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Cornell Fuel Cell Institute

Mission: develop new materials for fuel cells.

An Electrocatalyst must:

1) Be electronically conducting

2) Facilitate both reactions

Platinum is the best known metal to 

fulfill that role, but:

1) The reaction rate is still considered 

slow (causing energy loss)

2) Platinum is fairly costly, intolerant

to fuel contaminants, and has a 

short lifetime.

Goal: Find an intermetallic compound that is a better catalyst than Pt.
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Recipe for finding alternatives to Platinum

1) In a vacuum chamber, place a silicon wafer.

2) Add three metals.

3) Mix until smooth, using three sputter guns.

4) Bake for 2 hours at 650ºC

Ta

Rh

Pd

(38% Ta, 45% Rh, 17% Pd)

• Deliberately inhomogeneous 

composition on Si wafer  

• Atoms are intimately mixed

[Source: Pyrotope, Sebastien Merkel]
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Identifying crystal structure using X-Ray Diffraction at CHESS

• XRD pattern characterizes the underlying crystal fairly well

• Expensive experimentations: Bruce van Dover’s research team has 

access to the facility one week every year.

Ta

Rh

Pd

(38% Ta, 45% Rh, 17% Pd)

[Source: Pyrotope, Sebastien Merkel]
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INPUT: pure phase

region

Fe

Al

Si

m phase regions

 k pure regions

 m-k mixed regions

XRD pattern

characterizing

pure phases

Mixed

phase

region

OUTPUT:

Additional Physical characteristics:

• Phase Connectivity

• Mixtures of  3 pure phases

• Peaks shift by  15% within a region

– Continuous and Monotonic

• Noisy detection

10
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Ta

Rh

Pd

Figure 1: Phase regions of Ta-Rh-Pd Figure 2: Fluorescence activity of Ta-Rh-Pd
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• Motivation

• Problem Definition (Part I)

• Previous Work: Non-negative Matrix Factorization

• Problem Definition (Part II)

• Our Work: Satisfiability Modulo Theories Approach

• Conclusion and Future work
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• Input:

• A list of points on the silicon wafer

• A real vector Di per vertex vi (diffraction patterns)

• K = user specified number of pure phases 

• Goal: a basis of K vectors for 

v1 v2 v3 v4
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D1 D2 … DN

Di = ai1B1 + … + aiKBK

D1 D4
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• There is experimental noise

• Non-negative basis vectors and coefficients

min ||Di – (ai1B1 + … + aiKBK ) ||

Minimize norm instead

Bi ≥ 0 , aij ≥ 0

Di = ai1B1 + … + aiKBK
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Non-negative Matrix Factorization [Long et al., 2009]
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Advantages: scales up very well, accurately solves simple systems

Drawbacks: overlooks critical physical behavior, making the results physically 

meaningless for more complex systems.

Illustration on synthetic instances 

from the Al-Li-Fe ternary system
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• There is experimental noise

• Non-negative basis vectors and coefficients

• At most M (=3) non-zero coefficients per point

• Basis patterns appear in contiguous locations on silicon wafer

min ||Di – (ai1B1 + … + aiKBK ) ||

Minimize norm instead

Bi ≥ 0 , aij ≥ 0

|{j | aij > 0}| ≤ M

Build a graph G of the points on the silicon wafer

The subgraph induced by |{i | aij > 0}| is connected

Di = ai1B1 + … + aiKBK

v1 v2 v3 v4

G
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• Basis vector can be shifted

• Shifts coefficients are bounded, continuous and monotonic

S12 S13 S14S11

|S12 - S11| ≤ c

≤ ≤ ≤

min || Di – ( ai1S(B1,si1) + … + aiKS(BK,siK) ) ||

Shift 

coefficients 

Shift 

operator
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v1

v2

v3

v4

v5

• Initial graph G and number K of basis patterns

K=2 

basis 

patterns
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v1

v2

v3

v4

v5

P1

P2

P3

P4

P5

• Initial graph G and number K of basis patterns

• Peak detection to extract a set of peaks Pi for each 

diffraction pattern Di

K=2 

basis 

patterns
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v1

v2

v3

v4

v5

P1

P2

P3

P4

P5

B2

B1

• Initial graph G and number K of basis patterns

• Peak detection to extract a set of peaks Pi for each 

diffraction pattern Di

• Real variable ejk for the location of peak k in basis Bj

e11 e12 e17

e21 e22 e27

K=2 

basis 

patterns
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v1

v2

v3

v4

v5

P1

P2

P3

P4

P5

B2

B1

• Initial graph G and number K of basis patterns

• Peak detection to extract a set of peaks Pi for each 

diffraction pattern Di

• Real variable ejk for the location of peak k in basis Bj

• Real variable sij for the shift coefficient of basis Bj in point Pi

e11 e12 e17

e21 e22 e27

K=2 

basis 

patterns s11=0.00

s12=0.05

s13=0.10

s14=0.20

s15

s21=0.60

s22=0.50

s23=0.20

s24=0.10

s25=0.00
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v4

v5

• An observed peak p is “explained” if there exists sij ,ejk s.t. |p-(sij + ejk)| ≤ ε

• Every observed peak must be explained

K=2 

basis 

patterns P1
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v1

v2

v3

v4

v5

• An observed peak p is “explained” if there exists sij ,ejk s.t. |p-(sij + ejk)| ≤ ε

• Every observed peak must be explained

• Some peaks might be missing (unobserved)

• Bound the number of missing peaks ≤ T

• Minimization by (binary) search on T

K=2 

basis 

patterns P1

P2

P3

P4

P5

B2

B1

e21 e22 e27

e11 e12 e17

s11=0.00

s12=0.05

s13=0.10

s14=0.20

s15

s21=0.60

s22=0.50

s23=0.20

s24=0.10

s25=0.00
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• Linear phase usage constraints (up to M basis patterns per point)

• Linear constraints for shift monotonicity and continuity ( sij ≤ slm )

• Lazy connectivity: add a cut if current solution is not connected

• Symmetry breaking:

• Renaming of pure phases

• Ordering of the peak locations ejk (per basis pattern)

Quantifier-free linear arithmetic

If disconnected regions 

explained with phase 1

Then Phase 1 must 

appear in at least 

one of these points
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•Illustration on Al-Li-Fe system
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• Novel SMT encoding for Materials Discovery

• Good performance on synthetic data:

• Scales to realistic sized problems (~50 points)

• Provides physically-meaningful solutions

• Good accuracy (>90% precision and recall)

• Outperforms both Constraint Programming and Mixed 

Integer Programming direct translations of the SMT model

• Future work: online adaptive sampling during data collection

• Exciting results analyzing and explaining real-world data
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# Points Unknown

Phases

Arithmetic + Z3 

(s)

Set-based + CPLEX 

(s)

10 3 8 0.5

6 12 Timeout

15 3 13 0.5

6 20 Timeout

18 3 29 384.8

6 125 Timeout

29 3 78 276

6 186 Timeout

45 6 518 Timeout

Arithmetic encoding translated to CP and MIP:

• MIP is appealing because it can optimize the objective

• They don’t scale → SMT solving strategy

Z3 scales to 

realistic sized 

problems!



Precision/Recall

33

Recovers ground truth

Size Precision Recall

10 95.8 100

15 96.6 100

18 97.2 96.6

29 96.1 92.8

45 95.8 91.6
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• Remove some peaks to simulate experimental noise

• Size = 15 points

Missing Peaks Precision Recall

1 96.1 99.6

2 96.3 99.3

3 96.7 99.5

4 95.3 98.9

5 94.8 99.7

Solutions are still accurate. Runtime increases approx linearly.



Previous Work 1: Cluster Analysis [Long et al., 2007]
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xi =

Feature vector Pearson correlation coefficients Distance matrix

PCA – 3 dimensional approx Hierarchical Agglomerative  Clustering

Drawback: Requires sampling of pure phases, detects phase regions (not phases), 

overlooks peak shifts, may violate physical constraints (phase continuity, etc.).



Previous Work 2: NMF [Long et al., 2009]
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xi =

Feature vector Linear positive combination (A) 

of basis patterns (S)

Minimizing squared 

Frobenius norm

X = A.S + E Min ║E║

Drawback: Overlooks peak shifts (linear combination only), may violate 

physical constraints (phase continuity, etc.).
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• Parameters

• Number of pure phases K, tolerance ε

• Key components

• Variables peak positions per base

• Shifts per point

• Point p is explained by base k



SMT formulation
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• New arithmetic-based encoding:

• Real variables eij for the peak locations in each Bi

• Real variables for the shift coefficients sij

(per base, per point)

• An observed peak p is explained if |p-sij - eij| ≤ ε

(Match the height of the peaks)

• Bound the number of missing peaks ≤ T


