

From Streamlined Combinatorial Search to Efficient Constructive Procedures

Ronan Le Bras, Carla P. Gomes, Bart Selman

Motivation

- Significant progress in the area of search, constraint satisfaction and automated reasoning driven by challenge problems in combinatorics.
- One shortcoming is that these methods do not provide **fur**ther mathematical insights, as they are, in essence, a form o proof by demonstration.
- We propose a framework that combines specialized combinatorial search (streamlining) with human insights, in a complementary, iterative approach.
- Ultimately, the goal is to discover **efficient constructive pro**cedures (polynomial-time algorithms that take as input a size parameter, N, and generate a certain combinatorial object of size N).

	1	4	10	3	8	5	6	13	11	2	9	7	12	ľ
	2	11	1	9	13	4	7	6	10	12	5	3	14	İ
	7	8	6	2	4	14	10	11	13	3	12	1	9	I
	13	12	8	10	9	2	4	5	14	6	1	11	7	
	10	5	11	7	14	9	13	8	4	1	3	6	2	Ī
	11	9	4	6	12	3	8	14	5	10	7	13	1	
	9	6	3	14	10	13	2	1	7	5	8	12	4	
	4	3	5	13	2	7	14	12	9	11	6	8	10	
	6	14	13	1	5	12	11	4	8	7	2	10	3	
	12	10	2	5	6	11	3	7	1	14	4	9	8	Ī
f	3	13	7	12	11	8	1	10	6	9	14	2	5	Ī
	8	2	14	11	3	1	5	9	12	13	10	4	6	ĺ
	14	1	12	4	7	10	9	3	2	8	11	5	13	Ī
	5	7	9	8	1	6	12	2	3	4	13	14	11	Ī

1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	4	6	8	10	12	14	13	11	9	7	5	3	1
3	6	9	12	14	11	8	5	2	1	4	7	10	13
4	8	12	13	9	5	1	3	7	11	14	10	6	2
5	10	14	9	4	1	6	11	13	8	3	2	7	12
6	12	11	5	1	7	13	10	4	2	8	14	9	3
7	14	8	1	6	13	9	2	<u></u>	12	10	3	4	11
8	13	5	3	11	10	2	6	14	7	1	9	12	4
9	11	2	7	13	4	5	14	6	3	12	8	1	10
10	9	1	11	8	2	12	7	3	13	6	4	14	5
11	7	4	14	3	8	10	1	12	6	5	13	2	9
12	5	7	10	2	14	3	9	8	4	13	1	11	6
13	3	10	6	7	9	4	12	1	14	2	11	5	8
14	1	13	2	12	3	11	4	10	5	9	6	8	7

Example Domains

Spatially-Balanced Latin Square (SBLS) Problem:

Pair Symbol Distance (per row)										
						(1,2)	(1,3)	(2,4)	(2,6)	(5,6)
1	2	3	4	5	6	1	2	2	4	1
2	4	6	5	3	1	5	1	1	1	1
3	6	4	1	2	5	1	3	2	3	4
4	5	1	3	6	2	3	1	5	1	3
5	3	2	6	1	4	2	3	3	1	3
6	1	5	2	4	3	2	4	1	3	2
Total Row Distance (pair)						14	14	14	14	14
Average Row Distance (pair)						2.33	2.33	2.33	2.33	2.33

Figure: Spatially balanced Latin square of order 6

- Weak Schur Number (WS) Problem:

Table: Partition of [1,23] into 3 weakly sum-free sets, proving $WS(3) \ge 23$ ('5-7' means '5 6 7' are in the set). Each of the 3 sets is such that the sum of any two of its members is not in the set.

1 2 4 8 11 22 3 5-7 19 21 23 9 10 12-18 20

Schur Numbers are closely related to Ramsey theory, and are a **notoriously hard** area of combinatorics.

- Each symbol from 1 to n appears exactly once in each row and column (Latin Square structure).
- The average distance (column-wise) of a pair of symbols is the same for any pair (Balanced structure).
- Computationally challenging combinatorial design problem with applications in the area of **crop rotation** and drug design.
- A set is **weakly sum free** if for any two elements of this set, their sum does not belong to the set.
- The Weak Schur Number of order k, WS(k), is the largest integer n for which there exists a partition of [1,n]into k weakly sum-free sets.

Discover-Construction Procedure

Overview of the proposed strategy:

- 1) Analyze smaller size solutions, and conjecture potential regularities in the solutions.
- 2) Validate through **streamlining** the observed regularities.
- 3) If the streamlined search does not give a larger size solution, the proposed regularity is quite likely accidental and one looks for a new pattern in the small scale solutions.

Algorithm: Discover-Construction procedure for a given problem P, with parameter set ρ and timeout t.

4)Otherwise, one proceeds by generating a number of new solutions that all contain the proposed structural regularity and are used to expand the solution set and to reveal new regularities.

GUI for Human-guided Streamlined Search

Figure: User interface for human-guided streamlined search to discover constructive procedures

Results on the SBLS Problem

Successful Key Streamliners:

{Diagonal symmetry, reduced form, assignments of columns 2 and n, multiples of i in row *i*, second sequence decreasing}

haustive search.						
Streamliners	5	6	8	9	11	14
$\Gamma_1 = \emptyset$	5760	15878	-	-	-	-
$\Gamma_2 = \Gamma_1 \cup \{Symmetric\}$	240	8447	714	43	-	-
$\Gamma_3 = \Gamma_2 \cup \{\textit{Reduced}\}$	2	14	14	51	-	-
$\Gamma_4 = \Gamma_3 \cup \{Columns\ 2\ \&\ n\}$	1	1	2	1	1	-
$\Gamma_5 = \Gamma_4 \cup \{\textit{Multiples of } i\}$	1	1	2	1	1	1

Table: Number of SBLSs generated by size and stream-

liner. A 60-second time-out was used. Bold indicates ex-

- for row $i = 1, \dots, N$ do // Sequence number // Column index // First symbol of row i $a_{i,j} = i;$ while j < N do // Odd sequence while $a_{i,j} + i \leq N$ and j < N do $a_{i,j+1} = a_{i,j} + i;$ // Even sequence while $a_{i.j} - i \ge 1$ and j < N do j = j + 1;// Switch sequence if k is odd then $a_{i,j+1} = 2N + 1 - i - a_{i,j}$:
- Algorithm: SBLS-sequence procedure for SBLS of order N, when 2N + 1 is prime.

j = j + 1;

- We introduce the **first constructive pro**cedure for Spatially Balanced Latin Squares.
- The largest SBLS known to exist was of order 35 and took about 2 weeks of computation. Our algorithm generates a SBLS of order 999 in 0.01 second.
- Our constructive procedure confirms a 2004 conjecture on the existence of arbitrary large SBLSs and of an effective way of constructing them.

Results on the WS Problem

Successful Key Streamliners:

{Ordered sets, constrained minimum of each set, partial assignments, sequences of consecutive integers, sequence interleaving}

Table: Partition of [1, 581] into 6 weakly sum-free sets, proving $WS(6) \ge 581$. ('5-7' means '5 6 7' are in the set). Each of the six sets is such that the sum of any two of its

1 2 4 8 11 22 25 50 63 68 139 149 154 177 182 192 198 393 398 408 413 436 450 455 521 526 540 563 568 578 3 5-7 19 21 23 51-53 64-66 136-138 150-152 179-181 193-195 395-397 409-411 438-440 451-453 523-525 536-538 565-567 9 10 12-18 20 54-62 140-148 183-191 399-407 441-449 527 535 569-577

24 26-49 153 155-176 178 412 414-435 437 539 541-562 564 67 69-135 454 456-520 522 196 197 199-392 394

- We provide a **new lower-bound** for the Weak Schur Numbers, proving $WS(6) \ge$ **581**.
- The best known lower-bound was WS(6) \geq 575, found by (Eliahou et al., 2012) and improving on the 'WS(6) \geq 574' result of (Fonlupt et al., 2011)
- Although not an example of a fully constructive procedure yet, any progress on Schur numbers is quite significant given their long history.

Acknowledgments

The authors gratefully acknowledge the support of the National Science Foundation, award number 0832782.