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Abstract

In recent years, significant progress in the area of
search, constraint satisfaction, and automated reason-
ing has been driven in part by the study of challenge
problems from combinatorics and finite algebra. This
work has led to the discovery of interesting discrete
structures with intricate mathematical properties. While
some of those results have resolved open questions and
conjectures, a shortcoming is that they generally do
not provide further mathematical insights, from which
one could derive more general observations. We pro-
pose an approach that integrates specialized combina-
torial search, using so-called streamlining, with a hu-
man computation component. We use this approach to
discover efficient constructive procedures for generat-
ing certain classes of combinatorial objects of any size.
More specifically, using our framework, we discovered
two complementary efficient constructions for generat-
ing so-called Spatially Balanced Latin squares (SBLS)
of any order N, such that 2N+1 is prime. Previously con-
structions for SBLSs were not known. Our approach
also enabled us to derive a new lower bound for so-
called weak Schur numbers, improving on a series of
earlier results for Schur numbers.

Introduction
In recent years, significant progress in the area of search,
constraint satisfaction, and automated reasoning has been
driven in part by the study of challenge problems from com-
binatorics and finite algebra. This work has led to the dis-
covery of interesting discrete structures with intricate math-
ematical properties (e.g., (Slaney, Fujita, and Stickel 1993;
Fujita, Slaney, and Bennett 1993; Zhang and Hsiang 1994;
McCune 1997; Kouril and Franco 2005)). While such results
often resolve open questions and conjectures (such as “Do
conjugate-orthogonal quasigroups of certain orders exist?”),
a shortcoming of these results is that they generally do not
provide further mathematical insights, from which one could
derive more general observations. This is because the search
procedures do, in essence, a form of proof by demonstration,
i.e., identify a combinatorial object of a given size, or show
that no such object exists, by an exhaustive case analysis.
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In fact, the inherent lack of further mathematical insights
has been a common criticism of mathematical results ob-
tained using search and inference procedures. For example,
the famous 1974 computer assisted proof of the four color
theorem (Appel and Haken 1977) is still viewed with reser-
vations by many mathematicians for not providing deeper
mathematical insights.
Similarly, although the 1996 proof of Robbins conjec-
ture using an equational theorem prover can actually be
checked step-by-step by hand (McCune 1997; Dahn 1998),
researchers in the area claim it cannot be “understood” in
the usual sense that a mathematical proof is understood, thus
again not providing much further insight.

To address this concern, we will introduce a general
framework that will enable us to obtain efficient constructive
procedures, i.e. polynomial-time algorithms that take as in-
put a size parameterN , and generate a certain combinatorial
object of size N . Our approach combines specialized com-
binatorial search, using so-called streamlining, with human
insights, in a complementary, iterative approach. Our work
is in part inspired by the exciting new area of human compu-
tation, where it is acknowledged that for certain tasks, partic-
ularly those involving visual (pattern recognition) abilities,
humans still clearly outperform fully automatic approaches
(Law and von Ahn 2011). However, instead of “simply” in-
voking human computation to obtain results, we propose a
setting where combinatorial search complements the human
component and there is an iterative process to uncover the
constructive procedure. So, in the process, computer and hu-
man truly complement each other.

We propose our work as a broader framework for mathe-
matical discovery and reasoning. Although fully automated
reasoning procedures have been used to obtain several new
results in mathematics, it appears that some further mathe-
matical knowledge or intuition is still required to assist the
automated process. For example, the HR system (Colton
and Miguel 2001; Charnley, Colton, and Miguel 2006)
has found many interesting new concepts (e.g., integer se-
quences), but was not devised to discover constructive pro-
cedures. An integrated human computation component is
therefore a promising approach in this context. For alterna-
tive approaches to mathematical discovery, see e.g., (Colton,
Bundy, and Walsh 1999; Herwig et al. 2007).

To demonstrate the effectiveness of our framework, we



Figure 1: Spatially balanced Latin square of order 6 and cor-
responding row distances, total distance, and average dis-
tance for several example pairs of numbers (or symbols).

have to show success on problems that lie beyond the reach
of any current fully automated inference procedure and
are open questions of interest to the mathematical commu-
nity. We present new results in two domains: (1) Spatially
Balanced Latin Squares (SBLS), and (2) Schur numbers.
Specifically, we will introduce the first constructive proce-
dure for SBLS. That is, we will present a polynomial time
procedure that generates an SBLS of any size N , such that
2N + 1 is prime. No such procedure was known to exist. In
fact, such Latin squares were not known to exist beyond or-
der 35 (Smith, Gomes, and Fernandez 2005). In addition, we
provide a new lower-bound on so-called weak Schur num-
bers by identifying new structural patterns. Schur numbers
are closely related to Ramsey theory, and are a notoriously
hard area of combinatorics.

Framework and Preview of Results
In this section, we provide an introduction to our approach,
and a brief preview of results. To ground our description in
an example domain, we first introduce the notion of spatially
balanced Latin squares.

Spatially balanced Latin squares — A Latin square of or-
der n, is an n by n grid with each grid cell containing a
number from 1, . . . , n, without any repetitions in a row or
column. In combinatorics, a Latin square represents the mul-
tiplication table of a quasigroup. A spatially balanced Latin
square (SBLS) poses further constraints on the cells (Es and
Es 1993). For each pair of numbers (i, j) in a row, one can
assign a distance based on the number of cells that separates
them (literally the absolute difference between the column
indices of the cells containing i and j). For example, in the
first row in Fig. 1, the distance between the pair of numbers
(2, 4) is 2. We can now calculate the average distance for
this pair taken over all rows, which is 14/6 = 2.33. If the
average distance between all possible pairs of numbers is the
same, we say the Latin square is spatially balanced. Fig. 1
gives an SBLS of order 6. The figure gives the distance for
a few pairs but note that all

(
6
2

)
= 15 pairs have average

distance 2.33.
SBLSs were first introduced in the context of experiment

design, in particular in agronomics and more recently in

Figure 2: Left: Typical SBLS (order 14) obtained with gen-
eral constraint-based search. Right: SBLS (order 14) whose
construction was discovered by our procedure. Each row
consists of alternations of increasing and decreasing se-
quences with increment/decrement equal to the row index.
(Pattern highlighted for the top seven rows. Pattern contin-
ues but is hidden. See procedure SBLS-Sequence.) The
resulting pattern for the last row (and last column due to
symmetry) is quite striking: a decreasing sequence (14 . . . 8)
interleaved with an increasing sequence (1 . . . 7).

gene array design (Es and Es 1993; Es et al. 2007). Consider
testing the effectiveness of different soil treatments from
among n possibilities, with one treatment per cell. Since the
effects of different treatments in cells near each other within
a row may introduce subtle correlations in the outcomes,
one would like to keep all pairs of treatments at the same
distance when averaged over all rows in the experimental
grid. (We assume rows are well-separated; doubly spatially
balanced designs also balance within columns.) Reasonable
size agronomic experiments can have dozens of tests in each
row, while gene arrays are often even larger. So, researchers
would like to design relatively large spatially balanced Latin
squares.

The requirement of being spatially balanced is clearly a
rather intricate global constraint over the Latin square and
not many SBLSs were known to exist. Over the years, it has
provided a compelling combinatorial search challenge, lead-
ing to the development of several new search ideas (Gomes
and Sellmann 2004; Gomes et al. 2004; Neveu, Trombettoni,
and Glover 2004). The largest square reported in the litera-
ture was of order 35 (Smith, Gomes, and Fernandez 2005).
Prior to that, no SBLS larger than order 18 was known to ex-
ist. Two open questions arose (Gomes and Sellmann 2004):
(1) whether SBLS would exist for arbitrary large orders, and,
if so, (2) whether there was an effective way of constructing
them. In this work, we answer both questions in the affirma-
tive.

Framework for discovering constructive procedures — We
developed a general approach for discovering constructive
procedures. Note that search-based solution techniques in
combinatorial design generally provide specific solutions
(e.g., a SBLS of order 35) but, as discussed earlier, such
methods do not provide any clear insights into a possible
larger solution. In fact, when we look at a solution obtained
by a search procedure, there is often no structure visible



whatsoever. See Fig. 2 (left) for an example SBLS of or-
der 14. This does not mean that there is no hidden struc-
ture in the solution. Such structure can easily be hidden be-
cause each solution is part of an exponentially large equiv-
alence class that can be obtained by permuting the number-
ing of the values in the cells or by permuting rows. How-
ever, although symmetry breaking is a standard practice in
systematic constraint-based searches (Gent and Smith 2000;
Flener et al. 2009, e.g.) and allows to reduce a large equiv-
alence class to one representative member, it might prevent
the discovery of structure by ruling out the solutions that ex-
hibit a pattern. Alternatively, one can try to generate many
different solutions, hoping to see some particular pattern in
at least one of them. Unfortunately, even the basic permuta-
tion classes are too large. E.g., for n = 14, we do not see any
kind of structure in thousands of examples. Another strategy
is to go to smaller size solutions, and then consider all possi-
ble solutions or at least a good fraction of them. This is fea-
sible for small sizes, e.g., n = 3, or 5, with respectively, 12,
and 5760 solutions. (Note no order 4 SBLS exists.) In one
or more of those solutions, one may be able to spot some
regularity. It is not clear, however, whether those regularities
are accidental or scale up to larger solutions.

In order to study this, we need to generate larger so-
lutions that contain the proposed regularity. A particularly
effective combinatorial search strategy, called streamlining
(Gomes and Sellmann 2004), allows us to do so. (For a re-
lated search technique, called “tunneling,” see (Kouril and
Franco 2005).) In streamlining, one can add specific de-
sired regularities (e.g., symmetries or partial patterns) to the
search engine, which then proceeds to search for solutions
with those regularities. If the streamlined search does not
give a larger size solution, the proposed regularity is quite
likely accidental and we look for a new pattern in the small-
scale solutions. On the other hand, if the streamlined search
can find larger size solutions, we proceed by generating a
number of new solutions for a larger size (e.g., n = 6 or
8, 9, 11) that all contain the proposed structural regularity.
We now have larger size solutions with some basic regular-
ity. Moreover, new regularities often reveal themselves at the
larger sizes. We then add these new regularities to the search
and try to find yet larger solutions.

Below, we give a template of our general framework that
leverages and further extends the concept of streamlined
combinatorial search, coupling it with a human computa-
tion component, in a complementary, iterative approach. Us-
ing this approach, we discovered two complementary ef-
ficient constructive procedures that generate spatially bal-
anced Latin squares for arbitrary large sizes. (Not all orders
allow for SBLS, as we will discuss below.)

Fig. 2 (right) gives the result of one of our constructive
procedures, called SBLS-sequence (see Alg. 2), for a
SBLS of order 14. In contrast with the left panel, structure
is clearly visible. Streamlined-search was used to first iden-
tify this pattern; the construction procedure is a more direct
representation of the streamliners. The solution consists of
alternations of increasing and decreasing arithmetic progres-
sions (i.e., sequences of the form a, a+ δ, a+ 2δ, etc.) with
the increment (decrement) in each row equal to the row in-

O ← ∅; // Conjectured streamliners
Γ← ∅; // Search streamliners
ρ← ρ0; // Search parameter
S ← ∅; // Solutions found
τ ← false; // Timeout flag
repeat

Solve(Pρ,Γ, t)→ (S ′, τ); // Search for new solutions
if S ′ ∩ S 6= ∅ then
S ← S ∪ S ′; // Case 1: successful search
Analyze(S)→ O′; // Conjecture new streamliners
O ← O ∪O′;
ρ← ρ+ 1;

else if τ is true then
Select Γ′ ⊆ O; // Case 2: timed-out failed search
Γ← Γ ∪ Γ′; // Strengthen streamliners

else
Select Γ′ ⊆ Γ; // Case 3: exhaustive failed search
Γ← Γ \ Γ′; // Weaken streamliners
ρ = max{ρ : S(Γ) ∩ S(Pρ) 6= ∅}+1;
Select Γ′′ ⊆ Γ′; // Find next parameter of interest
O ← O \ Γ′′; // Drop unpromising streamliners

until O = ∅ ;

Algorithm 1: Discover-Construction procedure
for a given problem P, with parameter set ρ and timeout
t.

dex. The starting values of the progressions also follow a
well-defined pattern, as discussed below.

Since the SBLS is obtained with an effective constructive
procedure, one can easily generate spatially balanced Latin
squares of arbitrary large orders. As noted earlier, the best
previously known search-based strategy could find solutions
up to order 35. We conjecture that many combinatorial de-
sign problems may have such hidden effective construction
methods.

Using our framework, we also obtained new results
for Schur numbers, another notoriously hard combinatorial
problem. Details are given below.

Discovering Constructive Procedures
Consider a combinatorial problem Pρ, with k integer param-
eters represented by ρ (i.e., ρ ∈ Nk). We denote the set of
solutions of this problem with S(Pρ). For example, in the
SBLS problem, ρ is a single parameter, n, the order of the
Latin square. S(P6) corresponds to all SBLSs of order 6.

Our goal is to design an efficient, constructive procedure
C that generates a non-empty solution set, C(Pρ) ⊆ S(Pρ)
for some ρ ∈ Nk. We define the supportDC of the construc-
tion as DC = {ρ ∈ Nk : C(Pρ) 6= ∅}. The construction C
is novel ifDC intersects with the set of parameters for which
no solution is known and is generalizable if |DC | =∞. So,
a novel construction provides us with solutions for new pa-
rameter values, and a generalizable construction ensures a
construction for an infinite range of paramater values.

We propose a general framework for discovering con-
structive procedures. This framework makes extensive use
of streamliners. A streamliner (Gomes and Sellmann 2004)
corresponds to a set of constraints that can be evaluated and



propagated on partial solutions of Pρ. Typically, a stream-
liner intentionally discards entire subspaces of the search
space (which potentially contain solutions) in order to fo-
cus on a highly structured subspace and therefore boost con-
straint reasoning. When visualizing a set S of solutions, a
user might conjecture a set O of streamliners that could po-
tentially generalize to higher parameter values (procedure
Analyze). Moreover, we define S(Γ) as the subset of solu-
tions of S that satisfy the set Γ of streamliners.

The procedure Discover-Construction illustrates
our framework. The procedure formalizes the approach we
discussed in the introduction. Below we provide additional
details using the SBLS example. The procedure is an iter-
ative process. For a given set of parameter values ρ, a set
of streamliners Γ and a ‘feedback’ timeout t, the search
(procedure Solve) returns a set S ′ of solutions as well as
a Boolean τ indicating whether the search timed out. If a
streamliner is successful (i.e., previously unseen solutions
were discovered), the search proceeds to a higher parame-
ter value. Otherwise, if the search led to a time-out, the user
may strengthen the current streamliner. If not, the user may
weaken the current set of streamliners by selecting a subset
Γ′ of streamliners not to be considered in the next search.
In addition, the user may decide to no longer consider some
of these streamliners in any subsequent search. Finally, the
user resumes the search, starting with the parameter value
for which no solution satisfies the current set of streamlin-
ers. Note that although Alg. 1 assumes an a priori known
total order on the parameters ρ, with ρ0 the minimum pa-
rameter value, it can be easily extended to a partial order.
ρ+ 1 the successor of ρ according to this order.

Figure 3: Different representations of SBLSs. Left: SBLS of
order 6 obtained with the SBLS-sequence construction.
Center: Its column conjugate. The arrows highlight that the
SBLS and its column conjugate are identical up to a row
permutation in this construction. Right: Color visualization
of the SBLS on the left.

Discovering Efficient Constructive Procedures
for Spatially Balanced Latin Squares

Early on in our research developing a framework for human-
guided streamlined combinatorial search to discover con-
structive procedures, the importance of considering differ-
ent representations and visualizations for a given combina-
torial object became clear. For example, in order to gain in-
sights into the underlying combinatorial structure of SBLSs,
it is crucial to visualize Latin squares numerically, as op-
posed to symbolically (using, e.g., colors or patterns). The
importance of considering different representations for mod-
eling constraint satisfaction problems (CSP) has also been

reported in the literature (Rossi, Beek, and Walsh 2006).
For example, in order to scale up solutions for the Latin
square completion problem1 it is critical to combine redun-
dant Latin square encodings to enhance constraint propaga-
tion. In particular, one can consider the Latin square conju-
gates. Given a Latin square represented as a set of triples
(rcs), we obtain its 6 conjugates by reordering the items of
the triple (one of the conjugates corresponds to the original
Latin square, by doing nothing). For example, given Latin
square L, its column conjugate Lc is obtained by reordering
the triple (rcs) as (rsc), which corresponds to assigning to
cell (r, s) of Latin square Lc the column number c (i.e., the
column number in which symbol s appears in row r of the
original Latin square L). In Figure 3, we show different rep-
resentations and visualizations of an SBLS of order 6. The
center panel provides the column conjugate of the SBLS de-
picted in the left panel.

Table 1: Number of SBLSs generated by size and stream-
liner. A 60-second time-out was used. Bold indicates ex-
haustive search.

Streamliners 5 6 8 9 11 14
Γ1 = ∅ 5760 15878 - - - -
Γ2 = Γ1 ∪ {Symmetric} 240 8447 714 43 - -
Γ3 = Γ2 ∪ {Reduced} 2 14 14 51 - -
Γ4 = Γ3 ∪ {Columns 2 & n} 1 1 2 1 1 -
Γ5 = Γ4 ∪ {Multiples of i} 1 1 2 1 1 1

We applied our Discover-Construction proce-
dure to the SBLS problem. For the Solve step, we use IBM
Ilog Solver. Our CSP SBLS model encodes both the origi-
nal square and its column conjugate, using channelling con-
straints to link the variables in both representations. Our
model enforces the global ALLDIFF constraint on the rows
and columns of the original Latin square and its conjugate.
The balancedness of the square is expressed through the col-
umn conjugate. Our CSP encoding is similar to the one pro-
posed in (Gomes and Sellmann 2004).

Fig. 4 depicts the user interface of our system, applied to
the SBLS problem. The interface allows the user to stream-
line the search, specify new streamliners, and visualize the
solutions found (given the timeout) for the selected set of
streamliners. Sequentially adding streamliners allows us to
generate combinatorial objects of increasing sizes. As illus-
trated in Table 1, the search with no additional streamliners
(Γ1 = ∅) provides SBLSs of order up to 6. Note that this
interface is not specific to the SBLS problem, and when ad-
dressing a new problem, a user needs only design one cus-
tom control that displays a solution of this problem, would it
be a grid, a series, or even a graph. For example, we success-
fully applied our framework to the problem of finding highly
balanced rows (see below), and the rectangle-free coloring
of grids problem (Fenner et al. 2010) and the Van der Waer-
den numbers (Herwig et al. 2007).

1This problem is also known as the Quasigroup Completion
Problem (QCP) since a Latin square corresponds to the multipli-
cation table of a quasigroup.



Figure 4: User interface for human-guided streamlined search to discover constructive procedures (SBLS problem).

SBLS-Sequence — Imposing reduced form (first row and
column set to the sequence 1 . . . n) and diagonal symmetry
allows us to generate SBLSs of orders 8 and 9. At this point,
a pattern on the second and last columns (Columns 2 &n)
becomes noticeable (see Figure 2, right panel, and Figure
4). Imposing this additional streamliner allows us to gen-
erate an SBLS of order 11 and formulate the conjecture that
each row i begins with the multiples of i, in increasing order.
This streamliner allows us to find an SBLS of order 14. At
this point a pattern of increasing and decreasing sequences
for the SBLSs of orders 3, 5, 6, 8, 9, 11, and 14 is clearly
noticeable. It only remains to figure out how to switch from
one sequence to the next. In fact, the bounding conditions
become more noticeable as the size of the SBLS increases.
As illustrated in Figure 2 (right), the pairs of values that de-
limit an increasing and a decreasing sequence are (10, 14)
and (11, 13) in row 5, and (12, 11), (13, 10) and (14, 9) in
row 6. Overall, the sum of the values of each pair appears to
be constant within a row, and to decrease by 1 from one row
to the next. This final observation leads us to discover the
efficient SBLS-sequence construction (Alg. 2). By cre-
ating Latin squares of different orders with this procedure,
we observed that for orders N , where 2N + 1 is prime, the
Latin square is indeed spatially balanced. We also were able
to proof this formally, as discussed below.

The intuition behind the SBLS-sequence construction
(Alg. 2) is to fill every row i (i = 1, ..., n) of the square,
starting with i and successively adding i to the previous cell,
which we call the first sequence in row i. Once we reach the
largest multiple v of i that is lower or equal to n, we perform
what we call an upper bounce: the next cell is assigned sym-
bol 2n+ 1− i− v. This symbol is the starting point for the
second sequence. We progress downwards by successively
subtracting i until we reach a value v′ that is lower or equal
to i. At this point, we perform a lower bounce: the next cell is
assigned symbol i − v′. This symbol represents the starting

for row i = 1, . . . , N do
k = 1; // Sequence number
j = 1; // Column index
ai,j = i; // First symbol of row i
while j < N do

if k is odd then // Odd sequence
while ai,j + i ≤ N and j < N do

ai,j+1 = ai,j + i;
j = j + 1;

else // Even sequence
while ai.j − i ≥ 1 and j < N do

ai,j+1 = ai,j − i;
j = j + 1;

if j < N then // Switch sequence
if k is odd then

ai,j+1 = 2N + 1− i− ai,j ;
else

ai,j+1 = i− ai,j ;
k = k + 1;
j = j + 1;

Algorithm 2: SBLS-sequence procedure for SBLS
of order N , when 2N + 1 is prime.

point of the next sequence, and we repeat these steps until
the row is full. The complexity of the SBLS-Sequence
procedure is O(n2).

In the following, we denote by An the squares of order n
generated by our SBLS-Sequence construction, and aij
the symbol in row i and column j of the square An. A5,A6,
and A8 are depicted in Figure 4 and A14 in Figure 2, right
panel. We can also represent the squares produced by the
SBLS-Sequence construction using the following closed
form expression.
Definition 1 (SBLS-SEQUENCE). For any order n where



2n+ 1 is prime, construct An = (aij)1≤i,j≤n such that, for
all 1 ≤ i, j ≤ n:

aij =

{
ij − bkij2 c(2n+ 1) if kij is odd,
bkij2 c(2n+ 1)− ij otherwise

where the group kij is defined as kij = b 2ij
2n+1c+ 1.

We proved that our construction does produce SBLSs of
order n, when 2n + 1 is prime. To do so, we first proved
that the construction generates squares with the Latin square
property (Theorem 1). The proof of the balancedness prop-
erty (Theorem 2) is more involved. Interestingly, we used
our streamlining framework to help prove the correctness
of the construction. Due to space limitations we only state
the theorems, omitting the proofs. They can be found in (Le
Bras, Perrault, and Gomes 2012).

Theorem 1 (Latin square property). For any order n
where 2n + 1 is prime, the square An, generated by the
SBLS-Sequence construction, is a Latin square.

Theorem 2 (Balancedness property). For any order n
where 2n + 1 is prime, the square An, generated by the
SBLS-Sequence construction, is a balanced square.

SBLS-Cyclic — As mentioned above, without streamlining
the search, we can only generate SBLSs of small orders. The
streamliner Reduced form allows us to dramatically reduce
the search space by removing symmetries, without eliminat-
ing non-isomorphic (under permutations) solutions. For this
reason, it is typically used in CSP formulations of the SBLS
problem. However, a downside of this streamliner is that it
imposes a rather strict order on the first column and first row,
potentially obfuscating the visualization of interesting struc-
tures. One question that arose was: Are there cyclic con-
structions for SBLSs? In order to investigate the existence
of cyclic patterns, the Reduced form streamliner had to be
disabled. In fact, a cyclic square such as the one in Figure 5
is entirely defined by its first row. Moreover, we were able to
characterize the necessary and sufficient conditions that this
first row must satisfy for the cyclic square to be an SBLS.
We call such rows highly balanced rows. The problem of
finding a construction for cyclic SBLSs therefore translates
into the problem of finding a construction for highly bal-
anced rows, which we solved using our framework. Without
any streamliner, the search allows us to generate highly bal-
anced rows of order up to 14. Among these rows, we isolated
the rows starting with the first powers of 2, as this pattern
was noticeably generalizable from low orders up to order 14.
This observation led to yet another streamliner (according to
which each integer i is followed by 2i whenever 2i ≤ N ),
and ultimately, to the efficient SBLS-Cyclic construction
presented in 3. Additional details can be found in (Le Bras,
Perrault, and Gomes 2012).

Schur Numbers
Ramsey theory studies combinatorial structures that must
reach a certain degree of order as the size of the structure
increases. In this field, the weak Schur number problem con-
siders intervals of integers [1, n] for n in N. The kth weak

Figure 5: Cyclic SBLS (left) and its conjugate (right).

c1,1 = 1; // Generate 1st row of the conjugate
for column j = 2, . . . , N do // Observed pattern 1, 2, 4, ...

if 2c1,j−1 ≤ N then
c1,j = 2c1,j−1;

else
c1,j = 2N + 1− 2c1,j−1;

for row i = 2, . . . , N do // Subsequent rows
ci,1 = ci−1,N ; // Shifted version of previous
for column j = 2, . . . , N do

ci,j = ci−1,j−1;
for row i = 1, . . . , N do // Generate SBLS from conjugate

for column j = 1, . . . , N do
ai,ci,j = j;

Algorithm 3: SBLS-Cyclic procedure.

Schur number WS(k) is the largest integer n for which there
is a partition of [1, n] into k sets such that no two distinct
integers and their sum belong to the same set. Formally, we
define this notion as follows.

Definition 2. A set S is weakly (or strictly) sum free if for
any x, y ∈ S and x 6= y, it holds x+ y 6∈ S.

Definition 3. For any k ≥ 1, WS(k) is the largest integer
n for which there exists a partition of [1, n] into k weakly
sum-free sets.

The weak (or strict) Schur numbers have been studied for
over seventy years. Rado (1941) showed that for any given
k, WS(k) is finite. Through exhaustive search, Blanchard,
Harary, and Reis (2006) established the values of the first
four weak Schur numbers, which are 2, 8, 23 and 66. They
also provided a lower bound on the fifth weak Schur num-
ber, namely WS(5) ≥ 189. Recently, Eliahou et al. (2012)
formulated this problem as a Boolean satisfiability problem
and improved the bound of WS(5) to 196.

Interestingly, back in the 1950s, Walker (1952) not only
provided the correct values for WS(3) and WS(4) but
also claimed2, without providing any detail or proof, that
WS(5) = 196. Given that these results were clearly obtained
without computer assistance, it is tempting to speculate that

2Walker claimed that N = 197 is the smallest number for
which no partition of [1, N ] into 6 sets is weakly sum free, hence
claiming WS(6) = 196.



Table 2: Partition of [1, 581] into 6 weakly sum-free sets,
proving WS(6) ≥ 581. (‘5-7’ means ‘5 6 7’ are in the set).
Each of the six sets is such that the sum of any two of its
members is not in the set.

1 2 4 8 11 22 25 50 63 68 139 149 154 177 182 192 198 393
398 408 413 436 450 455 521 526 540 563 568 578
3 5-7 19 21 23 51-53 64-66 136-138 150-152 179-181 193-195
395-397 409-411 438-440 451-453 523-525 536-538 565-567
579-581
9 10 12-18 20 54-62 140-148 183-191 399-407 441-449 527-
535 569-577
24 26-49 153 155-176 178 412 414-435 437 539 541-562 564
67 69-135 454 456-520 522
196 197 199-392 394

Walker may have discovered a (partial) construction rule for
the weak Schur numbers.

Recently, using combinatorial search techniques, Eliahou
et al. (2012), reporting on results from 2011, provided a
partition of [1, 572] into 6 weakly sum-free sets, proving
WS(6) ≥ 572. Fonlupt et al. (2011) further improved this
lower bound to 574 using a multilevel tabu search. How-
ever, Eliahou et al. (2012) added a note to their paper before
it went to press in January 2012, claiming WS(6) ≥ 575.
This represents, until now, the best lower bound for the sixth
weak Schur number.

Using our proposed framework, we constructed partitions
for the first five weak Schur numbers that confirmed their
current best known values. For the sixth weak Schur number,
however, our framework generated a partition of [1, 581] into
6 weakly sum-free sets (see Table 2), thus improving on the
current best lower bound, by asserting that WS(6) ≥ 581.

In the following we describe how we applied our proposed
framework to the weak Schur number problem.

We first add a streamliner to order the sets of the partition,
as a symmetry-breaking constraint would do. Given a k-wise
partition, we order the k sets by increasing value of their
minimum integer and we denote m(j) the minimum integer
of the jth set. A striking feature of the solutions to the WS(k)
problem for k ∈ {1, , 4} is that m(j) = WS(j − 1) + 1. For
example, the first WS(3) = 23 integers of any strictly sum-
free partition of [1,WS(4) = 66] belong to the first three
sets. In fact, as pointed out in (Fonlupt et al. 2011), the so-
lutions to the WS(4) problem are extensions of solutions to
the WS(3) problem. When studying the (non-strict) Schur
numbers, a similar yet weaker feature might be observed
for symmetric partitions (Fredricksen and Sweet 2000): the
maximum of the m(j) of a k-wise partition appears to be
less or equal to S(k − 1) + 1, for k ∈ {1, , 6}. Inspired by
the (non strict) Schur numbers, instead of imposing m(j) =
WS(j−1)+1, we slightly relax this constraint to the follow-
ing set of streamliners {m(j) ≥ WS(j−1)−d : d ∈ [0, k]}.
Interestingly, symmetry appears to be a recurring property of
the solutions for the (non strict) Schur numbers, yet it leads
to poor partitions for the strict version.

Nevertheless, these streamliners, coupled with partial pre-

assignments of some integers, did not allow us to go beyond
575, the current best lower bound. The two key patterns that
allowed us to improve the lower bound of WS(6) up to 581
refer to sequences of consecutive numbers in the sets. In-
deed, a surprising regularity of many solutions for the 6-
wise partition problem of [1, N ] for 572 ≤ N ≤ 575 is that
the second set is mainly made of sequences of length 3 (i.e.
three consecutive numbers, which is the largest possible as
m(2) = 3), whereas the third is mainly made of sequences
of length 9, etc. This observation led to partition of [1, 578].
Moreover, the pattern on how these sequences interleave be-
tween the sets appears to be recurring as well. As shown
in Table 2, the last 3 numbers appear in the second set, the
fourth to last integer belongs to the first set, followed by a
sequence of length 9 in the third set, and so on. Streamlining
on this feature led us to generate a strictly sum-free partition
of [1, 581] into 6 sets.

Although this result is not an example of a fully construc-
tive procedure yet, any progress on Schur numbers is quite
significant given their long history, and our framework en-
abled the discovery of this new lower-bound.

Conclusions
We have introduced a general framework for discovering
efficient, constructive procedures for generating classes of
complex combinatorial objects. The framework integrates,
in an iterative approach, streamlined constraint search with a
human computation component to identify possible patterns
in solutions.

We demonstrated the effectiveness of our proposal with
the discovery of two efficient constructive procedures for
generating arbitrarily large spatially balanced Latin squares.
No such procedures were known before. We also used the
framework to provide a new lower-bound for weak Schur
numbers.

Our framework opens up a new avenue for discovering
constructive procedures for a range of challenge problems in
combinatorics, finite algebra, and related areas. More gener-
ally, the integration of combinatorial reasoning and human
computation techniques is an exciting research direction.
We are also combining this approach with machine learning
techniques for mathematical and scientific discovery.
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