From Streamlined Combinatorial Search to Efficient Constructive Procedures

Ronan Le Bras
Carla P. Gomes
Bart Selman
Computer Science
Computer Science
Computer Science

July 26, 2012
AAAI'12

Background:

Significant progress in the area of search, constraint satisfaction, and automated reasoning.
These approaches have been evaluated on problems such as:

N-Queens

Round-Robin Tournament

Orthogonal Latin squares

Background:

Significant progress in the area of search, constraint satisfaction, and automated reasoning.
These approaches have been evaluated on problems such as:

N-Queens

Round-Robin Tournament

Orthogonal Latin squares

Yet, 1) constructions have been found by hand for these problems , and
2) these techniques do not provide real mathematical insights on the structure of the problem and how to devise general construction rules.

Goal: Design a framework to discover efficient constructive procedures.

Example Domain:

Design of Scientific Experiments
Ics)

In the context of sustainability, assume we have $\mathbf{4}$ fertilizers, and we want to minimize their impact on the 'dead-zones' in the Gulf of Mexico.

Nitrogen Based Fertilizers
Dead zones

Example Domain:
 Design of Scientific Experiments

In the context of sustainability, assume we have $\mathbf{4}$ fertilizers, and we want to minimize their impact on the 'dead-zones' in the Gulf of Mexico.

Nitrogen Based Fertilizers
Dead zones
In a more general context, assume we have 4 agronomic treatments for growing beans and we want to assess their effectiveness.

Example Domain:
 Design of Scientific Experiments

Ics

In the context of sustainability, assume we have $\mathbf{4}$ fertilizers, and we want to minimize their impact on the 'dead-zones' in the Gulf of Mexico.

Nitrogen Based Fertilizers
Dead zones
In a more general context, assume we have 4 agronomic treatments for growing beans and we want to assess their effectiveness.

1) We need to distribute the treatments evenly over the test plots.

Example Domain:

Design of Scientific Experiments
Ics

In the context of sustainability, assume we have $\mathbf{4}$ fertilizers, and we want to minimize their impact on the 'dead-zones' in the Gulf of Mexico.

Nitrogen Based Fertilizers
Dead zones
In a more general context, assume we have $\mathbf{4}$ agronomic treatments for growing beans and we want to assess their effectiveness.

1) We need to distribute the treatments evenly over the test plots.

2) We need to eliminate the correlation bias as much as possible, and

Example Domain:

The Spatially-balanced Latin square (SBLS) problem

Problem Definition:

An $\boldsymbol{S B L S}$ of order n is an $n \times n$ square grid in which:
\square Each symbol appears exactly once in each row and column (Latin square structure).

SBLS of order 6

Example Domain:
 The Spatially-balanced Latin square (SBLS) problem

Problem Definition:

An $\boldsymbol{S B L S}$ of order n is an $n \times n$ square grid in which:
Each symbol appears exactly once in each row and column (Latin square structure).

The average distance (column-wise) of a pair of symbols is the same for any pair (Balanced structure).

Example Domain:
 The Spatially-balanced Latin square (SBLS) problem

A computationally challenging combinatorial design problem:

Approach	Order	Time (s)	Reference
Constraint Programming (CP)	9	241	[Gomes and Sellmann, CP’04]
IDWalk (metaheuristic)	9	4.5	[Neveu et al., CP’04]
Self-symmetry-based Streamlined CP	14	5,434	[Gomes and Sellmann, CP’04]
Composition-based Streamlined CP	18	107 K	[Gomes and Sellmann, CP’04]
Streamlined Local Search	35	1.2 M	[Smith et al., IJCAI'05]

The largest SBLS ever found (35x35)

Example Domain:
 The Spatially-balanced Latin square (SBLS) problem

A computationally challenging combinatorial design problem:

Approach	Order	Time (s)	Reference
Constraint Programming (CP)	9	241	[Gomes and Sellmann, CP’04]
IDWalk (metaheuristic)	9	4.5	[Neveu et al., CP'04]
Self-symmetry-based Streamlined CP	14	5,434	[Gomes and Sellmann, CP’04]
Composition-based Streamlined CP	18	107 K	[Gomes and Sellmann, CP’04]
Streamlined Local Search	35	1.2 M	[Smith et al., IJCAI'05]

Conjecture [Gomes, Sellmann et al., CPAIOR'04]
There exist arbitrary large SBLSs, and an effective way of constructing them.

Example Domain:
 The Spatially-balanced Latin square (SBLS) problem

A computationally challenging combinatorial design problem:

Approach	Order	Time (s)	Reference
Constraint Programming (CP)	9	241	[Gomes and Sellmann, CP'04]
IDWalk (metaheuristic)	9	4.5	[Neveu et al., CP'04]
Self-symmetry-based Streamlined CP	14	5,434	[Gomes and Sellmann, CP'04]
Composition-based Streamlined CP	18	107 K	[Gomes and Sellmann, CP'04]
Streamlined Local Search	35	1.2 M	[Smith et al., IJCAI'05]

Conjecture [Gomes, Sellmann et al., CPAIOR'04]
There exist arbitrary large SBLSs, and an effective way of constructing them.

Goal: Discover an efficient construction.

- Motivation
- Example Domain
- Proposed Framework
- Overview of Streamlined Search
- Taking advantage of Human Insights
- Formal Description and Overview
- GUI for Human-guided Streamlined Search
- Application to the Spatially-balanced Latin square problem
- Application to the Weak Schur Number problem
- Conclusions and Future work
- Motivation
- Example Domain
- Proposed Framework
- Overview of Streamlined Search
- Taking advantage of Human Insights
- Formal Description and Overview
- GUI for Human-guided Streamlined Search
- Application to the Spatially-balanced Latin square problem
- Application to the Weak Schur Number problem
- Conclusions and Future work

Proposed Framework: Overview of Streamlined Search

Goal:

Exploit the structure of some solutions to dramatically boost the effectiveness of the propagation mechanisms.

Underlying Observation:

When one insists on maintaining the full solution set, there is a hard practical limit on the effectiveness of constraint propagation methods. Often, there is no compact representation for all the solutions.

Underlying Conjecture:

For many intricate combinatorial problems - if solutions exist there will often be regular ones.

Proposed Framework: Overview of Streamlined Search

Streamlined Search:

Strong branching mechanisms (by adding constraints based on structure properties)
at high levels of the search tree.

Proposed Framework:
 Taking advantage of Human Insights

Recognizing Patterns and Regularities:

[Source: Marijn J.H.
Heule, 2009]

Correcting Irregularities:

Generalizing / Formalizing Regularities:

1	2	3
3	1	2
2	3	1

Cyclic Latin square

$\leadsto \quad$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 4 | 1 | 2 | 3 |
| 3 | 4 | 1 | 2 |
| 2 | 3 | 4 | 1 |

of order 3
CORNELL
Cyclic Latin square

$$
\text { of order } 4
$$

Proposed Framework: Formal Description and Overview

```
\(\mathcal{O} \leftarrow \emptyset ; \quad / /\) Conjectured streamliners
\(\Gamma \leftarrow \emptyset ; \quad / /\) Search streamliners
\(\rho \leftarrow \rho_{0} ; \quad / /\) Search parameter
\(\mathcal{S} \leftarrow \emptyset ; \quad\) // Solutions found
\(\tau \leftarrow\) false; \(\quad / /\) Timeout flag
repeat
    Solve \(\left(P_{\rho}, \Gamma, t\right) \rightarrow\left(\mathcal{S}^{\prime}, \tau\right) ; \quad / /\) Search for new solutions
    if \(\mathcal{S}^{\prime} \cap \mathcal{S} \neq \emptyset\) then
        \(\mathcal{S} \leftarrow \mathcal{S} \cup \mathcal{S}^{\prime} ; \quad\) // Case 1: successful search
        Analyze \((\mathcal{S}) \rightarrow \mathcal{O}^{\prime} ; \quad\) // Conjecture new streamliners
        \(\mathcal{O} \leftarrow \mathcal{O} \cup \mathcal{O}^{\prime} ;\)
        \(\rho \leftarrow \rho+1 ;\)
    else if \(\tau\) is true then
        Select \(\Gamma^{\prime} \subseteq \mathcal{O} ; \quad / /\) Case 2: timed-out failed search
        \(\Gamma \leftarrow \Gamma \cup \bar{\Gamma}^{\prime} ; \quad\) // Strengthen streamliners
    else
        Select \(\Gamma^{\prime} \subseteq \Gamma ; \quad / /\) Case 3: exhaustive failed search
        \(\Gamma \leftarrow \Gamma \backslash \Gamma^{\prime} ; \quad\) // Weaken streamliners
        \(\rho=\max \left\{\rho: \mathcal{S}(\Gamma) \cap \mathcal{S}\left(P_{\rho}\right) \neq \emptyset\right\}+1\);
        Select \(\Gamma^{\prime \prime} \subseteq \Gamma^{\prime} ; \quad / /\) Find next parameter of interest
        \(\mathcal{O} \leftarrow \mathcal{O} \backslash \bar{\Gamma}^{\prime \prime} ; \quad / /\) Drop unpromising streamliners
until \(\mathcal{O}=\emptyset\);
```

Algorithm : Discover-Construction procedure for a given problem P , with parameter set ρ and timeout t.

Proposed Framework: Formal Description and Overview

```
\(\mathcal{O} \leftarrow \emptyset ;\)
\(\Gamma \leftarrow \emptyset ;\)
\(\rho \leftarrow \rho_{0} ;\)
\(\mathcal{S} \leftarrow \emptyset ;\)
\(\tau \leftarrow\) false;
repeat
    Solve \(\left(P_{\rho}, \Gamma, t\right) \rightarrow\left(\mathcal{S}^{\prime}, \tau\right)\); // Search for new solutions
1) \(\mathcal{S} \leftarrow \mathcal{S} \cup \mathcal{S}^{\prime}\);
4 Analyze \((\mathcal{S}) \rightarrow \mathcal{O}^{\prime} ; \quad / /\) Conjecture new streamliners \(\mathcal{O} \leftarrow \mathcal{O} \cup \mathcal{O}^{\prime} ;\)
4) \(\rho \leftarrow \rho+1\);
else if \(\tau\) is true then
Select \(\Gamma^{\prime} \subseteq \mathcal{O} ; \quad / /\) Case 2: timed-out failed search \(\Gamma \leftarrow \Gamma \cup \overline{\Gamma^{\prime}} ; \quad\) // Strengthen streamliners else Select \(\Gamma^{\prime} \subseteq \Gamma ; \quad / /\) Case 3: exhaustive failed search \(\Gamma \leftarrow \Gamma \backslash \Gamma^{\prime} ; \quad\) // Weaken streamliners \(\rho=\max \left\{\rho: \mathcal{S}(\Gamma) \cap \mathcal{S}\left(P_{\rho}\right) \neq \emptyset\right\}+1\);
Select \(\Gamma^{\prime \prime} \subseteq \Gamma^{\prime} ; \quad / /\) Find next parameter of interest \(\mathcal{O} \leftarrow \mathcal{O} \backslash \bar{\Gamma}^{\prime \prime} ; \quad / /\) Drop unpromising streamliners until \(\mathcal{O}=\emptyset\);
// Conjectured streamliners // Search streamliners // Search parameter // Solutions found // Timeout flag
```

Algorithm : Discover-Construction procedure for a given problem P , with parameter set ρ and timeout t.
(1) Analyze smaller size solutions, and conjecture potential regularities in the solutions.

2 Validate through streamlining the observed regularities.

3 If the streamlined search does not give a larger size solution, the proposed regularity is quite likely accidental and one looks for a new pattern in the small scale solutions.

4 Otherwise, one proceeds by generating a number of new solutions that all contain the proposed structural regularity and are used to expand the solution set and to reveal new regularities.

Proposed Framework for Human-guided Streamlined Search Overview on the SBLS problem

Search Parameters

$n=3$
$\Gamma=\{ \}$

Conjectured Streamliners

Start with first order of interest ($n=3$) and no streamliners ($\Gamma=\{ \}$)

Solution Set

Proposed Framework for Human-guided Streamlined Search Overview on the SBLS problem

Search Parameters

$n=3$
$\Gamma=\{ \}$

Proposed Framework for Human-guided Streamlined Search Overview on the $S B L S$ problem

Search Parameters

$n=5$
$\Gamma=\{ \}$

Conjectured Streamliners
\{Symmetric, Cyclic\}

\{new solutions\}

Conjecture new streamliners
\{new streamliners, increase n\}

Proposed Framework for Human-guided Streamlined Search Overview on the $S B L S$ problem

Search Parameters

$n=5$
$\Gamma=\{$ Symmetric $\}$

Conjectured Streamliners
\{Symmetric, Cyclic \}
\{Symmetric, Cyclic\}

Start with first order of interest $(\mathrm{n}=3)$ and no streamliners ($\Gamma=\{ \}$)

Solution Set

1	2	3	
1			
2	1	3	2

Proposed Framework for Human-guided Streamlined Search Overview on the $S B L S$ problem

Search Parameters

$n=6$
$\Gamma=\{$ Symmetric $\}$

Conjectured Streamliners
\{Symmetric, Cyclic, Reduced\}

Proposed Framework for Human-guided Streamlined Search Overview on the $S B L S$ problem

Search Parameters

$n=6$
$\Gamma=\{$ Symmetric, Cyclic $\}$

Conjectured Streamliners

\{Symmetric, Cyclic, Reduced $\}$

Solution Set

1	2	3		
2	1	3	2	
2	2	1	3	2
	3	3	2	1
		2	1	3

1	2	3	4	5	
5	1	2	3	4	5
4	4	1	5	3	2
3	5	3	1	2	4
2	2	5	4	1	3
	3	4	2	5	1

Proposed Framework for Human-guided Streamlined Search Overview on the $S B L S$ problem

Search Parameters
$n=\mathbb{Z} 3$
$\Gamma=\{$ Symỉetric, Cyclic $\}$

Conjectured Streamliners
\{Symmetric, Cyclic, Reduced $\}$

Solution Set

1	2	3		
2	1	3	2	
2	2	1	3	2
	2	3	2	1
	3	2		
	2	1	3	

| 1 | 2 | 3 | 4 | 5 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 1 | 2 | 3 | 4 | 5 |
| 4 | 4 | 1 | 5 | 3 | 2 |
| 3 | 5 | 3 | 1 | 2 | 4 |
| 2 | 2 | 5 | 4 | 1 | 3 |
| | 3 | 4 | 2 | 5 | 1 |

GUI for Human-guided Streamlined Search

煰 Constructive Procedures Discovery Tool

File Edit Help

Solutions found

Streamliner \backslash Parameter	3	5	6	8	9	11	12
Any	12	5760	8736	238	411	9	6
Reduced	1	2	14	12	1	1	0
Symmetry	6	240	8640	12	1	1	0
Columns 2 and n	1	6	1	2	1	1	0
Cyclic	6	40	96	226	410	8	6

Selected Solutions
$5: 1464$
$5: 3194$
54526
$5: 4983$
555502
$55: 5572$
$6: 10$
$8: 10$
$8: 11$

1	2	3	4	5
2	4	5	3	1
3	5	2	1	4
4	3	1	5	2
5	1	4	2	3

1	2	3	4	5	6
2	4	6	5	3	1
3	6	4	1	2	5
4	5	1	3	6	2
5	3	2	6	1	4
6	1	5	2	4	3

1	2	3	4	5	6	7	8
2	4	6	8	7	5	3	1
3	6	8	5	2	1	4	7
4	8	5	1	3	7	6	2
5	7	2	3	8	4	1	6
6	5	1	7	4	2	8	3
7	3	4	6	1	8	2	5
8	1	7	2	6	3	5	4

1 - Select Streamliner Combination

2-Set Parameters

Create New Streamliner
Name

3 - Perform search

$$
\begin{array}{ll}
\text { Time Limit } & 60 \\
\text { Click to Run } & \text { Streamline }
\end{array}
$$

Search Stats

New solutions found
Total \# of solutions for this order
Total \# of solutions

GUI for Human-guided Streamlined Search

GUI for Human-guided Streamlined Search

GUI for Human-guided Streamlined Search

Selected Solutions	1	2	3	4	5	1	2	3	4	5	6	1	2	3	4	5	6	7	8
5:1464	2	4	5	3	1	2	4	6	5	3	1	2	4	6	8	7	5	3	1
$\begin{aligned} & 0.3154 \\ & 5.4526 \end{aligned}$	3	5	2	1	4	3	6	4	1	2	5	3	6	8	5	2	1	4	7
5:4983	4	3	1	5	2	4	5	1	3	6	2	4	8	5	1	3	7	6	2
5:5572	5	1	4	2	3	5	3	2	6	1	4	5	7	2	3	8	4	1	6
$\begin{array}{\|c\|} \hline 6: 10 \\ \hline 8: 10 \\ \hline \end{array}$						6	1	5	2	4	3	6	5	1	7	4	2	8	3
8:11												7	3	4	6	1	8	2	5
												8	1	7	2	6	3	5	4

1-Select Streaminer Combination

2- Set Parameters

Create New Streamliner
Name

3 - Perform search

$$
\begin{array}{lll}
\text { Time Limit } & 60 & \stackrel{\rightharpoonup}{\nabla} \\
\text { Click to Run } & \text { Streamline }
\end{array}
$$

Search Stats

New solutions found
Total \# of solutions for this order
Total \# of solutions

GUI for Human-guided Streamlined Search

煰 Constructive Procedures Discovery Tool

File Edit Help
Solutions found

Streamliner IParameter	3	5	6	8	9	11	12
Any	12	5760	8736	238	411	9	6
Reduced	1	2	14	12	1	1	0
Symmetry	6	240	8640	12	1	1	0
Columns 2 andn	1	6	1	2	1	1	0
Cyclic AnalyZe SOTUTiOnS	96	226	410	8	6		

Selected Solutions	1	2	3	4	5	1	2	3	4	5	6	1	2	3	4	5	6	7	8
$\begin{aligned} & 5: 1464 \\ & 5: 3194 \end{aligned}$	2	4	5	3	1	2	4	6	5	3	1	2	4	6	8	7	5	3	1
5:4526	3	5	2	1	4	3	6	4	1	2	5	3	6	8	5	2	1	4	7
5:4983	4	3	1	5	2	4	5	1	3	6	2	4	8	5	1	3	7	6	2
5:5572	5	1	4	2	3	5	3	2	6	1	4	5	7	2	3	8	4	1	6
6:10						6	1	5	2	4	3	6	5	1	7	4	2	8	3
8:11												7	3	4	6	1	8	2	5
												8	1	7	2	6	3	5	4

2 - Set Parameters			3 - Perform search		
Parameter n	11	$\stackrel{\text { 人 }}{\sim}$	Time Limit	60	$\stackrel{\square}{*}$
Parameterk		-	Click to Run		
Create New Streamliner \square					
Name					

Search Stats

New solutions found
Total \# of solutions for this order
Total \# of solutions
15172

- Motivation
- Example Domain
- Proposed Framework
- Application to the Spatially-balanced Latin square problem
- Successful Streamliners
- Constructive Procedure 1
- Constructive Procedure 2
- Application to the Weak Schur Number problem
- Conclusions and Future work

Application to the $S B L S$ problem: Construction 1

Successful Key Streamliners:

\{Diagonal symmetry, Reduced form, Assignments of columns 2 and n, Multiples of i in row i, Second sequence decreasing $\}$

Streamliners	5	6	8	9	11	14
$\Gamma_{1}=\emptyset$	$\mathbf{5 7 6 0}$	15878	-	-	-	-
$\Gamma_{2}=\Gamma_{1} \cup\{$ Symmetric $\}$	$\mathbf{2 4 0}$	8447	714	43	-	-
$\Gamma_{3}=\Gamma_{2} \cup\{$ Reduced $\}$	$\mathbf{2}$	$\mathbf{1 4}$	$\mathbf{1 4}$	51	-	-
$\Gamma_{4}=\Gamma_{3} \cup\{$ Columns $2 \& \mathrm{n}\}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	-
$\Gamma_{5}=\Gamma_{4} \cup\{$ Multiples of $i\}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	1

Fig: Number of SBLSs generated in 60 seconds, by order and streamliners (Bold indicates exhaustive search).

Application to the $S B L S$ problem: Construction 1

1	2	3	4	5	6	7	8
2	4	6	8	7	5	3	1
3	6	8	5	2	1	4	7
4	8	5	1	3	7	6	2
5	7	2	3	8	4	1	6
6	5	1	7	4	2	8	3
7	3	4	6	1	8	2	5
8	1	7	2	6	3	5	4

1	2	3	4	5	6	7	8	9
2	4	6	8	9	7	5	3	1
3	6	9	7	4	1	2	5	8
4	8	7	3	1	5	9	6	2
5	9	4	1	6	8	3	2	7
6	7	1	5	8	2	4	9	3
7	5	2	9	3	4	8	1	6
8	3	5	6	2	9	1	7	4
9	1	8	2	7	3	6	4	5

1	2	3	4	5	6	7	8	9	10	11
2	4	6	8	10	11	9	7	5	3	1
3	6	9	11	8	5	2	1	4	7	10
4	8	11	7	3	1	5	9	10	6	2
5	10	8	3	2	7	11	6	1	4	9
6	11	5	1	7	10	4	2	8	9	3
7	9	2	5	11	4	3	10	6	1	8
8	7	1	9	6	2	10	5	3	11	4
9	5	4	10	1	8	6	3	11	2	7
10	3	7	6	4	9	1	11	2	8	5
11	1	10	2	9	3	8	4	7	5	6

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	4	6	8	10	12	14	13	11	9	7	5	3	1
3	6	9	12	14	11	8	5	2	1	4	7	10	13
4	8	12	13	9	5	1	3	7	11	14	10	6	2
5	10	14	9	4	1	6	11	13	8	3	2	7	12
6	12	11	5	1	7	13	10	4	2	8	14	9	3
7	14	8	1	6	13	9	2	5	12	10	3	4	11
8	13	5	3	11	10	2	6	14	7	1	9	12	4
9	11	2	7	13	4	5	14	6	3	12	8	1	10
10	9	1	11	8	2	12	7	3	13	6	4	14	5
11	7	4	14	3	8	10	1	12	6	5	13	2	9
12	5	7	10	2	14	3	9	8	4	13	1	11	6
13	3	10	6	7	9	4	12	1	14	2	11	5	8
14	1	13	2	12	3	11	4	10	5	9	6	8	7

Application to the $S B L S$ problem: Construction 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	4	6	8	10	12	14	13	11	9	7	5	3	1
3	6	9	12	14	11	8	5	2	1	4	7	10	13
4	8	12	13	9	5	1	3	7	11	14	10	6	2
5	10	14	9	4	1	6	11	13	8	3	2	7	12
6	12	11	5	1	7	13	10	4	2	8	14	9	3
7	14	8	1	6	13	9	2	5	12	10	3	4	11
8	13	5	3	11	10	2	6	14	7	1	9	12	4
9	11	2	7	13	4	5	14	6	3	12	8	1	10
10	9	1	11	8	2	12	7	3	13	6	4	14	5
11	7	4	14	3	8	10	1	12	6	5	13	2	9
12	5	7	10	2	14	3	9	8	4	13	1	11	6
13	3	10	6	7	9	4	12	1	14	2	11	5	8
14	1	13	2	12	3	11	4	10	5	9	6	8	7

Application to the $S B L S$ problem: Construction 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	4	6	8	10	12	14	13	11	9	7	5	3	1
3	6	9	12	14	11	8	5	2	1	4	7	10	13
4	8	12	13	9	5	1	3	7	11	14	10	6	2
5	10	14	9	4	1	6	11	13	8	3	2	7	12
6	12	11	5	1	7	13	10	4	2	8	14	9	3
7	14	8	1	6	13	9	2	5	12	10	3	4	11
8	13	5	3	11	10	2	6	14	7	1	9	12	4
9	11	2	7	13	4	5	14	6	3	12	8	1	10
10	9	1	11	8	2	12	7	3	13	6	4	14	5
11	7	4	14	3	8	10	1	12	6	5	13	2	9
12	5	7	10	2	14	3	9	8	4	13	1	11	6
13	3	10	6	7	9	4	12	1	14	2	11	5	8
14	1	13	2	12	3	11	4	10	5	9	6	8	7

for row $i=1, \ldots, N$ do

$$
k=1
$$

$$
j=1
$$

$$
a_{i, j}=i \text {; }
$$

while $j<N$ do
if k is odd then
// Odd sequence

$$
\text { while } a_{i, j}+i \leq N \text { and } j<N \text { do }
$$

$$
a_{i, j+1}=a_{i, j}+i
$$

else

$$
j=j+1
$$

// Even sequence while $a_{i . j}-i \geq 1$ and $j<N$ do

$$
a_{i, j+1}=a_{i, j}^{-}-i
$$

$$
j=j+1
$$

if $j<N$ then // Switch sequence if k is odd then

$$
a_{i, j+1}=2 N+1-i-a_{i, j}
$$

else

$$
\begin{aligned}
& \quad a_{i, j+1}=i-a_{i, j} \\
& k=k+1 \\
& j=j+1
\end{aligned}
$$

Algorithm : SBLS-sequence procedure for SBLS of order N, when $2 N+1$ is prime.

Application to the $S B L S$ problem: Construction 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	4	6	8	10	12	14	13	11	9	7	5	3	1
3	6	9	12	14	11	8	5	2	1	4	7	10	13
4	8	12	13	9	5	1	3	7	11	14	10	6	2
5	10	14	9	4	1	6	11	13	8	3	2	7	12
6	12	11	5	1	7	13	10	4	2	8	14	9	3
7	14	8	1	6	13	9	2	5	12	10	3	4	11
8	13	5	3	11	10	2	6	14	7	1	9	12	4
9	11	2	7	13	4	5	14	6	3	12	8	1	10
10	9	1	11	8	2	12	7	3	13	6	4	14	5
11	7	4	14	3	8	10	1	12	6	5	13	2	9
12	5	7	10	2	14	3	9	8	4	13	1	11	6
13	3	10	6	7	9	4	12	1	14	2	11	5	8
14	1	13	2	12	3	11	4	10	5	9	6	8	7

a	$a+i$	a	$a-i$

for row $i=1, \ldots, N$ do
$k=1 ;$
$j=1$;
$a_{i, j}=i$;
while $j<N$ do
if k is odd then
// Odd sequence
while $a_{i, j}+i \leq N$ and $j<N$ do
$a_{i, j+1}=a_{i, j}+i$;
$j=j+1$;
else
// Even sequence while $a_{i . j}-i \geq 1$ and $j<N$ do

$$
a_{i, j+1}=a_{i, j}-i
$$

$$
j=j+1
$$

if $j<N$ then $\quad / /$ Switch sequence if k is odd then

$$
a_{i, j+1}=2 N+1-i-a_{i, j}
$$

else

$$
\begin{aligned}
& \quad a_{i, j+1}=i-a_{i, j} \\
& k=k+1 \\
& j=j+1
\end{aligned}
$$

Algorithm : SBLS-sequence procedure for SBLS of order N, when $2 N+1$ is prime.

Proof of Correctness in [R. Le Bras, A. Perrault, and C. Gomes, Polynomial Time

Application to the $S B L S$ problem: Construction 2

1	2	6	3	9	7	13	4	11	10	12	8	5	14
2	3	7	4	10	8	14	5	12	11	13	9	6	1
3	4	8	5	11	9	1	6	13	12	14	10	7	2
4	5	9	6	12	10	2	7	14	13	1	11	8	3
5	6	10	7	13	11	3	8	1	14	2	12	9	4
6	7	11	8	14	12	4	9	2	1	3	13	10	5
7	8	12	9	1	13	5	10	3	2	4	14	11	6
8	9	13	10	2	14	6	11	4	3	5	1	12	7
9	10	14	11	3	1	7	12	5	4	6	2	13	8
10	11	1	12	4	2	8	13	6	5	7	3	14	9
11	12	2	13	5	3	9	14	7	6	8	4	1	10
12	13	3	14	6	4	10	1	8	7	9	5	2	11
13	14	4	1	7	5	11	2	9	8	10	6	3	12
14	1	5	2	8	6	12	3	10	9	11	7	4	13

$c_{1,1}=1 ; \quad / /$ Generate 1st row of the conjugate for column $j=2, \ldots, N$ do // Observed pattern $1,2,4, \ldots$ if $2 c_{1, j-1} \leq N$ then

$$
c_{1, j}=\overline{2} c_{1, j-1}
$$

else

$$
c_{1, j}=2 N+1-2 c_{1, j-1}
$$

for row $i=2, \ldots, N$ do
// Subsequent rows
$c_{i, 1}=c_{i-1, N} ; \quad / /$ Shifted version of previous
for column $j=2, \ldots, N$ do
$c_{i, j}=c_{i-1, j-1} ;$
for row $i=1, \ldots, N$ do // Generate SBLS from conjugate for column $j=1, \ldots, N$ do $a_{i, c_{i, j}}=j$;

Algorithm: SBLS-Cyclic procedure.

Application to the Weak Schur problem

Problem Definition:

\square A set is (weakly) sum free if for any two (distinct) elements of this set, their sum does not belong to the set.

- The Weak Schür Number of order $k, W S(k)$, is the largest integer n for which there exists a partition of $[1, n]$ into k weakly sum-free sets.

Each of the 3 sets is such that, for any 2 elements of the set, their sum does not belong to the sdame set.

Fig: Partition of $[1,23]$ into 3 weakly sumfree sets, proving $W S(3) \geq 23$

Application to the Weak Schur problem

Best known lower bounds:

Approach	WS(5)	WS(6)	Reference
(not disclosed)	196	-	[G.W. Walker, AMM'50]
Theoretical bound (not proved)	188	554	[J.H. Braun, AMM'50]
SAT	196	572	[Eliahou et al., Computers \& Math Applications'12]
Multi-level Tabu-Search	196	574	[Fonlupt et al., EA'11]
SAT (no certificate)	196	575	[Eliahou et al., Computers \& Math Applications'12] (revised)

Application to the Weak Schur problem

Successful Key Streamliners:
\{Ordered sets, constrained minimum of each set, partial assignments, sequences of consecutive integers, sequence interleaving \}

Application to the Weak Schur problem

Successful Key Streamliners:

\{Ordered sets, constrained minimum of each set, partial assignments, sequences of consecutive integers, sequence interleaving \}

1248112225506368139149154177182192198393 398408413436450455521526540563568578
$\begin{aligned} & 910 \text { 12-18 } 20 \text { 54-62 140-148 183-191 399-407 441-449 527- } \\ & 535 \text { 569-577 } \end{aligned}$
24 26-49 153 155-176 178412 414-435 437539 541-562 564
67 69-135 454 456-520 522
196197 199-392 394

Fig: Partition of $[1,581]$ into 6 weakly sumfree sets, proving $W S(6) \geq 581$.

Although not an example of a fully constructive procedure yet, any progress on Schur numbers is quite significant given their long history.

Conclusion and Future work

\square General framework that integrates specialized search techniques (so-called streamlining) with human insight in an iterative approach to discover efficient constructive procedures.

- Provides the first constructive procedures for the Spatially-Balanced Latin Square problem.
\square Improves the best known lower bound for the Weak Schur Number problem.
\square One exciting extension would be to crowd-source the search for regularities in the solution set.

 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 46 | 41 | 36 | 31 | 26 | 21 | 16 | 11 | 6 | 1 | 4 | 9 | 14 | 19 | 24 | 29 | 34 | 39 | 44 | 49 | 47 | 42 | 37 | 32 | 27 | 22 | 17 | 12 | 7 | 2 | 3 | 8 | 13 | 18 | 23 | 28 | 33 | 38 | 43 | 48 |
| :--- |

 | 13 | 26 | 39 | 49 | 36 | 23 | 10 | 3 | 16 | 29 | 42 | 46 | 33 | 20 | 7 | 6 | 19 | 32 | 45 | 43 | 30 | 17 | 4 | 9 | 22 | 35 | 48 | 40 | 27 | 14 | 1 | 12 | 25 | 38 | 50 | 37 | 24 | 11 | 2 | 15 | 28 | 41 | 47 | 34 | 21 | 8 | 5 | 18 | 31 | 44 |
| :--- |

 | 20 | 40 | 41 | 21 | 1 | 19 | 39 | 42 | 22 | 2 | 18 | 38 | 43 | 23 | 3 | 17 | 37 | 44 | 24 | 4 | 16 | 36 | 45 | 25 | 5 | 15 | 35 | 46 | 26 | 6 | 14 | 34 | 47 | 27 | 7 | 13 | 33 | 48 | 28 | 8 | 12 | 32 | 49 | 29 | 9 | 11 | 31 | 50 | 30 | 10 |
| :--- |

 | 23 | 46 | 32 | 9 | 14 | 37 | 41 | 18 | 5 | 28 | 50 | 27 | 4 | 19 | 42 | 36 | 13 | 10 | 33 | 45 | 22 | 1 | 24 | 47 | 31 | 8 | 15 | 38 | 40 | 17 | 6 | 29 | 49 | 26 | 3 | 20 | 43 | 35 | 12 | 11 | 34 | 44 | 21 | 2 | 25 | 48 | 30 | 7 | 16 | 39 |
| :--- |

 | 25 | 50 | 26 | 1 | 24 | 49 | 27 | 2 | 23 | 48 | 28 | 3 | 22 | 47 | 29 | 4 | 21 | 46 | 30 | 5 | 20 | 45 | 31 | 6 | 19 | 44 | 32 | 7 | 18 | 43 | 33 | 8 | 17 | 42 | 34 | 9 | 16 | 41 | 35 | 10 | 15 | 40 | 36 | 11 | 14 | 39 | 37 | 12 | 13 | 38 |
| :--- |

 | 27 | 47 | 20 | 7 | 34 | 40 | 13 | 14 | 41 | 33 | 6 | 21 | 48 | 26 | 1 | 28 | 46 | 19 | 8 | 35 | 39 | 12 | 15 | 42 | 32 | 5 | 22 | 49 | 25 | 2 | 29 | 45 | 18 | 9 | 36 | 38 | 11 | 16 | 43 | 31 | 4 | 23 | 50 | 24 | 3 | 30 | 44 | 17 | 10 | 37 |
| :--- |

 | 34 | 33 | 1 | 35 | 32 | 2 | 36 | 31 | 3 | 37 | 30 | 4 | 38 | 29 | 5 | 39 | 28 | 6 | 40 | 27 | 7 | 41 | 26 | 8 | 42 | 25 | 9 | 43 | 24 | 10 | 44 | 23 | 11 | 45 | 22 | 12 | 46 | 21 | 13 | 47 | 20 | 14 | 48 | 19 | 15 | 49 | 18 | 16 | 50 | 17 |
| :--- |

 \begin{tabular}{|ll|lllllllllll}
36 \& 29 \& 7 \& 43 \& 22 \& 14 \& 50 \& 15 \& 21 \& 44 \& 8 \& 28 \& 37 \& 1 \& 35 \& 30 \& 6 \& 42 \& 23 \& 13 \& 49 \& 16 \& 20 \& 45 \& 9 \& 27 \& 38 \& 2 \& 34 \& 31 \& 5 \& 41 \& 24 \& 12 \& 48 \& 17 \& 19 \& 46 \& 10 \& 26 \& 39 \& 3 \& 33 \& 32 \& 4 \& 40 \& 25 \& 11 \& 47 \& 18

\hline

37 \& 27 \& 10 \& 47 \& 17 \& 20 \& 44 \& 7 \& 30 \& 34 \& 3 \& 40 \& 24 \& 13 \& 50 \& 14 \& 23 \& 41 \& 4 \& 33 \& 31 \& 6 \& 43 \& 21 \& 16 \& 48 \& 11 \& 26 \& 38 \& 1 \& 36 \& 28 \& 9 \& 46 \& 18 \& 19 \& 45 \& 8 \& 29 \& 35 \& 2 \& 39 \& 25 \& 12 \& 49 \& 15 \& 22 \& 42 \& 5 \& 32

\hline
\end{tabular}

 | 46 | 9 | 37 | 18 | 28 | 27 | 19 | 36 | 10 | 45 | 1 | 47 | 8 | 38 | 17 | 29 | 26 | 20 | 35 | 11 | 44 | 2 | 48 | 7 | 39 | 16 | 30 | 25 | 21 | 34 | 12 | 43 | 3 | 49 | 6 | 40 | 15 | 31 | 24 | 22 | 33 | 13 | 42 | 4 | 50 | 5 | 41 | 14 | 32 | 23 |
| :--- |

Extra slides

(ICS)

SBLS of order 50 - Construction 1

Abstract

| 47 | 7 | 40 | 14 | 33 | 21 | 26 | 28 | 19 | 35 | 12 | 42 | 5 | 49 | 2 | 45 | 9 | 38 | 16 | 31 | 23 | 24 | 30 | 17 | 37 | 10 | 44 | 3 | 50 | 4 | 43 | 11 | 36 | 18 | 29 | 25 | 22 | 32 | 15 | 39 | 8 | 46 | 1 | 48 | 6 | 41 | 13 | 34 | 20 | 27 |
| :--- |

Results of SBLS-sequence (U\&B)

Order	CP	CPSS	CPCS	LSS	U\&B
6	0.06	0.05	0.02	0.00	0.00
8	16.00	0.88		0.00	0.00
9	241.00	0.91		0.00	0.00
11		9.84		0.00	0.00
12		531.00	14.40	0.00	
14		$5,434.00$		0.02	0.00
15				0.01	0.00
17			$107,000.00$	0.25	
18				2.30	0.00
20				16.00	0.00
21				16.00	0.00
23				104.00	0.00
24			281.00		
26			609.00	0.00	
27				$4,000.00$	
29			$160,000.00$	0.00	
30			$1,200,000.00$	0.00	
32			$1,200,000.00$	0.00	
33				0.00	
35				0.00	
36				0.00	
39				0.00	
41				0.00	
44				0.00	
48				0.00	
50				0.00	
51				0.00	
53					0.00
54					
56					
\ldots					
999					

