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Abstract

In this paper we propose a polynomial time construction that generates spatially balanced
Latin squares (SBLSs). These structures are central to the design of agronomic experiments, as
they avoid biases that are otherwise unintentionally introduced due to spatial auto-correlation.
Previous approaches were able to generate SBLSs of order up to 35 and required about two
weeks of computation. Our algorithm runs in O(n2) and generates SBLSs of arbitrary order n,
where 2n+ 1 is prime. For example, this algorithm generates a SBLS of order 999 in a fraction
of a second.

1 Introduction

The theory and construction of combinatorial designs has raised several interesting research ques-
tions, Euler’s conjecture [1, 2, e.g.] being one out of many. In this paper, we propose a polynomial
time construction for spatially balanced Latin squares, confirming a conjecture formulated in 2004.
Before defining the problem, we introduce the background motivation that led to its formulation.

In order to compare various soil treatments, agronomic laboratories must devise experimental
designs that avoid the introduction of biases in the assessment of these treatments. For example, soil
treatments encompass the use of fertilizers as well as different ways of preparing the soil. Fertilizers
have both a high socio-economic and high environmental impact. Although they contribute to a
low-cost high yield food production, fertilizers are responsible for massive water pollution, such as
the one observed in the coastal waters of the Gulf of Mexico. Better experiment designs directly
translate into a better assessment of the quality of fertilizers and their impact on the environment.

Most agronomic field experiments are typically designed in a randomized fashion, in what
is called a randomized complete block design (RCBD) [3]. The RCBD methodology advocates
dividing the experiments in blocks, where each block represents a replication and has as many
experimental units as treatments, and assigning treatments at random within one block. However,
even these randomized designs exhibit spatial dependence that is due to the autocorrelation of
nearby treatments. Among others, the major nuisance factors that affect the assessment of the
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variables of interest (i.e. the efficiency of a fertilizer) are fertility patterns in fields, erosion as well as
drainage variability. To address this issue, van Es and van Es [3] studied spatial distances in RCBDs
and evaluated the impact of spatially unbalanced designs on the outcome of field experiments. They
suggested to overcome the limitations of RCBDs through the use of spatially balanced designs.
When the number of treatments equals the number of replications, the proposed structure is called
a spatially balanced Latin square (SBLS).

In addition to field experiments, SBLSs can also be applied to greenhouse trials, chemical
analyses involving multi-well titer plates and genomics research involving microarray slides [4].

The rest of the paper is organized as follows. We formally introduce spatially balanced Latin
squares in the next section. In section 3, we presents related work. Section 4 describes our construc-
tion algorithm for SBLS (called Unroll&Bounce) while Section 5 reports the experimental results.
Final comments are given in Section 6.

2 Preliminaries

A Latin square of order n on symbols 1 to n is an n × n square in which any symbol from 1
to n appears exactly once in each row and column. In order to be spatially balanced, a Latin
square must also satisfy the following condition: for every pair of symbols, the number of columns
separating the two symbols in a row summed over all rows is equal. Formally, we define c(i, v) the
column index where symbol v occurs in row i. The distance of the pair (v, v′) of symbols in row i
corresponds to d(i, v, v′) = |c(i, v)− c(i, v′)|. Finally, we define the total distance of a pair (v, v′) as
d(v, v′) =

∑n
i=1 d(i, v, v′).

Definition 1. A SBLS of order n is a Latin square of order n where the total distance is the same
for any pair of symbols.

Figure 1 depicts a SBLS of order 6 (which is actually the SBLS our algorithm generates). In
this example, the total distance between symbols 1 and 2 is d(1, 2) = |1 − 2| + |6 − 1| + |4 − 5| +
|3− 6|+ |5− 3|+ |2− 4| = 14, the same for all pairs of symbols. The definition of a SBLS entails
the following lemma.

Lemma 1. There exists no SBLS of order n = 3k + 1, where k ∈ N∗.

Proof. In any row, there are exactly n − d pairs of symbols that are d columns apart. Hence, the

total distance available for all pairs of symbols in the square is n
∑n−1

d=1 d(n − d) = n2(n−1)(n+1)
6 .

This needs to divide evenly into the
(
n
2

)
pairs of symbols, so n(n+1)

3 must be an integer. Therefore,
n cannot be congruent to 1 modulo 3.

As a direct consequence of this proof, the definition of a SBLS requires that d(v, v′) = n(n+1)
3

for any pair (v, v′) of symbols. For an instance of order 6 such as in Figure 1, the total distance of

any two symbols equals 6(6+1)
3 = 14, which validates the value of d(1, 2).

3 Related work

This work is concerned with the proof of existence and the construction of a special case of Latin
squares. Latin square constructions have been a prolific topic in the literature of combinatorial
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design. For example, Heinrich et al.[5] provide a general construction for building perfect Latin
squares of order n2. In [6], Colbourn et al. give a detailed list of constructions for mutually
orthogonal Latin squares. Finally, subsequent work such as [7] provides a construction for the only
remaining possible configuration of r-orthogonal Latin square.

As with any new combinatorial design, it is legitimate to wonder how hard it is to complete a
partial SBLS. The partial Latin square completion problem has been proven to be NP-complete
in [8] for symmetric squares, in [9] for arbitrary squares, and in [10] for symmetric squares where
the partial quasigroup is constructed from a partial Steiner triple system. Whether the completion
of a partial SBLS is NP-complete remains an open question.

As discussed in the previous section, spatially balanced Latin squares (SBLSs) were first sug-
gested in [3]. Gomes et al.[11] proposed both a simulated annealing (SA) approach and a constraint
programming (CP) approach to solve this problem. The latter was able to generate SBLSs of order
up to 9, while the former could solve SBLSs of order up to 12.

Introducing a new framework for boosting constraint reasoning, Gomes and Sellmann [12] solved
SBLSs of order up to 18 by partitioning the solution space into subspaces with additional structure.
This framework is called streamlined constraint reasoning. It is based on the observation that
systematically maintaining all solutions will clearly limit the effectiveness of constraint propagation.
Conversely, a subspace of solutions might be strongly characterized by an underlying structure.
Hence, isolating such a subspace might dramatically boost constraint reasoning.

Smith et al.[13] extended the concept of streamlining to local search. Their approach confines
a local search in the space of valid Latin squares, and defines a column swapping as a move in this
space. This method is the current state of the art for solving the SBLS problem as it is capable of
generating SBLSs of order up to 35 (with about two weeks of computation).

The following section presents our polynomial time construction for SBLS (Unroll&Bounce), which
generates, for example, a SBLS of order 999 in 0.02 seconds.

4 Construction

In this section, we present the algorithm Unroll&Bounce which generates a SBLS of any order n
where 2n+ 1 is prime. We then derive a formula for filling any cell of the SBLS resulting from the
algorithm. Finally, we prove the correctness of this construction.

4.1 Algorithm Unroll&Bounce

Our algorithm proceeds row by row. The intuition is to fill every row i (i = 1, ..., n) of the square,
starting with i and successively adding i to the previous cell. In a sense, we unroll the set of symbols
that are 0 (mod i), which we call the first group. Once we reach the largest multiple v of i that
is lower or equal to n, we perform what we call an upper bounce: the next cell is assigned symbol
2n + 1 − i − v. This symbol is the starting point for the second group. We unroll this group by
successively subtracting i until we reach a value v′ that is lower or equal to i. At this point, we
perform a lower bounce: the next cell is assigned symbol i−v′. This symbol represents the starting
point of the next group and we repeat these steps until the row is full.

In the following, we denoteAn the square of order n generated by our algorithm, and equivalently
aij or a[i, j] the symbol in row i and column j of the square An.
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for rows i = 1, 2, . . . , n do1

k = 1; j = 1; // Group counter and column2

index
a[i.j] = i; // First symbol of row i3

while j < n do4

/* Unroll symbols in group k */5

if k is odd then6

while a[i, j] + i ≤ n and j < n do7

a[i, j + 1] = a[i, j] + i; // Odd group8

j = j + 1;9

else10

while a[i, j]− i ≥ 1 and j < n do11

a[i, j + 1] = a[i, j]− i; // Even group12

j = j + 1;13

/* Perform a bounce */14

if j < n then15

if k is odd then16

a[i, j + 1] = 2n+ 1− i− a[i, j]; // Upper bounce17

else18

a[i, j + 1] = i− a[i, j]; // Lower bounce19

k = k + 1;20

j = j + 1;21

Algorithm 1: Construction Unroll&Bounce for SBLS of order n.

This algorithm is described in Algorithm 1 and illustrated in Figure 1. In row 2, we start with
value 2 and we unroll the first group ({2, 4, 6}), i.e. all symbols that are 0 (mod 2). We then
perform an upper bounce (as the dashed line illustrates). The next cell therefore is assigned value
2n + 1 − i − 6 = 5. Afterwards, we unroll the second group ({5, 3, 1}), i.e. the symbols that are
congruent to 2n+1 (mod 2). Similarly, in row 5, the dotted line illustrates a lower bounce between
columns 2 and 3. After value 3 comes value 2, as i− 3 = 2. The corresponding groups of each row
are depicted in Figure 2. For instance, in row 2, the first group ({2, 4, 6}) covers the first three
cells, and the second ({5, 3, 1}) covers the other three.

Figure 1: A6, SBLS of order n = 6 generated by
the Unroll&Bounce algorithm.

Figure 2: Groups kij for A6: two adjacent cells
are merged if they belong to the same group.

The complexity of Algorithm 1 is O(n2). Note that checking the validity of the resulting matrix
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requires cubic time in the size of the square.

4.2 Formula

More formally, we can derive a formula that summarizes the previous algorithm. Let us define kij
as the group the cell (i, j) belongs to, i.e. one more than the number of bounces that occur before
column j in row i. We can prove, by induction on the group, the following equation:

aij = (−1)kij+1

(
ij − bkij

2
c(2n+ 1)

)
(1)

The derivation of an analytic formula for kij is less straightforward. We first derive a formula
for the last term of any given group in any row. Suppose kij is odd. By construction, the last value
of this group has to verify:

n− i <ij − bkij
2
c(2n+ 1) ≤ n

bkij

2 c(2n+ 1) + n

i
− 1 <j ≤

bkij

2 c(2n+ 1) + n

i

j = b
bkij

2 c(2n+ 1) + n

i
c (2)

Similarly, if kij is even and aij corresponds to the last value of this group, it yields:

1 ≤bkij
2
c(2n+ 1)− ij ≤ i

bkij

2 c(2n+ 1)

i
− 1 ≤j ≤

bkij

2 c(2n+ 1)− 1

i

bkij

2 c(2n+ 1)

i
− 1 ≤j ≤

bkij

2 c(2n+ 1)

i

bkij

2 c(2n+ 1)

i
− 1 <j ≤

bkij

2 c(2n+ 1)

i
(3)

j = b
bkij

2 c(2n+ 1)

i
c (4)

Note that the strict inequality in (3) holds since i) bkij2 c < i (as we would otherwise have

(2n+ 1)− 1 ≤ j) and ii) 2n+ 1 is prime. These two conditions ensure that
b
kij
2
c(2n+1)

i cannot be
an integer value, as opposed to j.

Equations 2 and 4 provide the column indices after which an upper bounce and a lower bounce
occur, respectively. In other words, the first group of row i covers column 1 to column bni c, the
second group spreads to column b2n+1

i c, the third group to column b3n+1
i c, etc. For example, as

illustrated in Figure 2, in row 4 of our running example, the first group goes up to column b64c = 1,
the second up to column b2∗6+1

4 c = 3, the third up to column b3∗6+1
4 c = 4, and the fourth up to

column b4∗6+2
4 c = 6.

Now, let us take an arbitrary cell (i, j) of An that belongs to an odd group kij . The column
j has to be greater than the last column of group kij − 1, and less or equal to the last column of
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group kij . Using equations 2 and 4 and setting kij = 2lij + 1, we obtain:

b
bkij−1

2 c(2n+ 1)

i
c <j ≤ b

bkij

2 c(2n+ 1) + n

i
c

b lij(2n+ 1)

i
c <j ≤ b lij(2n+ 1) + n

i
c

lij(2n+ 1)

i
<j ≤ lij(2n+ 1) + n

i

This last equation is derived from the previous one using the fact that j is an integer as opposed

to
lij(2n+1)

i . At this point, we want to express lij as a function of i and j, which yields:

ij − n
2n+ 1

≤ lij <
ij

2n+ 1
2ij

2n+ 1
− 2n

2n+ 1
≤2lij <

2ij

2n+ 1
2ij

2n+ 1
− 1 <2lij <

2ij

2n+ 1

2lij = b 2ij

2n+ 1
c

kij = b 2ij

2n+ 1
c+ 1, where kij is odd. (5)

Similarly, we take an arbitrary cell (i, j) that belongs to an even group kij . We set kij = 2lij and
we obtain:

b
bkij−1

2 c(2n+ 1) + n

i
c <j ≤ b

bkij

2 c(2n+ 1)

i
c

(lij − 1)(2n+ 1) + n

i
<j ≤ lij(2n+ 1)

i

Again, expressing lij as a function of i and j yields:

ij

2n+ 1
≤ lij <

ij − n
2n+ 1

+ 1

2ij

2n+ 1
≤ 2lij <

2ij − 2n

2n+ 1
+ 2

2ij

2n+ 1
< 2lij <

2ij + 1

2n+ 1
+ 1

The strict inequality at line 3 comes from the fact that 2n + 1 is prime. Now, we would like
to make the right hand side tighter, so that we end up again with Equation 5, but for kij even. If
2ij+1
2n+1 = b2ij+1

2n+1 c, then the right hand side yields 2lij < b2ij+1
2n+1 c + 1. This leads to 2lij ≤ b2ij+1

2n+1 c =
2ij+1
2n+1 ≤

2ij
2n+1 + 1. Conversely, if 2ij+1

2n+1 > b
2ij+1
2n+1 c, then 2ij+1

2n+1 ≥ b
2ij+1
2n+1 c + 1

2n+1 and the right hand

side yields 2lij ≤ b2ij+1
2n+1 c+ 1 ≤ 2ij+1

2n+1 −
1

2n+1 + 1 ≤ 2ij
2n+1 + 1. Thus, both cases lead to:

2ij

2n+ 1
<2lij ≤

2ij

2n+ 1
+ 1

kij = b 2ij

2n+ 1
c+ 1, where kij is even. (6)
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Hence, by combining Equations 5 and 6, we actually derive Equation 7:

kij = b 2ij

2n+ 1
c+ 1 (7)

Using equations 1 and 7, we can directly derive any value of the square generated by our algo-
rithm Unroll&Bounce. For instance, we can retrieve the value of cell (2, 4) in the SBLS illustrated
in Figure 1 as follows. First, this cell belongs to the group k2,4 = b 2∗2∗42∗6+1c + 1 = 2. Next, we use

Equation 1 to compute its value: a[2, 4] = (−1)2+1
(
2 ∗ 4− b22c(2 ∗ 6 + 1)

)
= (−1)(8 − 13) = 5.

Now we prove that our construction does produce a spatially balanced Latin square (SBLS).

4.3 Latin property

We first prove that the construction generates a square that ensures the Latin property (Theorem
1), namely that each value from 1 to n appears exactly once in each row and column.

Lemma 2. For any order n where 2n+ 1 is prime, every symbol from 1 to n appears exactly once
in each row of An.

Proof. First, let us take two symbols aij1 and aij2 that belong to two different groups in row i, i.e.,
kij1 6= kij2 . Arbitrarily, we set kij1 < kij2 . Suppose, by way of contradiction, that aij1 = aij2 . Then,

aij1 ≡ aij2 (mod i), which leads to (−1)kij1 bkij12 c(2n+1) ≡ (−1)kij2 bkij22 c(2n+1) (mod i), by Equa-
tion 1. Therefore, we have

(2n+1)
(

(−1)kij1 bkij12 c − (−1)kij2 bkij22 c
)
≡ 0 (mod i). As 2n+1 is prime, i divides (−1)kij1 bkij12 c−

(−1)kij2 bkij22 c. Moreover, 1 ≤ kij1 < kij2 ≤ i implies that −i < (−1)kij1 bkij12 c − (−1)kij2 bkij22 c < i.

As a result, we have (−1)kij1 bkij12 c = (−1)kij2 bkij22 c. This leads us to a contradiction, since
kij1 6= kij2 .

In addition, we know by construction that two symbols within a group are distinct. Thus, all
symbols in a row are different. The fact that, by construction, any symbol is between 1 and n and
any row contains n symbols completes the proof.

Theorem 1 (Latin property). For any order n where 2n+ 1 is prime, An is a Latin square.

Proof. It follows from Equation 7 that kij = kji. Hence, we deduce from Equation 1 that aij = aji.
In other words, Unroll&Bounce produces a symmetric square. As a result, Lemma 2 implies that
every number from 1 to n appears exactly once in each column as well.

4.4 Row composition commutativity

In this section we prove an important property of the square generated with our construction. In
[12], Gomes et al. noticed from the samples they were able to generate that many SBLSs share an
important underlying property, namely they are self-symmetric. As defined in [12], the term self-
symmetric denotes a square that is symmetric to itself when applying any combination of row and
symbol permutations that preserves the first row and column. In the special case where the square
is a symmetric SBLS, as the one generated with our algorithm, the self-symmetry is equivalent to
row composition commutativity. We define row composition commutativity as follows:
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Definition 2. For any square (a[x, y])1≤x,y≤n, the row composition is commutative if and only if
a[x, a[y, z]] = a[y, a[x, z]], ∀1 ≤ x, y, z ≤ n.

To illustrate this property with the example in Figure 1, consider for instance rows 2 and 4. If we
focus on column 5, we have a[2, 5] = 3 and a[4, 5] = 6. Literally, row composition commutativity
means that a[4, 3] and a[2, 6] must have the same value. Indeed, they are both equal to 1 in
our example. In order to consider all columns at once and for ease of notation, we denote by
σi the permutation induced by row i. We have σ2 = (2, 4, 6, 5, 3, 1) and σ4 = (4, 5, 1, 3, 6, 2). By
composition of these two rows, we obtain σ4◦σ2 = σ2◦σ4 = (5, 3, 2, 6, 1, 4), which demonstrates that
the two rows do commutate. In the following, we formally prove the row composition commutativity
of the square generated with our algorithm.

Lemma 3. For any order n where 2n+ 1 is prime, An is a row-composition commutative square.

Proof. From Equations 1 and 7, and adopting the notation in Definition 2, every entry a[x, y]
can be written either as a[x, y] = xy − lxy(2n + 1) (if kxy is odd with kxy = 2lxy + 1) or as
a[x, y] = lxy(2n+ 1)− xy (if kxy is even with kxy = 2lxy). If kxy is odd, ka[x,y],z can be written as
follows:

kxy−lxy(2n+1),z = b2xyz − 2lxy(2n+ 1)z

2n+ 1
c+ 1

= b 2xyz

2n+ 1
c+ 1− 2lxyz

= kxy,z − 2lxyz

Otherwise, if kxy is even, since 2n+ 1 prime implies b−2xyz2n+1 c = −b 2xyz2n+1c−1 (as 1 ≤ x, y, z ≤ n),
we obtain:

klxy(2n+1)−xy,z = b2lxy(2n+ 1)z − 2xyz

2n+ 1
c+ 1

= 2lxyz − b
2xyz

2n+ 1
c − 1 + 1

= 2lxyz − kxy,z + 1

For the sake of completeness, we now consider three different cases, which are combinations of
possibilities for kxz and kyz. In the second and third cases, we use the fact that b−x+1

2 c = −bx2 c
for any integer x.

• Case 1. a[x, z] = xz − lxz(2n+ 1) and a[y, z] = yz − lyz(2n+ 1):

a[x, a[y, z]] = (−1)kyz,x−2lyzx+1[xyz − lyzx(2n+ 1)− bkyz,x − 2lyzx

2
c(2n+ 1)]

= (−1)kyz,x+1[xyz − bkyz,x
2
c(2n+ 1)]

a[y, a[x, z]] = (−1)kxz,y−2lxzy+1[xyz − lxzy(2n+ 1)− bkxz,y − 2lxzy

2
c(2n+ 1)]

= (−1)kxz,y+1[xyz − bkxz,y
2
c(2n+ 1)]
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• Case 2. a[x, z] = xz − lxz(2n+ 1) and a[y, z] = lyz(2n+ 1)− yz:

a[x, a[y, z]] = (−1)2lyzx−kyz,x+2[lyzx(2n+ 1)− xyz − b2lyzx− kyz,x + 1

2
c(2n+ 1)]

= (−1)kyz,x [−xyz + bkyz,x
2
c(2n+ 1)]

a[y, a[x, z]] = (−1)kxz,y−2lxzy+1[xyz − lxzy(2n+ 1)− bkxz,y − 2lxzy

2
c(2n+ 1)]

= (−1)kxz,y+1[xyz − bkxz,y
2
c(2n+ 1)]

• Case 3. a[x, z] = lxz(2n+ 1)− xz and a[y, z] = lyz(2n+ 1)− yz:

a[x, a[y, z]] = (−1)2lyzx−kyz,x+2[lyzx(2n+ 1)− xyz − b2lyzx− kyz,x + 1

2
c(2n+ 1)]

= (−1)kyz,x [−xyz + bkyz,x
2
c(2n+ 1)]

a[y, a[x, z]] = (−1)2lxz−kxz,y+2[lxzy(2n+ 1)− xyz − b2lxzy − kxz,y + 1

2
c(2n+ 1)]

= (−1)kxz,y [−xyz + bkxz,y
2
c(2n+ 1)]

Therefore, in any of these three cases, as kxz,y = kyz,x, we have a[x, a[y, z]] = a[y, a[x, z]], which
proves the row composition commutativity of the square generated by Unroll&Bounce.

Whereas most SBLSs share the self-symmetric property, this property is not a sufficient condi-
tion. Consequently, the balancedness property remains to be proved.

4.5 Balancedness property

Proving balancedness happens to be even more challenging than proving the Latin property or the
row composition commutativity. We successively demonstrate interesting additional properties,
that we call class property, dist-min relation and min rule, which constitute steps towards proving
balancedness of An.

Along this proof, we reason on the column conjugate Ãn of An. By definition, any value aij of
An corresponds to the column in which value j appears in row i in Ãn. In the following, we add a
tilde on a term when it refers to Ãn instead of An. Figure 3 depicts Ã6.

Figure 3: A6 (left) and its column conjugate Ã6 (right) are in fact identical up to a row permutation.

9



We observe that there exists a permutation of rows that transforms Ãn into An. Lemma 4
formalizes and demonstrates the aforementioned observation.

Lemma 4. ∀ 1 ≤ q ≤ n, σ̃i = σã[i,1]

Proof. First, it follows from the definition of the column conjugate that σ̃i = σ−1i , since σi(j) = v
if and only if σ̃i(v) = j. Second, we note that An is in reduced form: both the first row and the
first column correspond to (1, 2, ..., n). For any row q and any symbol v, we have:

σ̃−1
i ◦ σã[i,1](v) = σi ◦ σã[i,1](v) (column conjugate property)

= σi ◦ σv(ã[i, 1]) (diagonal symmetry)

= σv ◦ σi(ã[i, 1]) (row comp. commutativity)

= σv ◦ σi(σ̃i(1))

= σv ◦ σi(σ−1
i (1)) (column conjugate property)

= σv(1)

= v (reduced form of An)

Hence, σ̃i(v) = σã[i,1](v) for any row i and any symbol v.

Additionally, this proof actually demonstrates that symmetry and row composition commuta-
tivity are a sufficient condition for a reduced Latin square to be a permutation of rows of its column
conjugate.

We now prove that Ãn is balanced, which will imply that An is balanced, as a row permutation
does not affect the balancedness of a matrix. From the definition of the column conjugate, the
distance between a pair of symbols (v, v′) in row i of Ãn corresponds to the absolute difference
between symbols in column v and in column v′ in row i of An. Formally, d̃(i, v, v′) = |c̃(i, v) −
c̃(i, v′)| = |a[i, v]− a[i, v′]|.

We first prove that there exist classes of pairs of symbols such that their total distance is
decomposed similarly for any pair within its class. Table 1 shows the distances between symbols in
Ã6. We observe that the pairs of symbols {(1, 2), (1, 6), (2, 4), (3, 5), (3, 6), (4, 5)} belong to a class
where the distances between symbols correspond to the set {1, 1, 2, 2, 3, 5}. Similarly, the pairs
{(1, 3), (1, 4), (2, 5), (2, 6), (3, 4), (5, 6)} belong to another class, and the pairs {(1, 5), (2, 3), (4, 6)}
belong to yet another class. This observation leads us to the following class property.

Table 1: Distances between pairs of symbols in Ã6
j1,j2 1,2 1,3 1,4 1,5 1,6 2,3 2,4 2,5 2,6 3,4 3,5 3,6 4,5 4,6 5,6
d̃(1, j1, j2) 1 2 3 4 5 1 2 3 4 1 2 3 1 2 1
d̃(2, j1, j2) 2 4 3 1 1 2 1 1 3 1 3 5 2 4 2
d̃(3, j1, j2) 3 1 2 1 2 2 5 4 1 3 2 1 1 4 3
d̃(4, j1, j2) 1 3 1 2 2 4 2 1 3 2 5 1 3 1 4
d̃(5, j1, j2) 2 3 1 4 1 1 3 2 1 4 1 2 5 2 3
d̃(6, j1, j2) 5 1 4 2 3 4 1 3 2 3 1 2 2 1 1

d̃(j1, j2) 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
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Property 1 (Class property). For any pair of columns (j1, j2), d̃(j1, j2) = d̃(σq(j1), σq(j2)) ∀q ∈
{1, ..., n}

Proof. In this proof, we successively use the facts that (a) An is a Latin square (hence any row
defines a permutation) (b) An is symmetric, and (c) An is row-composition commutative.

For any integer q in {1..n}, we have:

d̃(j1, j2) =
∑
i

|a[i, j1]− a[i, j2]|

=
∑
i

|a[σq(i), j1]− a[σq(i), j2]| (a)

=
∑
i

|a[a[q, i], j1]− a[a[q, i], j2]|

=
∑
i

|a[j1, a[i, q]]− a[j2, a[i, q]]| (b)

=
∑
i

|a[i, a[j1, q]]− a[i, a[j2, q]]| (c)

=
∑
i

|a[i, a[q, j1]]− a[i, a[q, j2]]| (b)

=
∑
i

|a[i, σq(j1)]− a[i, σq(j2)]|

= d̃(σq(j1), σq(j2))

Consequently, this property ensures that some pairs of columns share the same total symbol
difference. In the following, we use this property to prove that the total distance between any two
symbols is indeed equal to n(n+1)

3 .
An important notion for the remaining of the proof is what we call sum of minima of two

columns. Formally, we define it as:

Σmin(j1, j2) =
n∑

i=1

min(a[i, j1], a[i, j2])

For example, the sum of minima of columns 1 and 3 in A6 is: Σmin(1, 3) = 1+2+3+1+2+5 =
14. Next, we derive a direct relationship between Σmin(j1, j2) and d̃(j1, j2).

Property 2 (Dist-min relation). Σmin(j1, j2) = n(n+1)
2 − 1

2 d̃(j1, j2)

Proof. Using the fact that d̃(j1, j2) = 2
∑

i:a[i,j1]<a[i,j2]

(
a[i, j2]−a[i, j1]

)
since

∑
i a[i, j2]−a[i, j1] = 0

for any Latin square, we have:

11



Σmin(j1, j2) =
∑

i:a[i,j1]<a[i,j2]

a[i, j1] +
∑

i:a[i,j2]<a[i,j1]

a[i, j2]

=
∑

i:a[i,j1]<a[i,j2]

a[i, j1] +
∑
i

a[i, j2]−
∑

i:a[i,j1]<a[i,j2]

a[i, j2]

=
n(n+ 1)

2
−

∑
i:a[i,j1]<a[i,j2]

a[i, j1]− a[i, j2]

=
n(n+ 1)

2
− 1

2
d̃(j1, j2)

The use of this notion of minimum of two columns results from the following insight. For any
pair p1 of columns, there exists another pair p2 such that the symbol difference of p1 corresponds
to the minimum of p2 in any row. Table 2 illustrates this observation for the pairs (1, 2), (2, 5) and
(3, 6) in our example of Figure 1, which correspond to the minimum of columns (1, 3), (3, 6) and
(3, 4) respectively. We formalize this observation with the next property.

Table 2: Illustrating the min rule for three pairs of columns of A6

i d̃(i, 1, 2) min(ai,1, ai,3) d̃(i, 2, 5) min(ai,3, ai,6) d̃(i, 3, 6) min(ai,3, ai,4)
1 1 1 3 3 3 3
2 2 2 1 1 5 5
3 3 3 4 4 1 1
4 1 1 1 1 1 1
5 2 2 2 2 2 2
6 5 5 3 3 2 2

Property 3 (Min rule).

∀1 ≤ i, j1, j2 ≤ n, j1 6= j2, d̃(i, j1.j2) =

{
min(a[i, |j1 − j2|], a[i, j1 + j2]) if j1 + j2 ≤ n
min(a[i, |j1 − j2|], a[i, 2n+ 1− j1 − j2]) otherwise

The proof of this property requires the analysis of 32 different cases, which correspond to com-
binations of truth values of the following propositions:
A : j1 +j2 ≤ n, B : a[i, j1] < a[i, j2], C : kij1 is odd, D : kij2 is odd, E : a[i, j1]+a[i, j2] ≤ n. Without
loss of generality, we assume F : j1 > j2 holds.

We outline the proof below, providing two canonical cases. The proof makes extensive use of
the following fact:

Fact 1. For any 1 ≤ i, j ≤ n and 2n + 1 prime, there exists a unique integer l such that 1 ≤
ij − l(2n+ 1) ≤ n or 1 ≤ l(2n+ 1)− ij ≤ n.

• Case 1. A, C,D, E are true; B is false.

12



d̃(i, j1, j2) = a[i, j1]− a[i, j2] (B)

= ij1 − (2n+ 1)bkij1
2
c − ij2 + (2n+ 1)bkij2

2
c (C,D)

= i(j1 − j2)− (2n+ 1)(bkij1
2
c − bkij2

2
c)

= a[i, j1 − j2] (F , Fact 1)

a[i, j1] + a[i, j2] = i(j1 + j2)− (2n+ 1)(bkij1
2
c+ bkij2

2
c) (C,D)

= a[i, j1 + j2] (A, E , Fact 1)

Therefore, the value in row i and column j1 + j2 corresponds to the sum of a[i, j1] and a[i, j2]
while the value in column j1−j2 corresponds to the difference. As a result, a[i, j1−j2] ≤ a[i, j1+j2]
and we conclude that d̃(i, j1, j2) = a[i, j1 − j2] = Σmin(a[i, j1 − j2], a[i, j1 + j2]).

• Case 2. A, C, E are false; B,D are true.

d̃(i, j1, j2) = a[i, j2]− a[i, j1] (B)

= ij2 − (2n+ 1)bkij2
2
c − ((2n+ 1)bkij2

2
c − ij2) (C,D)

= −(2n+ 1)i− i(j1 + j2)+

(2n+ 1)(bkij1
2
c − bkij2

2
c) + (2n+ 1)i

= −i(2n+ 1− j1 − j2) + (2n+ 1)(i− bkij1
2
c − bkij2

2
c)

= a[i, 2n+ 1− j1 − j2] (A, Fact 1)

2n+ 1− a[i, j1]− a[i, j2] = 2n+ 1− (2n+ 1)bkij1
2
c+ ij1 − ij2 + (2n+ 1)bkij2

2
c (C,D)

= 2n+ 1 + i(j1 − j2)− (2n+ 1)(bkij1
2
c − bkij2

2
c)

= i(j1 − j2)− (2n+ 1)(bkij1
2
c − bkij2

2
c − 1)

= a[i, j1 − j2] (E ,F , Fact 1)

Again, column 2n+ 1− j1− j2 contains the difference of a[i, j1] and a[i, j2] while column j1− j2
contains 2n+ 1 minus their sum. Moreover, the fact that E is false makes the latter value smaller
than the former. Therefore, the minimum of the values of these two columns is the symbol difference
between columns j1 and j2. The remaining 30 cases might be derived in a similar fashion.

Theorem 2 (Balancedness property). For any order n where 2n + 1 is prime, An is a balanced
square.

13



Proof. The proof goes as follows. Starting with an arbitrary pair p1 of columns of An, the min
rule establishes a direct relationship between this pair and a second pair p2. Using the dist-min
relation and applying the min rule again draws a relationship between p2 and a third pair p3. We
then prove that p1 and p3 actually belong to the same class, which allows us to deduce the actual
value of the symbol difference between the columns of p1.

For example, let us consider the pair of columns (2, 5). As depicted in Table 2, d̃(2, 5) =
Σmin(3, 6) . Moreover, Property 2 yields Σmin(3, 6) = 21 − 1

2 d̃(3, 6). Applying the min rule, we

obtain d̃(3, 6) = Σmin(3, 4). In turn, Property 2 provides the equation Σmin(3, 4) = 21− 1
2 d̃(3, 4).

Finally, d̃(3, 4) = d̃(2, 5), as both pairs belong to the same class according to the class property
and as illustrated in Table 1. Overall, we have d̃(2, 5) = 21− 1

2(21− 1
2 d̃(2, 5)), i.e. d̃(2, 5) = 14.

To generalize this example to any pair of columns, the proof exploits the following observation:
our algorithm guarantees that a[i, 1] = i and that a[i, 2] = 2i if 2i ≤ n or a[i, 2] = 2n + 1 − 2i
otherwise. Since An is symmetric, it holds:

∀1 ≤ i ≤ n, σ2(i) =

{
2i if 2i ≤ n
2n+ 1− 2i otherwise

Without loss of generality, we consider an arbitrary pair p1 = (j1, j2) where j1 > j2. For the
sake of completeness, we need to consider the four following cases:

• Case 1. j1 + j2 ≤ n, 2j1 ≤ n

d̃(j1, j2) = Σmin(j1 − j2, j1 + j2) (min rule)

=
n(n+ 1)

2
− 1

2
d̃(j1 − j2, j1 + j2) (dist-min relation)

=
n(n+ 1)

2
− 1

2
Σmin(2j2, 2j1) (min rule)

=
n(n+ 1)

2
− 1

2

(
n(n+ 1)

2
− 1

2
d̃(2j2, 2j1)

)
(dist-min relation)

=
n(n+ 1)

4
+

1

4
d̃(σ2(j2), σ2(j1)) (as 2j2 < 2j1 ≤ n)

=
n(n+ 1)

4
+

1

4
d̃(j2, j1) (class property)

• Case 2. j1 + j2 ≤ n, 2j1 > n

d̃(j1, j2) = Σmin(j1 − j2, j1 + j2) (min rule)

=
n(n+ 1)

2
− 1

2
d̃(j1 − j2, j1 + j2) (dist-min relation)

=
n(n+ 1)

2
− 1

2
Σmin(2j2, 2n+ 1− 2j1) (min rule)

=
n(n+ 1)

2
− 1

2

(
n(n+ 1)

2
− 1

2
d̃(2j2, 2n+ 1− 2j1)

)
(dist-min relation)

=
n(n+ 1)

4
+

1

4
d̃(σ2(j2), σ2(j1)) (as 2j1 > n and 2j2 ≤ n)

=
n(n+ 1)

4
+

1

4
d(j2, j1) (class property)
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• Case 3. j1 + j2 > n, 2j2 > n

d̃(j1, j2) = Σmin(j1 − j2, 2n+ 1− j1 − j2) (min rule)

=
n(n+ 1)

2
− 1

2
d̃(j1 − j2, 2n+ 1− j1 − j2) (dist-min relation)

=
n(n+ 1)

2
− 1

2
Σmin(2n+ 1− 2j1, 2n+ 1− 2j2) (min rule)

=
n(n+ 1)

2
− 1

2

(
n(n+ 1)

2
− 1

2
d̃(2n+ 1− 2j1, 2n+ 1− 2j2)

)
(dist-min relation)

=
n(n+ 1)

4
+

1

4
d̃(σ2(j1), σ2(j2)) (as 2j1 > 2j2 > n)

=
n(n+ 1)

4
+

1

4
d̃(j1, j2) (class property)

• Case 4. j1 + j2 > n, 2j2 ≤ n

d̃(j1, j2) = Σmin(j1 − j2, 2n+ 1− j1 − j2) (min rule)

=
n(n+ 1)

2
− 1

2
d̃(j1 − j2, 2n+ 1− j1 − j2) (dist-min relation)

=
n(n+ 1)

2
− 1

2
Σmin(2n+ 1− j1, 2j2) (min rule)

=
n(n+ 1)

2
− 1

2

(
n(n+ 1)

2
− 1

2
d̃(2n+ 1− j1, 2j2)

)
(dist-min relation)

=
n(n+ 1)

4
+

1

4
d̃(σ2(j2), σ2(j1)) (as 2j1 > n and 2j2 ≤ n )

=
n(n+ 1)

4
+

1

4
d(j1, j2) (class property)

In any of these four cases, we have d̃(j1, j2) = n(n+1)
4 + 1

4 d̃(j1, j2). Therefore d̃(j1, j2) = n(n+1)
3

for any pair (j1, j2). As a result, Ãn is a balanced square. Consequently, An is also balanced, since
a reordering of the rows does not affect the balancedness property.

We have proved that An is indeed a SBLS for 2n+1 prime. Finally, one may wonder how many
orders of SBLSs we can actually generate, compared to all possible orders. To answer this, we notice
that 2n + 1 prime implies n 6= 3k + 1 (as otherwise, 2n + 1 = 6k + 3 = 0 (mod 3). Furthermore,
the prime number theorem states that the number of primes less than x is approximately x/ln(x).
Hence, the density of primes among the odd numbers not divisible by 3 and lower than 2n + 1
is approximately 3/ln(2n + 1). Empirically, this translates into a proportion of orders of SBLSs
generated with our algorithm equal to 72% of all possible orders less than 50, 66% of the ones less
than 100, and 50% of the ones less than 500.

The following section shows the results that we obtain with our algorithm.

5 Experimental Results

We compare our approach to those mentioned in Section 3. Table 3 gathers the results of all
approaches. CP corresponds to the standard constraint programming, while CPSS and CPCS represent
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the constraint programming approaches based on self-symmetry and composition, respectively. The
results for these three approaches are reported in [12]. LSS is the local search streamlining that
was proposed in [13]. Finally, U&B corresponds to the construction that we propose in this paper.

Table 3: Solution times (in seconds) of the different approaches. A blank means that no SBLS
could be generated for the corresponding order.

Order CP CPSS CPCS LSS U&B

6 0.06 0.05 0.02 0.00 0.00
8 16.00 0.88 0.00 0.00
9 241.00 0.91 0.00 0.00
11 9.84 0.00 0.00
12 531.00 14.40 0.00
14 5,434.00 0.02 0.00
15 0.01 0.00
17 0.25
18 107,000.00 2.30 0.00
20 16.00 0.00
21 16.00 0.00
23 104.00 0.00
24 281.00
26 609.00 0.00
27 4,000.00
29 23,000.00 0.00
30 160,000.00 0.00
32 1,200,000.00
33 1,200,000.00 0.00
35 1,200,000.00 0.00
36 0.00
39 0.00
41 0.00
44 0.00
48 0.00
50 0.00
51 0.00
53 0.00
54 0.00
56 0.00
... ...
999 0.02

6 Conclusion

In this paper we propose a polynomial time algorithm to generate spatially balanced Latin squares
of any order n where 2n + 1 is prime. Latin squares are central to experimental design [14, 15,
e.g.], and [14]. SBLSs are particularly suited to minimize overall correlations within experiments.
Experimentally, we were able to generate a SBLS of order 999 in a fraction of a second, while the
largest ever known SBLS was of order 35. This work confirms a conjecture that was raised in [12].
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Nonetheless, interesting research questions regarding these particular combinatorial designs
remain open. First, we naturally wonder whether there is a construction for SBLSs of any order n,
regardless of the primality of 2n + 1. Second, we would like to characterize additional properties
and singularities of the square generated with our algorithm. Finally, determining whether the
partial SBLS completion problem is NP-complete remains an open question.
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