

MATERIALS DISCOVERY FOR FUEL CELLS

NEW OPPORTUNITIES AT THE INTERSECTION OF CONSTRAINT REASONING AND LEARNING

Ronan Le Bras

Stefano Ermon

Theodoros Damoulas

Rich Bernstein

Carla P. Gomes

Bart Selman

R. Bruce van Dover

Computer Science

Computer Science

Computer Science

Computer Science

Computer Science

Computer Science

Materials Science/Physics

July 5, 2012

CompSust'12

Cornell Fuel Cell Institute

Mission: develop **new materials** for **fuel cells**.

Figure 1. Fuel cell schematic.

Source: Annual Reveiws of Energy and the Environment. http://energy.annualreviews.org/cgi/content/full/24/1/281

An **Electrocatalyst** must:

- Be electronically conducting
- 2) Facilitate both reactions

Platinum is the best known metal to fulfill that role, but:

- The reaction rate is still considered slow (causing energy loss)
- Platinum is fairly costly, intolerant to fuel contaminants, and has a short lifetime.

Goal: Find an intermetallic compound that is a better catalyst than Pt.

Recipe for finding alternatives to Platinum

- 1) In a vacuum chamber, place a silicon wafer.
- 2) Add three metals.
- 3) Mix until smooth, using three sputter guns.
- 4) Bake for 2 hours at 650°C

Identifying crystal structure using **X-Ray Diffraction** at CHESS

- XRD pattern characterizes the underlying crystal fairly well
- **Expensive** experimentations: Bruce van Dover's research team has access to the facility **one week every year**.

Additional Physical characteristics:

- Phase Connectivity
- Mixtures of ≤ 3 pure phases
- Peaks shift by ≤ 15% within a region
 - Continuous and Monotonic
- Noisy detection

Figure 1: Phase regions of Ta-Rh-Pd

Figure 2: Fluorescence activity of Ta-Rh-Pd

Outline

- Motivation
- Problem Definition (Part I)
- Previous Work: Non-negative Matrix Factorization
- Problem Definition (Part II)
- Our Work: Satisfiability Modulo Theories Approach
- Conclusion and Future work

Problem Definition (Part I)

• Input:

• A list of points on the silicon wafer

- A real vector D_i per vertex v_i (diffraction patterns)
- K = user specified number of pure phases
- Goal: a basis of K vectors for

$$\boldsymbol{D}_i = a_{il}\boldsymbol{B}_1 + \dots + a_{iK}\boldsymbol{B}_K$$

Problem Definition (Part I)

• There is **experimental noise**

$$\boldsymbol{D}_i = a_{il}\boldsymbol{B}_1 + \dots + a_{iK}\boldsymbol{B}_K$$

$$\min ||D_i - (a_{il}B_1 + \dots + a_{ik}B_K)||$$

• Non-negative basis vectors and coefficients

$$\boldsymbol{B_i} \ge \boldsymbol{0}$$
 , $a_{ij} \ge 0$

Outline

- Motivation
- Problem Definition (Part I)
- Prior Work: Non-negative Matrix Factorization
- Problem Definition (Part II)
- Our Work: Satisfiability Modulo Theories Approach
- Conclusion and Future work

Non-negative Matrix Factorization [Long et al., 2009]

Advantages: scales up very well, accurately solves simple systems

Drawbacks: overlooks critical physical behavior, making the results physically meaningless for more complex systems.

LiO₂ Illustration on synthetic instances from the *Al-Li-Fe* ternary system Al₂O₃ Synthetic Relative Phase Concentration 1.000 0.875 0.750 0.625 0.500 0.375 NMF 0.250 0.125 0.000

Outline

- Motivation
- Problem Definition (Part I)
- Prior Work: Non-negative Matrix Factorization
- Problem Definition (Part II)
- Our Work: Satisfiability Modulo Theories Approach
- Conclusion and Future work

Problem Definition (Part II)

• There is experimental noise

$$\boldsymbol{D}_i = a_{il}\boldsymbol{B}_1 + \dots + a_{iK}\boldsymbol{B}_K$$

$$\min \| \mathbf{D}_i - (a_{il}\mathbf{B}_1 + \dots + a_{ik}\mathbf{B}_K) \|$$

Minimize norm instead

• Non-negative basis vectors and coefficients

$$B_i \ge 0$$
, $a_{ij} \ge 0$

• At most M (=3) non-zero coefficients per point

$$|\{j \mid a_{ij} > 0\}| \le M$$

• Basis patterns appear in **contiguous** locations on silicon wafer

Build a graph G of the points on the silicon wafer V_1 V_2 V_3

G

 V_{Δ}

Problem Definition (Part II)

• Basis vector can be **shifted**

• Shifts coefficients are **bounded**, **continuous** and **monotonic**

$$|S_{12} - S_{11}| \le c$$

Outline

- Motivation
- Problem Definition (Part I)
- Prior Work: Non-negative Matrix Factorization
- Problem Definition (Part II)
- Our Work: Satisfiability Modulo Theories Approach
- Conclusion and Future work

• Initial graph *G* and number *K* of basis patterns

K=2 basis patterns

- Initial graph G and number K of basis patterns
- Peak detection to extract a set of peaks P_i for each diffraction pattern D_i

K=2 basis patterns

- Initial graph G and number K of basis patterns
- Peak detection to extract a set of peaks P_i for each diffraction pattern D_i
- Real variable e_{jk} for the **location of peak** k in basis B_j

- Initial graph G and number K of basis patterns
- Peak detection to extract a set of peaks P_i for each diffraction pattern D_i
- Real variable e_{jk} for the **location of peak** k in basis B_j
- Real variable s_{ij} for the **shift** coefficient of basis B_j in point P_i

- An observed peak p is "explained" if there exists s_{ij} , e_{jk} s.t. $|p (s_{ij} + e_{jk})| \le \varepsilon$
- Every observed peak must be *explained*

- An observed peak p is "explained" if there exists s_{ij} , e_{jk} s.t. $|p (s_{ij} + e_{jk})| \le \varepsilon$
- Every observed peak must be *explained*
- Some peaks might be missing (unobserved)
- Bound the number of missing peaks $\leq T$
- Minimization by (binary) search on T

- Linear phase usage constraints (up to *M* basis patterns per point)
- Linear constraints for shift monotonicity and continuity ($s_{ij} \leq s_{lm}$)
- Lazy connectivity: add a cut if current solution is not connected

If disconnected regions explained with phase 1

Then Phase 1 must appear in at least one of these points

- Symmetry breaking:
 - Renaming of pure phases
 - Ordering of the peak locations e_{ik} (per basis pattern)

Quantifier-free linear arithmetic

Experimental Results

•Illustration on Al-Li-Fe system

Conclusion and Future work

- Novel SMT encoding for Materials Discovery
- Good performance on synthetic data:
 - Scales to realistic sized problems (~50 points)
 - Provides physically-meaningful solutions
 - Good accuracy (>90% precision and recall)
 - Outperforms both Constraint Programming and Mixed Integer Programming direct translations of the SMT model
- Future work: online adaptive sampling during data collection
- Exciting results analyzing and explaining real-world data

THANK YOU!

Extra slides

Runtime

# Points	Unknown Phases	Arithmetic + Z3 (s)	Set-based + CPLEX (s)
10	3	8	0.5
	6	12	Timeout
15	3	13	0.5
	6	20	Timeout
18	3	29	384.8
	6	125	Timeout
29	3	78	276
	6	186	Timeout
45	6	518	Timeout

Z3 scales to realistic sized problems!

Arithmetic encoding translated to CP and MIP:

- MIP is appealing because it can optimize the objective
- They don't scale → SMT solving strategy

Precision/Recall

Recovers ground truth

Size	Precision	Recall
10	95.8	100
15	96.6	100
18	97.2	96.6
29	96.1	92.8
45	95.8	91.6

Ground SMT

Truth Results

Patterns

Robustness

- Remove some peaks to simulate experimental noise
- Size = 15 points

Missing Peaks	Precision	Recall
1	96.1	99.6
2	96.3	99.3
3	96.7	99.5
4	95.3	98.9
5	94.8	99.7

Solutions are still accurate. Runtime increases approx linearly.

Previous Work 1: Cluster Analysis [Long et al., 2007]

Drawback: Requires sampling of pure phases, detects phase regions (not phases), overlooks peak shifts, may violate physical constraints (phase continuity, etc.).

Previous Work 2: NMF [Long et al., 2009]

Drawback: Overlooks peak shifts (linear combination only), may violate physical constraints (phase continuity, etc.).

SMT formulation

Parameters

- Number of pure phases K, tolerance ε
- Key components
 - Variables peak positions per base
 - Shifts per point
 - Point p is explained by base k

SMT formulation

- New arithmetic-based encoding:
 - Real variables e_{ii} for the peak locations in each B_i
 - Real variables for the shift coefficients s_{ij} (per base, per point)
 - An observed peak p is explained if $|p-s_{ij}-e_{ij}| \le \varepsilon$ (Match the height of the peaks)
 - Bound the number of missing peaks ≤ *T*

