
Solutions for Hard and Soft Constraints Using
Optimized Probabilistic Satisfiability

Marcelo Finger?, Ronan Le Bras, Carla P. Gomes, Bart Selman

Department of Computer Science
Cornell University

Abstract. Practical problems often combine real-world hard constraints
with soft constraints involving preferences, uncertainties or flexible re-
quirements. A probability distribution over the models that meet the
hard constraints is an answer to such problems that is in the spirit of
incorporating soft constraints.
We propose a method using SAT-based reasoning, probabilistic reason-
ing and linear programming that computes such a distribution when soft
constraints are interpreted as constraints whose violation is bound by
a given probability. The method, called Optimized Probabilistic Satis-
fiability (oPSAT), consists of a two-phase computation of a probability
distribution over the set of valuations of a SAT formula. Algorithms for
both phases are presented and their complexity is discussed.
We also describe an application of the oPSAT technique to the problem
of combinatorial materials discovery.

1 Introduction

There are many proposals in the literature that combine logical and probabilistic
reasoning, e.g. [23, 22, 5]. Perhaps the earliest such proposal was made by Boole
himself, as a natural extension of Boolean satisfiability [1]. This framework is now
called probabilistic satisfiability (PSAT). The semantics is given by assigning a
probability distribution π over the set of all 2n truth assignments of n variables.
Given π, one can now assign a probability P to each compound formula by
considering the sum of the probabilities of all truth assignments (or models)
that satisfy the formula. It has been shown that such a formalization has a
number of desirable properties, such as the fact that it satisfies Kolmogorov’s
probability axioms [19, 11].

A set of logical formulas, each assigned some probability value or a prob-
ability bound (e.g., P (A ∧ B) ≥ 0.6), can be viewed as a set of probabilistic
constraints. A natural question is whether there exist any probability distribu-
tion over all truth assignments that satisfies the probabilistic constraints. This
is the consistency problem for probabilistic satisfiability. Note that by assigning
probability 0 or 1 to some of the logical formulas, they effectively act as standard
logical constraints. So, we can have a mix of logical and probabilistic constraints.

? On leave from Department of Computer Science, University of Sao Paulo.

In the mid eighties and early nineties, the consistency problem for PSAT
became the focus of much attention because, in principle, it could be used to
determine whether expert system sets of rules (hard and soft constraints) were
consistent [19, 7, 12]. Unfortunately, the consistency problem for PSAT appeared
to be extremely hard [20]. In particular, since the probability distribution ranges
over all truth assignments, it was not even clear how to get a polynomial size
witness for a consistent set of PSAT formulas. However, there have been several
major breakthroughs in dealing with the complexity of this problem, such as
polynomial size witness [7], linear programming algorithms [11] and SAT-based
algorithms and the detection of PSAT phase-transition [4].

So, the recent progress has made PSAT a potentially relevant formalism
for practical applications, providing an alternative to other approaches. One
advantage of the PSAT framework is that its foundations are quite natural and
well-grounded.

The goals of this work are three-fold:

(a) To enhance PSAT and introduce a method, called oPSAT, as a modeling
framework to deal with mixtures of (hard) logical and soft probabilistic
constraints.

(b) To propose a practical algorithmic strategy for solving oPSAT problems.
(c) To demonstrate the practical effectiveness of our proposed approach on a

real-world reasoning task in the domain of Materials Discovery.

In this approach, formulas that encode the existence of a soft violation in the
solution (sometimes called a defect) will be modeled by probabilistic constraints.
Consider the following underspecified example.

Example 1. There are m students and k summer courses. Each student has a
set of potential teammates, with whom coursework will be developed. We want
the course enrollment to respect the following constraints:

Hard For each course, students must decide to develop their coursework alone
or in teams of 2 (pairs). A student may have different teammates in different
courses, and may work alone in some course and have a teammate in others.
Students must enroll in at least one and at most three courses. There is a
limit of ` students per course.

Soft Avoid having students with no teammate. A student’s enrollment in a
course with no team mate is seen as a “soft violation.” ut

Example 1 clearly shows the presence of hard and soft constraints. That
problem also has some other implicit, data-dependent hard constraints, such as
the number of students, courses and list of possible pairs of team mates. An
important implicit hard constraint is the definition of a soft violation (“student
in a course with no teammates”) in terms of the variables present in the hard
constraints. There may be no solutions to the hard constraints; or there may
be several ones, in which case we are interested in computing a probability
distribution over them, which will allow one to answer questions such as “what

is the expected number of enrollments?” or “what is the probability that two
students will be teammates?”.

Yet, Example 1 is underspecified, as no clear way to deal with the soft con-
straints has been provided. In our method, this additional specification will cor-
respond to a set of probabilistic constraints of the form P (softViolationi) ≤ pi,
1 ≤ i ≤ m, where for each student i there is a maximum probability pi that
i enrolls in some course with no teammate. Where do these probabilities come
from? There are three main sources:

(a) The probabilities are stipulated or given. In Example 1, the student may be
asked with which probability he or she accepts to be with no teammate. In
this work, we will assume that this is the case.

(b) The probabilities are learned. For instance, compute pi from previous edi-
tions of the summer course.

(c) The probabilities are minimal. Assume that all pi are the same and compute
the minimal value for which the hard and soft probabilistic constraints are
satisfiable. This topic remains for further investigation.

Our method, called Optimized Probabilistic Satisfiability (oPSAT) consists
of two phases1. The first phase is the PSAT problem, which determines if the
hard constraints and probability constraints can be jointly satisfied; Section 2
will formalize PSAT and briefly describe a solver method. The output of such
a problem, when satisfiable, is a probability distribution over a (small) class of
models of the hard constraints. As this solution may not be unique, a second
phase is needed to find a “reasonable” or “balanced” solution. By that we mean
a distribution with minimal variance of soft violation occurrences. In Section 3,
a novel SAT-based column generation method to compute such a distribution is
presented.

Then in Section 4 we demonstrate the effectiveness of this approach on a
complex real-world application involving the identification of crystallographic
structures from high-intensity X-ray diffraction patterns [16, 3, 15]. The problem
arises in the area of so-called combinatorial materials discovery [18].

2 Probabilistic Satisfiability

The PSAT problem is formalized as follows. Let L be the language of classical
propositional formulas. A PSAT instance is a set Σ = {P (αi) ./i pi|1 ≤ i ≤ k},
where α1, . . . , αk ∈ L are classical propositional formulas defined on n logi-
cal variables P = {x1, . . . , xn}, which are restricted by probability assignments
P (αi) ./i pi, ./i ∈ {=,≤,≥} and 1 ≤ i ≤ k.

There are 2n possible propositional valuations v over the logical variables,
v : P → {0, 1}; each such valuation is extended, as usual, to all formulas, v : L →
{0, 1}. A probability distribution over propositional valuations π : V → [0, 1], is
a function that maps every valuation to a value in the real interval [0, 1] such

1 This method should not be confused with OPTSAT [8].

that
∑2n

i=1 π(vi) = 1. The probability of a formula α according to distribution
π is given by Pπ(α) =

∑
{π(vi)|vi(α) = 1}. We simply write P (α) when the

distribution is clear from the context.
The definition of PSAT involves linear algebraic notation. We assume a vector

b to be a column-vector and b′ its transpose, a row-vector. If A is an m×n matrix,
Aj represents its j-th column, and if b is an m-dimensional column, A[j := b]
represents the matrix obtained by substituting b for Aj ; if A is square matrix,
|A| is A’s determinant.

From a PSAT instance, construct a k × 2n matrix A = [aij] such that aij =
vj(αi). The probabilistic satisfiability problem is to decide if there is a probability
vector π2n×1 subject to:

Aπ ./ p∑
πi = 1 (1)

π ≥ 0

A PSAT instance Σ is satisfiable if its associated PSAT restriction (1) has a
solution π; in that case, we say that π satisfies Σ. The last two conditions of (1)
force π to be a probability distribution. Usually the first two conditions of (1)
are combined: A is a (k+ 1)× 2n {0, 1}-matrix with 1’s at its first line, p1 is set
to 1 in vector p(k+1)×1, and the ./1-relation corresponds to “=”. In this case,
each column Aj , excluding its first position that is always 1, can be seen as a
Boolean valuation.

Example 2. We continue Example 1 and for simplicity assume that there is only
one course, three students whose enrollment is represented by variables x, y and
z, and two potential partnerships of the first student with either of the others,
represented by pxy and pxz. These partnerships are mutually exclusive, as x can
only have one partner. So we have the hard constraint

P (x ∧ y ∧ z ∧ ¬(pxy ∧ pxz)) = 1

and the soft constraints are probability restriction on the enrollment of a student
without partners, set for this example as:

P (x ∧ ¬pxy ∧ ¬pxz) ≤ 0.25, P (y ∧ ¬pxy) ≤ 0.6, P (z ∧ ¬pxz) ≤ 0.6.

Of all the 25 valuations, we consider π such that π(x, y, z,¬pxy,¬pxz) = 0.1,
π(x, y, z, pxy,¬pxz) = 0.4, π(x, y, z,¬pxy, pxz) = 0.5 and π(v) = 0 for the re-
maining 29 valuations. This distribution satisfies the PSAT instance. ut

It is no coincidence that only a small number of valuations in Example 2
receive non-zero probability. In fact, satisfiable PSAT instances always have a
“small” witness.

Proposition 1 ([7]). If an instance Σ = {P (αi) = pi|1 ≤ i ≤ k} has a solution
π ≥ 0, then there is a solution π′ ≥ 0 with at most k + 1 non-zero elements.

From Proposition 1, it follows that PSAT is in NP. As SAT is a special case
of PSAT when all pi = 1, PSAT is NP-hard. As a result, PSAT is NP-complete.

There have been several proposed algorithms for PSAT [14, 11, 13], but its
general applicability in practice has only been established with the demonstra-
tion that PSAT presents a phase transition [4], just like the SAT problem [17,
6].

As in SAT, to display a phase transition the problem must be brought
to a normal form. A PSAT instance is in normal form if it is partitioned in
two sets, 〈Γ, Ψ〉, where Γ = {P (αi) = 1|1 ≤ i ≤ m} and Ψ = {P (yi) =
pi|yi is a variable, 1 ≤ i ≤ k}. Every PSAT instance can be transformed in
a normal form instance 〈Γ, Ψ〉 in polynomial time, such that satisfiability is
preserved [4]. The set Ψ(y1, . . . , yk) contains probabilistic restrictions over vari-
ables y1, . . . , yk only, and the set Γ (y1, . . . , yk;x1, . . . , xn) is a SAT formulas.
A valuation v over y1, . . . , yk is Γ -consistent if there is an extension of v over
y1, . . . , yk, x1, . . . , xn such that v(Γ) = 1. The following refines Proposition 1.

Proposition 2 ([4]). A normal form instance 〈Γ, Ψ〉 is satisfiable iff there is a
(k + 1) × (k + 1)-matrix A and π ≥ 0 such that Aπ = p and whenever πj > 0
then column j of A is Γ -consistent.

In this work, we will always consider instances to be in normal form. Based
on Proposition 2, two algorithms for PSAT solving were proposed in [4], and
here we are interested in the one that solves the following optimization problem

minimize c′π
subject to Aπ = p and π ≥ 0

(2)

where A is a (k + 1) × 2n {0, 1}-matrix in (1), π is the probability distribution
and c is a 2n×1 cost vector ; cj = 1 if A’s column j is a Γ -inconsistent valuation,
and cj = 0 otherwise. The PSAT instance is satisfiable iff the optimization leads
to a cost c′π = 0.

As A is exponentially large, we do not generate it explicitly. Instead, we use
a SAT-solver to generate Γ -consistent columns as the linear optimization sim-
plex algorithm requires [21]. The problem is solved iteratively; at each iteration
step i, Proposition 2 allows for storing A(i) with k + 1 columns and a column
generation method is employed in which a SAT-based auxiliary problem gener-
ates a Γ -consistent column that replaces some column in A(i) and decreases the
objective function; this method is detailed in Section 2.1. Accordingly, only the
components of c and π corresponding to the columns of A(i) are stored.

A feasible solution A(i) is a {0, 1}-matrix for which there exists a π(k+1)×1 ≥ 0
such that A(i)π = p. It is shown in [4] that an initial feasible solution A(0) always
exists and can be easily computed. The simplex method guarantees that the
cost function always decreases at each step, by computing the reduced cost c̄b of
inserting a column b in a feasible solution A and forcing it to be non-positive [14]:

c̄b = cb − cAA−1b ≤ 0 (3)

Algorithm 2.1 PSATsolver(〈Γ, Ψ〉)
Input: A normal form PSAT instance 〈Γ, Ψ〉.
Output: Total solution A; or “No”, if unsatisfiable.

1: A(0) := initial feasible solution; i := 0; compute cost(i);

2: while cost(i) > 0 do
3: b(i) = GenerateColumn(A(i), p, Γ); /* Described in Section 2.1 */

4: return “No” if b
(i)
1 < 0; /* PSAT instance is unsat */

5: A(i+1) =merge(A(i), b
(i));

6: increment i; compute cost(i);
7: end while
8: return A(i); /* PSAT instance is satisfiable */

where cb and cA are, respectively, the component of the cost vector corresponding
to the column b and the columns of A. In our case, cb = 0, so the goal is to find
a column b such that cAA

−1b ≥ 0.
Algorithm 2.1 presents a method that decides whether a PSAT instance is

satisfiable by solving Problem (2), with a positive answer if minimum cost is 0.
Let us see an example of Algorithm 2.1 at work.

Example 3. We express the instance of Example 2 in normal form 〈Γ, Ψ〉 by
adding variables for each soft violation: sx, sy, sz. Thus

Γ =

{
x, y, z, ¬pxy ∨ ¬pxz,

(x ∧ ¬pxy ∧ ¬pxz)→ sx, (y ∧ ¬pxy)→ sy, (z ∧ ¬pxz)→ sz

}
Ψ = { P (sx) = 0.25, P (sy) = 0.6, P (sz) = 0.6 }

Note that the existence of a soft violation implies the truth of the corresponding
variable in sx, sy, sz, but the truth of some of these variables does not necessarily
imply the occurrence of a soft violation. We now apply Algorithm 2.1.

A(0) =

1 1 1 1
0 0 0 1
0 0 1 1
0 1 1 1

π(0) = [0.4 0 0.35 0.25]′

cost(0) = 0.4

b(0) = [1 0 1 0]′ : col 3

A(1) =

1 1 1 1
0 0 0 1
0 0 1 1
0 1 0 1

π(1) = [0.05 0.35 0.35 0.25]′

cost(1) = 0.05

b(1) = [1 1 0 1]′ : col 1

A(2) =

1 1 1 1
1 0 0 1
0 0 1 1
1 1 0 1

π(2) = [0.05 0.35 0.4 0.2]′

cost(2) = 0

The initial feasible solution A(0) is a line permutation of an upper 1-triangular
matrix, has all but its first column Γ -consistent, with lines 2,3,4 corresponding
to Ψ -variables sx, sy, sz and leads to π(0) and cost 0.4. The first line is always 1 to
force the probabilities to add up to 1. Column generation (Section 2.1) produces
b(0) which the simplex merging determines to substitute A(0)’s third column.

This generates A(1), π
(1) and decreasing cost 0.05; column generation yields b(1)

that substitutes A(1)’s first column. In A(2) there are no Γ -inconsistent columns

and the cost is 0, so the problem is satisfiable. At each step i, A(i) · π(i) = p.
The distribution here is distinct from that in Example 2, as here we consider

only the variables in Ψ ; this also illustrates that the satisfying distribution is not
unique. ut

2.1 SAT-Based Column Generation

The following describes procedure GenerateColumn(A(i), p, Γ) used in Algo-
rithm 2.1 and adapted for optimization Algorithm 3.1.

A Γ -consistent column b that never increases the value of the objective func-
tion is obtained by solving a SAT problem as follows. Consider x1, . . . , xk taking
values in {0, 1}, a1, . . . , ak, c ∈ Q and

a1 · x1 + · · · ak · xk ./ c ./∈ {<,≤, >,≥,=, 6=} (LR)

Linear restriction (LR) can be seen as a propositional formula ∆LR, in the sense
that a valuation v : xi 7→ {0, 1} satisfies ∆LR iff v makes (LR) a true condition.
∆LR can be obtained from (LR) in time O(k) [25].

Suppose 1, . . . , q ≤ k + 1 are the Γ -inconsistent columns of feasible solution
A. By (3), a column b = [1 y1 . . . yk]′ that substitutes some Aj and enforces a
decreasing cost satisfies∑q

i=1 A
−1
i · [1 y1 · · · yk]′ ≥ 0 (LRcost)

A valuation that satisfies Γ ∧∆LRcost
instantiates b. If that formula is satis-

fiable, A[j := b] is a feasible solution and cost never increases.
With respect to the termination of the simplex method, one must ensure

that Bland’s rule for fixed order of insertion/removal of columns is respected,
and thus termination of the simplex optimization is guaranteed [21].2

2.2 The Practical Feasibility of PSAT

Prior to the development of very efficient SAT solvers, PSAT was considered
“completely impractical” [20]. But the work of [4] has shown that PSAT presents,
in practice, the hard/easy phase transition behavior similar to that of SAT [17,
6]. Among other things, this means that there are predominantly “easy” cases
of satisfiable and unsatisfiable PSAT instances. Of course, PSAT is still several
times slower than SAT due to the fact that a PSAT solver invokes a SAT solver
several times.

With the current technology of SAT solvers, an auxiliary formula Γ ∧∆LRcost

with tens or even hundreds of thousands of variables can be mostly dealt without
problems. To keep the number of iterations of Algorithm 2.1 under control, it
is advisable to keep a small number k of probability restrictions. Several dimen-
sionality reduction techniques may be employed, such as the one described in
Example 4.

2 In practice, some SAT solvers, such as zchaff, have an internal behavior that obeys
Bland’s rule; others, such as minisat, need extra coding precautions to avoid loops.

Example 4. Reconsider Example 1, assuming there are k > 1 courses for m
students to enroll, but with a limit of ` students per course. Consider as a
soft violation now a course having any students with no partners, reducing the
number of probabilistic constraints from m to k � m. The probability of a vio-
lating course, pc, can be obtained from the previous one, adopting a simplifying
assumption of independence between soft violations, thus obtaining the proba-
bility pc = 1− (1− pi)`. ut

3 Optimizing Probability Distributions with oPSAT

Solutions to a PSAT problem are not unique, and a second phase is needed to
obtain a distribution with desirable properties. This, in some sense, mirrors the
two steps of a linear optimization problem using the simplex algorithm. The
first phase searches for a feasible solution for the initial constraints, which is
what PSAT does; the second phase produces a solution to the constraints that
optimizes an objective function.

A first candidate for this objective function is the minimization of the ex-
pected value of S, the number of soft violations:

E(S) =
∑

vi|vi(Γ)=1

S(vi)π(vi), where S(vi) =

k∑
j=1

vi(yj)

However, due to the following result, this initial idea is not applicable. Define a
(PSAT) model linear function over Ψ -variables y1, . . . , yk ∈ {0, 1}:

f(y1, . . . , yk) = a1y1 + · · ·+ akyk, where aj ∈ Q, 1 ≤ j ≤ k (4)

It is important that only variables in Ψ are arguments of f . Note that E(S)
is a model linear function with all aj = 1. Also note that the expected value
of a linear function f according to a probability distribution π is Eπ(f) =∑
j (a1vj(y1) + · · ·+ akvj(yk))π(vj).

Lemma 1. Consider a satisfiable normal form PSAT instance 〈Γ (y1, . . . , yk;
x1, . . . , xn), Ψ{P (yj) = pj |1 ≤ j ≤ k}〉; let f(y1, . . . , yk) be a model linear func-
tion. Then for every satisfying probability distribution π, the expected value of f
with respect to π is fixed, Eπ(f) =

∑
ajpj.

Proof. Directly from the definition of Eπ(f) and using linearity of Eπ:

Eπ(f) =
∑
v

(a1v(y1) + · · ·+ akv(yk))π(v)

= a1
∑
v

v(y1)π(v) + · · ·+ ak
∑
v

v(yk)π(v)

= a1Pπ(y1) + · · ·+ akPk(yk) =

k∑
j=1

ajpj .

Note that the use of normal form helped considerably to obtain this result. ut

Lemma 1 shows that there is no point in minimizing the expected number of
soft violations, which is a constant for a given PSAT instance.

3.1 Variance Minimization

Lemma 1 implies that the model function to be minimized to obtain a “balanced”
probability distribution must be non-linear. The idea is to choose a function
that prioritizes assigning higher probability mass to distributions with smaller
number of soft violations.

One possible choice is then to minimize the expected value of the square
number of soft violations, E(S2). The minimal value of the expected value of
this function tends to assign more weight, that is, a greater probability, to the
models with smaller number of soft violations. It also seems a good choice of
function that a distribution must minimize to obtain a “balanced” distribution
due to the following property.

Theorem 1 (Minimal Variance). The probability distribution that minimizes
E(S2) is also the probability distribution that minimizes the variance of the num-
ber of soft violations, Var(S).

Proof. We know from basic statistics that the variance of a function is given by

V ar(S) = E
(

(S − E(S))2
)

= E(S2)− (E(S))2 (5)

But, by Lemma 1, E(S) is fixed, so the distribution that minimizes E(S2), by
(5), is also the distribution that minimizes V ar(S). ut

So we take the view that a “balanced” distribution that respects soft con-
straints is one that minimizes the variance of the number of soft violations.

To implement it, we also use a SAT-based column generation to minimize
the objective function. The generation of a column b is based on the encoding of
the reduced cost given by (3) as c̄b = cb− cAA−1b < 0, where c is the cost vector
and A is a feasible solution. In the PSAT case, the cost of the new column is
cb = 0, but here we do not know a priori its value.

However, there are only a few possible values of cb = (S(b))2. Thus we iterate
i = 0 to k, cb = i2, at each step generating a Γ -consistent SAT formula encoding
of (3) with at most i soft violations. Assume VarianceDecreasingColumn(i, A, p, Γ)
is a column generation function that performs such encoding and submits it to
a SAT-solver, obtaining b; again a value b1 < 0 indicates unsatisfiability.

Algorithm 3.1 implements variance minimization and is a variation of Algo-
rithm 2.1. It takes as input the first phase solution to a satisfiable PSAT instance.
It contains two nested loops. The outermost one iterates over the computation
step (from 0 to k), to be able to compute columns that generate a reduced cost.
The inner loop actually performs the column generation optimization step; this
loop stops when it is not possible to further minimize the cost for a given number
of soft violations set by the outer loop, which may occur if no satisfiable instance
for the column generated is obtained.

Algorithm 3.1 MinimizeVariance(Γ, Ψ,A, π)

Input: A PSAT instance 〈Γ, Ψ〉, satisfied by Aπ = p.
Output: 〈A′, π′〉 such that π′ has minimal variance of all solutions to 〈Γ, Ψ〉.
1: A(0) := A; π(0) = π; cost(0) = Eπ(S2);
2: for i = 0 to k do
3: repeat
4: b(i) = VarianceDecreasingColumn(i, A(i), p, Γ);

5: if b
(i)
1 ≥ 0 then

6: A(i+1) =merge(A(i), b
(i));

7: compute π(i+1) and cost(i+1) = Eπ(i+1)(S2);
8: end if
9: until b

(i)
1 < 0 /* cost cannot be further minimized */

10: end for
11: return 〈A(k+1), π

(k+1)〉;

Example 5. We continue Example 3, optimizing its output, which had E(S) =
2·0.05+1·0.35+1·0.4+3·0.2 = 1.45 and E(S2) = 4·0.05+1·0.35+1·0.4+9·0.2 =
2.75 = cost(0). According to Algorithm 3.1, we iterate over the number of soft
violations allowed (i = 0 to 3). For i = 0 and i = 1, the computed SAT formula is
unsatisfiable; for i = 2, a new column is obtained to substitute the third column:

A(2) =

1 1 1 1
1 0 0 1
0 0 1 1
1 1 0 1

π(2) = [0.05 0.35 0.4 0.2]′

cost(2) = 2.75
b(2) = [1 0 1 1]′ : col 3

A(2)′ =

1 1 1 1
1 0 0 0
0 0 1 1
1 1 0 1

π(2)′ = [0.25 0.15 0.4 0.2]′

cost(2)
′

= 2.35

The remaining iterations all generate unsatisfiable formulas, so the minimum
variance obtained for i = 2 is V ar(S) = 2.35− 1.452 = 0.2475. ut

4 oPSAT and Combinatorial Materials Discovery

In this section, we present an application of the proposed oPSAT approach to
a practical problem in materials discovery. We first provide some background
on this motivating application, before formally defining the problem. Finally, we
present an oPSAT encoding for this problem and the experimental results for it.

4.1 Background

In combinatorial materials discovery, the goal is to find intermetallic compounds
with desirable physical properties by obtaining measurements on samples from
a thin film composition spread. This approach has been successfully applied for

example to speed up the discovery of new materials with improved catalytic
activity for fuel cell applications [24, 9]. Nevertheless, the analysis of these mea-
surements, also called the phase-field identification problem, requires a manual
and laborious data interpretation component, and our goal is to automate it and
reduce its processing time.

Combinatorial materials discovery, and in particular the problem of ternary
phase-field identification addressed in this paper, provides unique computational
and modeling challenges. While statistical methods and machine learning are
important components to address this challenge, they fail to incorporate rela-
tionships that are inherent to the basic physics and chemistry of the underlying
materials. In fact, a successful approach to materials discovery requires a tight
integration of statistical methods, to deal with noise and uncertainty in the mea-
surement data, and optimization and inference techniques, to incorporate a rich
set of constraints arising from the underlying materials physics and chemistry.
As a consequence, the proposed oPSAT framework seems particularly suited to
address this problem.

4.2 Problem Definition

In the composition spread approach, three metals (or oxides) are sputtered onto
a silicon wafer using guns pointed at three distinct locations, resulting in a
so-called thin film (Fig. 1). Different locations (or samples) on the thin film cor-
respond to different concentrations of the sputtered materials, based on their
distance to the gunpoints. X-ray diffraction (XRD) is then used to characterize
a number of samples on the thin film. For each sample point, it provides the in-
tensity of the electromagnetic waves as a function of the angle of diffraction. The
observed diffraction pattern is closely related to the underlying crystal structure,
which provides important insights into chemical and physical properties of the
corresponding composite material.

The goal of the phase-field identification problem is to identify regions of the
thin film that share the same underlying crystal structure. Intuitively, the XRD
patterns observed across the thin film can be explained as combinations of a
small set of basis patterns called phases. Finding the phase field corresponds to
identifying these phases as well as their concentration on the thin film. The main
challenge is to model the complex crystallographic process that these phases are
subject to (such as the expansion of the lattice, which results in a ’shift’ of the
XRD pattern), while taking into account the imperfection of the silicon wafer as
well as experimental noise of the data.

While it is natural to study the phase-field identification problem on the basis
of full XRD curves, constructive interference of the scattered X-rays occurs, by
nature, at specific angles and creates spikes (or peaks) of intensity. In addition,
experimental noise combined with variations of the Silicon substrate make the
measured intensity of the beam not reliable. As a result, materials scientists
mostly rely on peak angles when tackling the phase-field identification problem.
Therefore, we use a specialized peak detection algorithm [10] to extract the set
of peak angles Q(i) in the XRD pattern of a sample point i.

Fig. 1. Example of a thin film. Each sample on the silicon wafer corresponds to a
different composition, and has an associated measured x-ray diffraction pattern. Col-
ors correspond to different combinations of the basis patterns α, β, γ, δ. On the right,
diffraction patterns of the sample points along the right side of the thin film illustrate
how the patterns combine and shift as one moves from one point to a neighboring one.

The goal is then to find a set of peak angles Ek for each phase k, as well as
phase-presence Boolean variables ai,k and scaling factors si,k ∈ R for each sample
i and phase k, such that each observed set of peaks Q(i) is explained. Namely, for
each peak q ∈ Q(i) we want to have at least one phase k and one peak e ∈ Ek of
that phase that can explain it, i.e. ∀q ∈ Q(i) ∃e ∈ Ek s.t. (ai,k ∧ |q − si,k · e| ≤ ε)
where ε is a parameter that depends on the accuracy of the peak detection
algorithm.

Moreover, no more than 3 basis patterns can be used to explain the peaks
at sample point i, which translates to |{k|ai,k = 1}| ≤ 3. Finally, the sample
points are embedded into a graph G, such that there is a vertex for every sample
and edges connect samples that are close on the thin film (eg. based on the
grid). Given this graph, we require that the subgraph induced by {i|ai,k = 1} is
connected in order for the basis patterns to appear in contiguous locations on
the thin film. In addition, the scaling factors si,k should be monotonic along the
paths of this graph, and cannot exceed a given value Smax.

An analogy with the student enrollment example would be to consider a
sample as a student who is enrolling in at most 3 courses (phases assigned to
peaks of the sample) and is teaming up with other students (a peak paired with
a neighboring peak).

4.3 oPSAT Encoding

We now formulate the phase-field identification problem as an oPSAT encoding.
Let K be the set of phases. Also, let G be the set of sample points embedded in
a grid, such that each sample has neighbors in one or more of the four directions
{N,E, S,W}. We denote G(i) the peaks of sample point i and lp the angle of
peak p ∈ G(i). For a peak p ∈ G(i), we define Np,D ⊆ G(i′) the subset of peaks
of sample i′, where i′ is the sample in direction D from i (denoted i′ ∈ D(i)),
and such that p′ ∈ Np,D if lp ≤ l′p ≤ lp.Smax. In other words, Np,D is the set

of p’s neighbor peaks that can be matched with p according to the direction D
and without exceeding the maximum allowed shift (see Fig. 2).

Variables We define a Boolean variable xp,k, for p ∈ G(i), i ∈ G, k ∈ K,
to indicate whether peak p belongs to phase k. Similarly, zi,k indicates whether
sample point i contains some peak in phase k, i.e. zi,k =

∨
p∈G(i) xp,k. In addition,

a Boolean variable ypp′k indicates that peak p is paired with peak p′ for phase k.
Therefore, we have ypp′k → xpk∧xp′k. Furthermore, we introduce two directions
D1k ∈ {N,S} and D2k ∈ {E,W} for each phase k. The direction of a phase is
used to impose that any peak of that phase shifts according to that direction.
Accordingly, we have:

∨
p′ 6∈Np,D1k

∪Np,D2k
ypp′k = 0 for all i ∈ G, p ∈ G(i), k ∈

K. Moreover, in order to introduce probability restrictions on the number of
unmatched peaks, we define a Boolean variable dp that corresponds to whether
peak p is paired with a peak of the neighboring samples. Similarly, di denotes
whether all peaks of sample i are paired, and are channeled to the dp variables
through the following propositional formula: ¬dp ∨ di for all i ∈ G, p ∈ G(i).

Propositional Formulas A peak is assigned to at most one phase, i.e.
∑
k xpk ≤ 1.

An unassigned peak is considered unmatched (as illustrated by p0 in Fig. 2).
Namely, (

∨
k xpk) ∨ dp for all i ∈ G, p ∈ G(i). If a peak is assigned to a phase,

then it needs to be paired with a neighboring peak, otherwise it is considered un-

matched (see p1 in Fig. 2). This constraint translates to: xpk →
(∨

p′ ypp′k ∨ dp
)

for all i ∈ G, p ∈ G(i), k ∈ K. In addition, a phase should be consistent among
the samples in which this phase is involved. Namely, if two adjacent samples
share a phase, each peak of one must be paired with a peak of the other, other-
wise it is considered unmatched (as illustrated by p2 in Fig. 2). This translates

to: xpk ∧ zi′k →
(∨

p′∈G(i′) ypp′k ∨ dp
)

for all i ∈ G, p ∈ G(i), k ∈ K, i′ ∈
D1k(i) ∪D2k(i). Moreover, we enforce a relaxed form of convex connectivity of
a phase on the thin film, requiring that if any two samples that are two or more
columns (or rows) apart involve a given phase, then there should be a sample
in between them that involves this phase as well. In other words, we require
(xpk ∧ xp′k)→

∨
i′′∈NC(i,i′),p′′∈G(i′′) xp′′k, where NC(i, i′) (resp. NR(i, i′)) is the

set of samples on the grid between the columns (resp. rows) of i and i′. Finally,
we impose that a peak cannot be paired with more than one neighboring peak,
i.e.

∑
k,p′ 6=p ypp′k ≤ 1, for all i ∈ G, p ∈ G(i) and

∑
k,p′ 6=p yp′pk ≤ 1, for all

i ∈ G, p ∈ G(i).

Probability Restrictions We limit the probability that all peaks of a sample i
remain unmatched by requiring P (di) ≤ pi, where pi is either given or refined
by dichotomy search.

Inference Method For the experimental results described in the following, we
computed a probability distribution using oPSAT with variance minimization
and used, in order to obtain the accuracy of the computation, the model of the
hard (SAT) constraints in that distribution with the highest probability.

p0

i

i’

i’’

i’’

i’

i

Np,N

p

p2

p1

p
yp p’k=1

dp=1 p

xpk=0

xpk=1

p’

Fig. 2. Examples of soft violations in the oPSAT encoding. Left: Grid of sample points.
Right: Pairing the peaks of sample points i, i′ and i′′. In the case of phase k of direction
North, the peak p of sample i can only be paired with peaks of i′ in Np,N . Also, this
example illustrates the three possible soft violations for peaks: 1) p0 is not assigned a
phase (assuming one single phase), 2) p1 is not paired with any other peak, and 3) p2,
assigned to phase k, has no matching peak in i′′, although i′′ involves phase k.

4.4 Experimental Validation

We evaluate the oPSAT approach on the synthetic data used in [3] and com-
pare with the SMT approach. Note that data from real experiments has to be
manually labeled, which unfortunately is not yet available. Data was synthesized
based on a known underlying phase map for the Al-Li-Fe system [16], a ternary
system composed of 6 phases (|K| = 6).

All experiments were conducted on the same machine and using the same
C++ implementation of an oPSAT solver, using minisat as the auxiliary SAT
solver. The SMT solver used in these experiments was Z3 [2]. For the oPSAT
approach, the model with highest probability in the computed distribution was
used to obtain the accuracy results. The maximum probability of a peak to be
unmatched, that is, a peak with no phase assigned, was fixed as 2%, and a soft
violation was defined as a sample point with some unmatched peak. This soft
violation probability was computed over all peaks at that sample point, assuming
that the probability of one peak to be unmatched is independent from that of
any other peak. Table 1 shows the results of the experiments.

In all cases, the accuracy of the model computed by the oPSAT solver, defined
as the percentage of peaks predicted with the same phase as in the synthetic data
set, was above 80% (compared to 100% for SMT). On the other hand, the oPSAT
implementation presents a dramatic increase of efficiency, of at least two orders
of magnitude in all cases, and of about 2,000 times in one case.

Overall, while materials scientists currently proceed to a manual analysis
of the high-throughput experimental data, our results provide solutions that
are good and useful from the point of view of materials scientists, especially
as these solutions are, by design of hard constraints, physically meaningful and

Dataset SMT oPSAT

System P L∗ K #Peaks Time(s) Time(s) Accuracy

Al/Li/Fe 28 6 6 170 346 5.3 84.7%
Al/Li/Fe 28 8 6 424 10076 8.8 90.5%
Al/Li/Fe 28 10 6 530 28170 12.6 83.0%
Al/Li/Fe 45 7 6 651 18882 121.1 82.0%
Al/Li/Fe 45 8 6 744 46816 128.0 80.3%

Table 1. Runtime (in seconds) for both SMT and oPSAT approaches on 5 datasets,
as well as the accuracy of oPSAT (the accuracy of SMT being 100%). P is the number
of sample points, L∗ is the average number of peaks per phase, K is the number of
basis patterns, and #Peaks is the overall number of peaks.

comply with the crystallographic process. In addition, our approach is the first
automated method to exhibit short running times, and has great potential to be
used within an online setting that guides the data collection itself. Therefore, the
acceptable loss of accuracy is made up by a significant gain in speed. Finally,
these results advocate the practical feasibility of oPSAT for real applications
involving hard and soft constraints.

5 Conclusions

In this work we have described how to use the optimized probabilistic satis-
fiability (oPSAT) method to deal with problems that combine hard and soft
restrictions. We have shown how a probability distribution can be computed to
satisfy logic and probabilistic constraints and how it can be optimized to display
balanced properties via variance minimization. The technique was then applied
to the non-trivial problem of materials discovery with acceptable precision and
superior run times than existing methods.

Future work should address the computation of probability constraints that
minimize the expected value of soft violations, as well as inference methods that
employ the probability distribution computed by the oPSAT method, instead of
just considering the model with the largest probability in that distribution. With
respect to experimental results, we plan to measure the efficiency of the oPSAT
solver on real data, once a manually annotated data set becomes available. The
application of oPSAT to other problems combining hard and soft constraints is
also a direction to be explored.

Acknowledgments The first author acknowledges the support of Fapesp-Brazil
grant 2011/19860-4 and CNPq grant PQ 302553/2010-0. This work was sup-
ported by an NSF Expeditions in Computing Award on Computational Sustain-
ability (Award Number 0832782).

References

1. Boole, G.: An Investigation on the Laws of Thought. Macmillan, London (1854),
available on project Gutemberg at http://www.gutenberg.org/etext/15114

2. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Tools and Algorithms
for the Construction and Analysis of Systems, pp. 337–340. Springer (2008)

3. Ermon, S., Le Bras, R., Gomes, C., Selman, B., van Dover, R.: Smt-aided combina-
torial materials discovery. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012, LNCS,
vol. 7317, pp. 172–185. Springer (2012)

4. Finger, M., Bona, G.D.: Probabilistic satisfiability: Logic-based algorithms and
phase transition. In: Walsh, T. (ed.) IJCAI. pp. 528–533. IJCAI/AAAI (2011)

5. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: In IJCAI. pp. 1300–1309. Springer-Verlag (1999)

6. Gent, I.P., Walsh, T.: The SAT phase transition. In: ECAI94 – Proceedings of the
Eleventh European Conference on Artificial Intelligence. pp. 105–109. John Wiley
& Sons (1994)

7. Georgakopoulos, G., Kavvadias, D., Papadimitriou, C.H.: Probabilistic satisfiabil-
ity. Journal of Complexity 4(1), 1–11 (1988)

8. Giunchiglia, E., Maratea, M.: Solving optimization problems with dll. In: Brewka,
G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI 2006. pp. 377–381. IOS
Press (2006)

9. Gregoire, J.M., Tague, M.E., Cahen, S., Khan, S., Abruna, H.D., DiSalvo, F.J.,
van Dover, R.B.: Improved fuel cell oxidation catalysis in pt1-xtax. Chem. Mater.
22(3), 1080 (2010)

10. Gregoire, J.M., Dale, D., van Dover, R.B.: A wavelet transform algorithm for peak
detection and application to powder x-ray diffraction data. Review of Scientific
Instruments 82(1), 015105–015105 (2011)

11. Hansen, P., Jaumard, B.: Probabilistic satisfiability. In: Handbook of Defeasible
Reasoning and Uncertainty Management Systems. Vol.5, p. 321. Springer Nether-
lands (2000)

12. Hansen, P., Jaumard, B., Nguetsé, G.B.D., de Aragão, M.P.: Models and algorithms
for probabilistic and bayesian logic. In: IJCAI. pp. 1862–1868 (1995)

13. Hansen, P., Perron, S.: Merging the local and global approaches to probabilistic
satisfiability. Int. J. Approx. Reasoning 47(2), 125–140 (2008)

14. Kavvadias, D., Papadimitriou, C.H.: A linear programming approach to reasoning
about probabilities. Annals of Mathematics and Artificial Intelligence 1, 189–205
(1990), http://dx.doi.org/10.1007/BF01531078

15. Le Bras, R., Bernstein, R., Gomes, C.P., Selman, B.: Crowdsourcing backdoor iden-
tification for combinatorial optimization. In: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence. IJCAI’13 (2013)

16. Le Bras, R., Damoulas, T., Gregoire, J.M., Sabharwal, A., Gomes, C.P., van Dover,
R.B.: Constraint reasoning and kernel clustering for pattern decomposition with
scaling. In: Proceedings of the 17th international conference on Principles and
practice of constraint programming. pp. 508–522. CP’11, Springer-Verlag, Berlin,
Heidelberg (2011), http://dl.acm.org/citation.cfm?id=2041160.2041202

17. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT prob-
lems. In: AAAI92 – Proceedings of the 10th National Conference on Artificial
Intelligence. pp. 459–465 (1992)

18. Narasimhan, B., Mallapragada, S., Porter, M.: Combinatorial Materials Science.
Wiley (2007), http://books.google.com/books?id=tRdvxlL7mL0C

19. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28(1), 71–87 (1986)
20. Nilsson, N.: Probabilistic logic revisited. Artificial Intelligence 59(1–2), 39–42

(1993)
21. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and

Complexity. Dover (1998)
22. Raedt, L.D., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Induc-

tive Logic Programming - Theory and Applications, Lecture Notes in Computer
Science, vol. 4911. Springer (2008)

23. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

24. Van Dover, R.B., Schneemeyer, L., Fleming, R.: Discovery of a useful thin-film
dielectric using a composition-spread approach. Nature 392(6672), 162–164 (1998)

25. Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive
normal form. Inf. Process. Lett. 68(2), 63–69 (1998)

