
computational

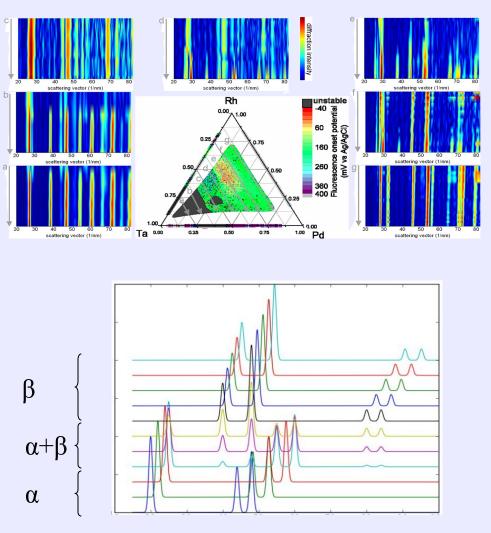
Materials Discovery: New Opportunities at the Intersection of **Constraint Reasoning and Learning**

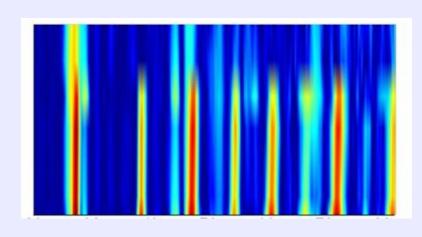
Motivation

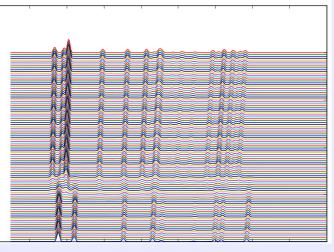
Automating a laborious task

Exploiting large amount of newlyavailable data

- Finding new products
- Finding product substitutes


■ Understanding material properties (such as catalysts for fuel cell technologies)




Problem Definition

Combinatorial Method: sputtering 3 metals (or oxides) onto a silicon wafer (which produces a *thin-film*) and using x-ray diffraction to obtain structural information about crystal lattice.

Input: Diffraction patterns $D_1, ..., D_n$ of *n* points on the thin-film.

Output: Set of *K* basis patterns (or *phases*) $B_1, ..., B_K$ (along with weights a_{ij} and shifts s_{ij} of basis pattern *j* in point *i*).

Ronan Le Bras, Stefano Ermon, Theodoros Damoulas, Rich Bernstein, Carla P. Gomes, Bart Selman, R. Bruce van Dover

Physical Constraints

Each diffraction point D_i is explained by the basis patterns:

$$\boldsymbol{D}_i = \boldsymbol{a}_{il} \boldsymbol{B}_1 + \ldots + \boldsymbol{a}_{iK} \boldsymbol{B}_K$$

There is experimental noise:

$$min \|D_i - a_{i1}B_1 + ... + a_{iK}B_K\|$$

Non-negative basis patterns and coefficients:

$$B_i \ge 0$$
, $a_{ij} \ge 0$

At most M non-zero coefficients per point:

 $|\{j \mid a_{ij} > 0\}| \leq M$

Basis patterns appear in contiguous locations on the silicon wafer:

The subgraph induced by $|\{i \mid a_{ii} \ge 0\}|$ *is connected*

Basis patterns can be shifted:

Shift operator Shift coefficients

$$\|D_i - a_{il}S(B_{I,S_{il}}) + \dots + a_{ik}S(B_{K,S_{ik}})$$

Shifts coefficients are bounded, continuous and monotonic:

$$S_{11} \leq S_{12} \leq S_{13} \leq S_{14}$$

$$S_{12} - S_{11} \leq c$$

Satisfiability Modulo Theories Approach

Real variables e_{ii} for the **peak locations** in each B_i

Real variables for the shift coefficients s_{ii}

An observed peak p is "explained" if there exists s_{ii} , e_{ii} s.t. $|p - (s_{ii} + e_{ii})| \le \varepsilon$

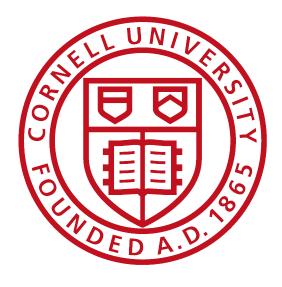
Every observed peak must be "explained"

Bound the number of missing peaks $\leq T$

Minimization by (binary) search on T

Linear phase usage constraint (up to M basis patterns per point)

Linear constraint for shift monotonicity and continuity ($s_{ij} \leq s_{lm}$)


Lazy connectivity: add a cut if current solution is not connected

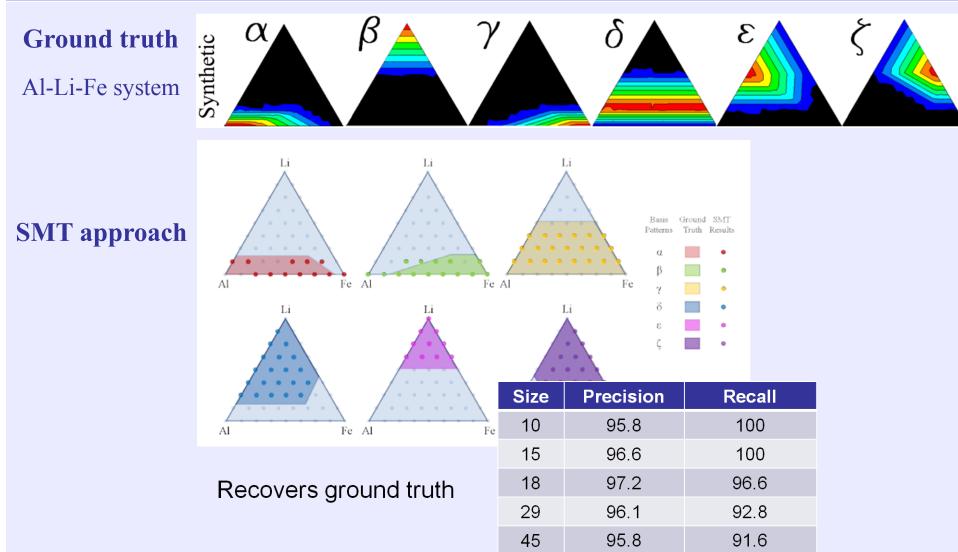
If disconnected regions explained with phase

Then Phase 1 must appear in at least one of these points

Symmetry breaking: Renaming of pure phases,

Ordering the peaks location e_{ij} (per basis pattern)

Runtime Analysis


Unknown Phases	Arithmetic + Z3 (s)	Set-based + CPLEX (s)	
3	8	0.5	
6	12	Timeout	
3	13	0.5	
6	20	Timeout	r
3	29	384.8	I
6	125	Timeout	
3	78	276	
6	186	Timeout	
6	518	Timeout	
	Phases 3 6 3 6 3 6 3 6 3 6 3 6 6 3 6 3 6	Phases (s) 3 8 6 12 3 13 6 20 3 29 6 125 3 78 6 186	Phases (s) 3 8 0.5 6 12 Timeout 3 13 0.5 6 20 Timeout 3 29 384.8 6 125 Timeout 3 78 276 6 186 Timeout

Z3 scales to realistic sized problems!

Arithmetic encoding translated to CP and MIP:

- MIP is appealing because it can optimize the objective
- They don't scale \rightarrow SMT solving strategy

Experimental Results

New arithmetic-based encoding for Materials Discovery

Good performance on synthetic data, exciting results analyzing real-world data.

New application domain for the area of Satisfiability Modulo Theories.

Acknowledgments

The authors gratefully acknowledge the support of the National Science Foundation, award number 0832782.