Materials Discovery for Fuel Cells
 New Opportunities at the Intersection of Constraint Reasoning and Learning

Ronan Le Bras
Stefano Ermon
Theodoros Damoulas
Rich Bernstein
Carla P. Gomes
Bart Selman
R. Bruce van Dover

July 5, 2012

Computer Science
Computer Science
Computer Science
Computer Science
Computer Science
Computer Science
Materials Science/Physics

CompSust' 12

Motivation

Cornell Fuel Cell Institute

Mission: develop new materials for fuel cells.

Figure 1. Fuel cell schematic.
Source: Annual Reveiws of Energy and the Environment. http://energy.annualreviews.org' cgi/content/full/24/1/281

An Electrocatalyst must:

1) Be electronically conducting
2) Facilitate both reactions

Platinum is the best known metal to fulfill that role, but:

1) The reaction rate is still considered slow (causing energy loss)
2) Platinum is fairly costly, intolerant to fuel contaminants, and has a short lifetime.

Goal: Find an intermetallic compound that is a better catalyst than Pt.

Motivation

Recipe for finding alternatives to Platinum

1) In a vacuum chamber, place a silicon wafer.
2) Add three metals.
3) Mix until smooth, using three sputter guns.
4) Bake for 2 hours at $650^{\circ} \mathrm{C}$

Identifying crystal structure using X-Ray Diffraction at CHESS

- XRD pattern characterizes the underlying crystal fairly well
- Expensive experimentations: Bruce van Dover's research team has access to the facility one week every year.

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

INPUT:

OUTPUT:
m phase regions

- k pure regions
- m-k mixed regions

XRD pattern characterizing pure phases

Additional Physical characteristics:

- Phase Connectivity
- Mixtures of ≤ 3 pure phases
- Peaks shift by $\leq 15 \%$ within a region
- Continuous and Monotonic
- Noisy detection

Motivation

Figure 1: Phase regions of Ta-Rh-Pd

Figure 2: Fluorescence activity of Ta-Rh-Pd

Outline

- Motivation
- Problem Definition (Part I)
- Previous Work: Non-negative Matrix Factorization
- Problem Definition (Part II)
- Our Work: Satisfiability Modulo Theories Approach
- Conclusion and Future work

Problem Definition (Part I)

- Input:

- A list of points on the silicon wafer

- A real vector $\boldsymbol{D}_{\boldsymbol{i}}$ per vertex v_{i} (diffraction patterns)
- $K=$ user specified number of pure phases
- Goal: a basis of K vectors for

$$
\boldsymbol{D}_{i}=a_{i l} \boldsymbol{B}_{1}+\ldots+a_{i K} \boldsymbol{B}_{K}
$$

Problem Definition (Part I)

- There is experimental noise

$$
\boldsymbol{D}_{i}=a_{i 1} \boldsymbol{B}_{1}+\ldots+a_{i K} \boldsymbol{B}_{\boldsymbol{K}}
$$

Minimize norm instead

- Non-negative basis vectors and coefficients

$$
\boldsymbol{B}_{i} \geq \mathbf{0}, a_{i j} \geq 0
$$

Outline

- Motivation
- Problem Definition (Part I)
- Prior Work: Non-negative Matrix Factorization
- Problem Definition (Part II)
- Our Work: Satisfiability Modulo Theories Approach
- Conclusion and Future work

Non-negative Matrix Factorization [Long et al., 2009]

Advantages: scales up very well, accurately solves simple systems
Drawbacks: overlooks critical physical behavior, making the results physically meaningless for more complex svstems.

Illustration on synthetic instances from the Al-Li-Fe ternary system

Relative Phase Concentration

Outline

- Motivation
- Problem Definition (Part I)
- Prior Work: Non-negative Matrix Factorization
- Problem Definition (Part II)
- Our Work: Satisfiability Modulo Theories Approach
- Conclusion and Future work

Problem Definition (Part II)

Ics

Minimize norm instead

- There is experimental noise

$$
\boldsymbol{D}_{i}=a_{i 1} \boldsymbol{B}_{1}+\ldots+a_{i K} \boldsymbol{B}_{K}
$$

$$
\stackrel{\nearrow}{\min \left\|\boldsymbol{D}_{i}-\left(a_{i 1} \boldsymbol{B}_{1}+\ldots+a_{i K} \boldsymbol{B}_{K}\right)\right\|}
$$

- Non-negative basis vectors and coefficients

$$
B_{i} \geq 0, a_{i j} \geq 0
$$

- At most $\mathbf{M}(=3)$ non-zero coefficients per point

$$
\left|\left\{j \mid a_{i j}>0\right\}\right| \leq M
$$

- Basis patterns appear in contiguous locations on silicon wafer

Build a graph G of the points on the silicon wafer
The subgraph induced by $\left|\left\{i \mid a_{i j}>0\right\}\right|$ is connected

Problem Definition (Part II)

- Basis vector can be shifted

$$
\min \left\|\boldsymbol{D}_{\boldsymbol{i}}-\left(a_{i 1} S\left(\boldsymbol{B}_{1,}, s_{i l}\right)+\ldots+a_{i K} S\left(\boldsymbol{B}_{\boldsymbol{K}}, s_{i K}\right)\right)\right\|
$$

- Shifts coefficients are bounded, continuous and monotonic

$$
\bigcirc_{-}^{S_{11} \leq S_{12} \leq S_{13} \leq S_{14}} \left\lvert\, \begin{aligned}
& S_{12}-S_{11} \mid \leq c
\end{aligned}\right.
$$

Outline

- Motivation
- Problem Definition (Part I)
- Prior Work: Non-negative Matrix Factorization
- Problem Definition (Part II)
- Our Work: Satisfiability Modulo Theories Approach
- Conclusion and Future work

Satisfiability Modulo Theories Approach

- Initial graph G and number K of basis patterns

$$
\begin{array}{cc}
\begin{array}{c}
\mathrm{K}=2 \\
\text { basis } \\
\text { patterns }
\end{array} & v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4} \\
& v_{5}
\end{array}
$$

Satisfiability Modulo Theories Approach

- Initial graph G and number K of basis patterns
- Peak detection to extract a set of peaks P_{i} for each diffraction pattern $\boldsymbol{D}_{\boldsymbol{i}}$

Satisfiability Modulo Theories Approach

- Initial graph G and number K of basis patterns
- Peak detection to extract a set of peaks P_{i} for each diffraction pattern $\boldsymbol{D}_{\boldsymbol{i}}$
- Real variable $e_{j k}$ for the location of peak k in basis B_{j}

Satisfiability Modulo Theories Approach

- Initial graph G and number K of basis patterns
- Peak detection to extract a set of peaks P_{i} for each diffraction pattern $\boldsymbol{D}_{\boldsymbol{i}}$
- Real variable $e_{j k}$ for the location of peak k in basis B_{j}
- Real variable $s_{i j}$ for the shift coefficient of basis B_{j} in point P_{i}

Satisfiability Modulo Theories Approach

- An observed peak p is "explained" if there exists $s_{i j}, e_{j k}$ s.t. $\left|p-\left(s_{i j}+e_{j k}\right)\right| \leq \varepsilon$
- Every observed peak must be explained

Satisfiability Modulo Theories Approach

- An observed peak p is "explained" if there exists $s_{i j}, e_{j k}$ s.t. $\left|p-\left(s_{i j}+e_{j k}\right)\right| \leq \varepsilon$
- Every observed peak must be explained
- Some peaks might be missing (unobserved)
- Bound the number of missing peaks $\leq T$
- Minimization by (binary) search on T

Satisfiability Modulo Theories Approach

- Linear phase usage constraints (up to M basis patterns per point)
- Linear constraints for shift monotonicity and continuity ($s_{i j} \leq s_{l m}$)
- Lazy connectivity: add a cut if current solution is not connected

If disconnected regions explained with phase 1

Then Phase 1 must appear in at least one of these points

- Symmetry breaking:
- Renaming of pure phases
- Ordering of the peak locations $e_{j k}$ (per basis pattern)

\square Quantifier-free linear arithmetic

Experimental Results

- Illustration on Al-Li-Fe system

Conclusion and Future work

- Novel SMT encoding for Materials Discovery
- Good performance on synthetic data:
- Scales to realistic sized problems (~50 points)
- Provides physically-meaningful solutions
- Good accuracy (>90\% precision and recall)
- Outperforms both Constraint Programming and Mixed Integer Programming direct translations of the SMT model
- Future work: online adaptive sampling during data collection
- Exciting results analyzing and explaining real-world data

THANK YOU!

Intelligent Information
Systems Institute

Extra slides

Runtime

\# Points	Unknown Phases	Arithmetic + Z3 (\mathbf{s})	Set-based + CPLEX (\mathbf{s})	
10	3	8	0.5	
	6	12	Timeout	
15	3	13	0.5	
	6	20	Timeout	Z3 scales to realistic sized problems!
18	3	29	384.8	
	6	125	Timeout	
29	3	78	276	
	6	186	Timeout	
45	6	518	Timeout	

Arithmetic encoding translated to CP and MIP:

- MIP is appealing because it can optimize the objective
- They don't scale \rightarrow SMT solving strategy

Precision/Recall

CORNELL

Robustness

- Remove some peaks to simulate experimental noise
- Size = 15 points

Missing Peaks	Precision	Recall
1	96.1	99.6
2	96.3	99.3
3	96.7	99.5
4	95.3	98.9
5	94.8	99.7

Solutions are still accurate. Runtime increases approx linearly.

Previous Work 1: Cluster Analysis [Long et al., 2007]

Feature vector

$$
\longrightarrow C_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right]^{1 / 2}} \longrightarrow D=(1-C) / 2
$$

Pearson correlation coefficients Distance matrix
\downarrow
Hierarchical Agglomerative Clustering

Drawback: Requires sampling of pure phases, detects phase regions (not phases), overlooks peak shifts, may violate physical constraints (phase continuity, etc.).

Previous Work 2: NMF [Long et al., 2009]

Drawback: Overlooks peak shifts (linear combination only), may violate physical constraints (phase continuity, etc.).

SMT formulation

- Parameters
- Number of pure phases K, tolerance ε
- Key components
- Variables peak positions per base
- Shifts per point
- Point p is explained by base k
- New arithmetic-based encoding:
- Real variables $e_{i j}$ for the peak locations in each B_{i}
- Real variables for the shift coefficients $s_{i j}$ (per base, per point)
- An observed peak p is explained if $\left|p-s_{i j}-e_{i j}\right| \leq \varepsilon$ (Match the height of the peaks)
- Bound the number of missing peaks $\leq T$

