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Combinatorial materials science involves the rapid, high-throughput synthesis, measurement, and anal-
ysis of a large number of different but structurally related materials. In combinatorial materials discovery,
materials scientists search for intermetallic compounds with desirable physical properties by obtaining mea-
surements on hundreds of samples from a composition spread. Determining the structure of the materials
formed in a composition spread is key to understanding composition and property relations and can poten-
tially result in a breakthrough materials discovery.

This is an important and exciting direction in the emerging field of computational sustainability [4] as
it aims to achieve the best possible use of our available material resources. One ultimate objective is to
help discover the next-generation materials for fuel-cell catalysis, as such materials have the potential of
dramatically increasing fuel cell capacity while reducing their cost.

The analysis of composition spreads remains, however, a manual and laborious task. Thus the need for
new techniques to automatically analyze and interpret such data. Whereas the data-intensive aspect of the
area of materials discovery seems to favor Data-Mining or Machine Learning techniques, the rigorous and
highly-structured physical properties that govern the crystallization on the composition spread interestingly
suggest that constraint reasoning is key to a physically meaningful analysis. In this paper, we describe two
novel approaches to this problem that integrate domain-specific scientific background knowledge about the
physical and chemical properties of the materials. Our first approach combines constraint programming
(CP) and machine learning (ML), while the second is based on satisfiability modulo theory (SMT).

We evaluate the performance of our methods on realistic synthetic measurements, and we show that it
provides accurate and physically meaningful interpretations of the data, even in the presence of artificially
added noise.

Combinatorial Materials Discovery

In the composition spread approach, three metals (or oxides) are sputtered onto a silicon wafer using guns
pointed at three distinct locations, resulting in a so-called thin film (see Figure 1). Different locations on the
silicon wafer correspond to different concentrations of the sputtered materials, depending on their distance
from the gunpoints. During experimentation, a number of locations (samples) on the thin film are examined
using an x-ray diffraction technique that provides, for each sample, a diffraction pattern (i.e. the intensity
of the electromagnetic waves as a function of the scattering angle of diffraction).

The observed diffraction pattern characterizes the underlying crystal structure, and provides important
insights about the chemical and physical properties of the corresponding composite material. As illustrated
in Figure 1 (Right), shifting and merging diffraction patterns are the result of the crystallization process.

Kernel-Based Clustering to Boost CP Scalability

This crystallization process can be formulated as a CP encoding. However, this formulation does not scale
up to instance sizes of interest, especially in the presence of noise. To improve the scalability of the CP
approach, we propose in [6] to leverage ideas from machine learning (ML), specifically kernel-based similarity

∗Supported by NSF Expeditions in Computing award on Computational Sustainability (Grant 0832782).



Figure 1: Left: Pictorial depiction of the problem, showing a set of sampled points on a thin film. Each
sample corresponds to a different composition, and has an associated measured x-ray diffraction pattern.
Colors correspond to different combinations of the basis patterns α, β, γ, δ. Right: Scaling (shifting) and
merging of the diffraction patterns as one moves from one point to a neighboring one.

measures and clustering, in order to make the problem solving task easier for the CP formulation. This novel
integration of the two approaches is inspired by their complementary strengths: while CP techniques are
particularly suited to enforce detailed constraints at a local level, data-driven ML methods are more robust
to noise and effective at identifying global patterns of similarity.

SMT for Materials Discovery

We integrate domain-specific knowledge about the physical properties of the materials into an SMT reasoning
framework based on linear arithmetic [3]. The problem has a hybrid nature, as it combines continuous
measurement data, discrete decision variables and combinatorial constraints, which is particularly suited for
an SMT reasoning. Using our novel encoding, state-of-the-art SMT solvers can automatically analyze large
synthetic datasets, and generate interpretations that are physically meaningful and very accurate, even in
the presence of artificially added noise. Moreover, our approach scales to realistic-sized problem instances.
Furthermore, we show that SMT solving outperforms both Constraint Programming and Mixed Integer
Programming translations of our SMT formulation. This suggests that the improvements come from the
SMT solving procedure rather than from the new arithmetic-based encoding, opening a novel application
area for SMT solving technology beyond the traditional verification domains [2].

Empirical Validation

To validate our approaches, synthetic x-ray diffraction data was generated using diffraction patterns from the
JCPDS database [1] with parameter reflecting those of a recently developed combinatorial crystallography
technique [5]. These experiments show that, as opposed to previous work, our algorithms are able to explain
the observed diffraction patterns with high accuracy and in a physically meaningful way.
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