prove
the construction itself. In particular, the following proof
makes extensive use of the parity of vertex labels. First,
we prove that the vertices have different labels. Indeed,
there are labels for all odd numbers from 1 to (4N − 1),
except for (N − 1), (N + 1), (2N − 1) and (4N − 3),
which gives (2N − 4) distinct odd vertex labels. In ad-
dition, there are 4 distinct even vertex labels, namely
2N , (4N − 4), (4N − 2) and 4N . Overall, all 2N + 1
vertex labels (including the center vertex) are distinct.
Second, we prove that the 4N edge labels cover all val-
ues from 1 to 4N . Given that the center is labeled 0,
we have edge labels covering all odd numbers between 1
and (4N − 1), except for (N − 1), (N + 1), (2N − 1) and
(4N − 3). These edge labels, however, appear on the
edges (y1, y2), (xN−2, xN−1), (yN−1, yN ), and (x1, xN )
respectively. Regarding even edge labels, the inner cir-
cle have all even edge labels from (4N − 6) to (2N + 2)
and the outer circle all edge labels from (2N − 6) to 4.
Given the four even vertex labels, the only remaining
even values to consider are (2N − 4) and (2N − 2). Nev-
ertheless, these values appear as edge labels for (yN , y1)
and (yN−2, yN−1), respectively. Therefore, all numbers
from 1 to 4N appear as an edge label, which completes
the proof. A similar proof can be derived for the case
where N is odd.

4 Construction for Diagonally-Ordered
Magic Squares

In this section, we show how we apply the same frame-
work to the diagonally-ordered magic square problem
and demonstrate that this framework is not application-
specific. Diagonally-ordered magic squares have been in-
troduced in [Gomes and Sellmann, 2004] to illustrate the
efficiency of streamlined search. We first give a formal
definition of a diagonally-ordered magic square.

Definition (Magic Squares). Given a natural number
N , a magic square of order N is a square of size N
containing all numbers from 1 to N2 such that the sum
of the numbers is the same in each row, each column,
and each of the two main diagonals.

Definition (Diagonally-Ordered Magic Squares). Given
a natural number N , a magic square of order N is
diagonally-ordered if both main diagonals, when tra-
versed from left to right, have strictly increasing values.

Given a natural number N , the diagonally-ordered
magic square (DOMS) problem consists in the construc-
tion of a diagonally-ordered magic square of order N .
Figure 7 depicts a DOMS of order 4.

In [Gomes and Sellmann, 2004], the authors first
present a straightforward constraint programming model

1 12 8 13 
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4 9 5 16 

Figure 7: Diagonally-ordered magic square of order 4.
Each number from 1 to 16 appears exactly once, and
each row, column and main diagonal adds up to the same
value, namely 34. In addition, both main diagonals are
ordered from left to right.
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Figure 8: Observed regularity in a diagonally-ordered
magic square of order 4. In the blue square (Left), the
cells are numbered from 1 to 16, top-down and left-to-
right. The red square (Middle) is numbered from 16
down to 1, in the same order. Overlapping both squares,
keeping values from the first one for the cells on the two
main diagonals, leads to a DOMS (Right).

that allows to generate DOMSs of order up to 8 within
10 hours of computation. Nevertheless, within this
time limit, their streamlined reasoning approach gener-
ates DOMSs of order up to 16, and even report finding
DOMSs of order 17, 18, and 19. In addition, they men-
tion that no polynomial-time construction is known for
generating arbitrary large DOMSs.

Using the proposed approach, we are able to generate
DOMSs of arbitrary large sizes. Figure 6 illustrates the
graphical user interface for this framework applied to the
DOMS problem.

A first construction was found by observing the follow-
ing regularity. For some DOMSs generated with stan-
dard constraint reasoning techniques, the cell values are
assigned the actual cell index, when counting top-down,
left-to-right, or its complement to N2 + 1. This pattern
is depicted in Figure 8.

We then enforce this regularity. Namely, each cell (i, j)
can only be assigned the value i+(j−1)N or N2+1−i−
(j−1)N . For clarity purposes, as illustrated in Figure 8,
we will call blue cell a cell (i, j) taking value i+(j−1)N ,
and red cell a cell (i, j) taking value N2+1−i−(j−1)N .
At this point, a pattern emerges for orders N such that
N ≡ 0 (mod 4), which consists in tiling the 4×4 pattern
of Figure 8 to cover the N × N square, and leads to
the following construction, in which a(i, j) represents the
value of cell (i, j):

Case N ≡ 0 (mod 4):

a(i, j) =

{
i + (j − 1)N if k = l or k = 4− l,
N2 + 1− i− (j − 1)N otherwise



Figure 6: Graphical user interface for human-guided combinatorial search to discover constructions for the diagonally-
ordered magic squares problem.

where k = (i− 1) (mod 4) and l = (j − 1) (mod 4).

This first construction of infinite number of DOMSs is
in fact a variation of the so-called Durer method for con-
structing magic squares of doubly-even order [Pickover,
2001, e.g].

Nevertheless, this construction does not apply to ei-
ther odd orders or singly-even orders. In fact, the
streamliner that requires each cell to be either blue or
red does not allow to generate DOMSs of order N for
any N 6≡ 0 (mod 4).

In order to find a construction for singly-even DOMSs
(i.e, of order N ≡ 2 (mod 4)), we relax the previous
streamliner and also allow a cell (i, j) to take the value
(N + 1 − i) + (j − 1)N (white cell) or its complement
to N2 + 1 (gray cell). These cell values correspond to
counting the cells bottom-up and from left-to-right, and
top-down from right-to-left, respectively. Any solution
found with this new streamliner will only have blue, red,
white, or gray cells. This feature particularly emphasizes
the importance of an appropriate visualization, that al-
lows the user to effectively identify potential patterns in
the solutions. In addition, as suggested in some solu-
tions, we define a streamliner that requires that the top-
left quadrant contains no red cells. Finally, observing
the solutions obtained by combining these streamliners,
we also hypothesize that the diagonals of the top-left
quadrant are monochromatic.

Although this set of streamliners is not an example
of a fully-complete construction for singly-even DOMSs,

we believe it provides interesting insights to solve the
diagonally-ordered magic square problem for singly-even
orders. Indeed, while [Gomes and Sellmann, 2004] report
taking about two days to generate a DOMS of order 18,
we were able, with this set of streamliners, to generate
DOMSs of order up to 18 in seconds.

5 Conclusions

We provide the first constructive procedure for gener-
ating graceful labeling for arbitrary large double-wheel
graphs. No such procedure was previously known and
the largest double-wheel graph known to admit a grace-
ful labeling was of size 24.

This construction was found through a general frame-
work devised to discover efficient, constructive proce-
dures for generating classes of complex combinatorial ob-
jects. This framework combines specialized search tech-
niques with a human computation component, through
a complementary, iterative approach. We also used this
framework to provide a polynomial time construction for
diagonally-ordered magic squares.

The integration of combinatorial reasoning and human
computation methods is an exciting research direction,
and future avenues include, for example, crowdsourcing
the identification of patterns within a pool of solutions.

Acknowledgments

This work was supported by the National Science Foundation
(NSF Expeditions in Computing award for Computational
Sustainability, grant 0832782).



References

[Ayel and Favaron, 1981] J. Ayel and O. Favaron. The
helms are graceful. Université Paris-Sud, Centre
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