

SMT-AIDED COMBINATORIAL MATERIALS DISCOVERY

Stefano Ermon

Ronan Le Bras

Carla P. Gomes

Bart Selman

Bruce van Dover

Computer Science

Computer Science

Computer Science

Computer Science

Materials Science/Physics

June 18, 2012

SAT 2012

Cornell Fuel Cell Institute

Mission: develop **new materials** for **fuel cells**.

Figure 1. Fuel cell schematic.

Source: Annual Reveiws of Energy and the Environment. http://energy.annualreviews.org/cgi/content/full/24/1/281

An **Electrocatalyst** must:

- Be electronically conducting
- 2) Facilitate both reactions

Platinum is the best known metal to fulfill that role, but:

- The reaction rate is still considered slow (causing energy loss)
- Platinum is fairly costly, intolerant to fuel contaminants, and has a short lifetime.

Goal: Find an intermetallic compound that is a better catalyst than Pt.

Recipe for finding alternatives to Platinum

- 1) In a vacuum chamber, place a silicon wafer.
- 2) Add three metals.
- 3) Mix until smooth, using three sputter guns.
- 4) Bake for 2 hours at 650°C

Identifying crystal structure using X-Ray Diffraction at CHESS

- XRD pattern characterizes the underlying crystal fairly well
- Expensive experimentations: Bruce van Dover's research team has access to the facility one week every year.

Additional Physical characteristics:

- Phase Connectivity
- Mixtures of ≤ 3 pure phases
- Peaks shift by ≤ 15% within a region
 - Continuous and Monotonic
- Noisy detection

Figure 1: Phase regions of Ta-Rh-Pd

Figure 2: Fluorescence activity of Ta-Rh-Pd

Problem Definition

• Input:

• A graph G representing the points on the silicon wafer

- A real vector \mathbf{D}_i per vertex v_i (diffraction patterns)
- *K* = user specified number of pure phases
- Goal: a basis of K vectors for

$$\boldsymbol{D}_i = a_{il}\boldsymbol{B}_1 + \dots + a_{iK}\boldsymbol{B}_K$$

Problem Definition

• There is experimental noise

$$\boldsymbol{D}_i = a_{il}\boldsymbol{B}_1 + \dots + a_{iK}\boldsymbol{B}_K$$

$$min || \mathbf{D}_i - a_{il} \mathbf{B}_l + \dots + a_{ik} \mathbf{B}_k ||$$

Minimize norm instead

Non-negative basis vectors and coefficients

$$\boldsymbol{B_i} \ge \boldsymbol{0}$$
 , $a_{ij} \ge 0$

At most M (=3) non-zero coefficients per point

$$|\{j\mid a_{ij}>0\}|\leq M$$

• Basis patterns appear in **contiguous** locations on silicon wafer The subgraph induced by $|\{i \mid a_{ij} > 0\}|$ is connected

Problem Definition

Basis vector can be shifted

Shift Shift operator coefficients
$$\| \boldsymbol{D_i} - a_{il} \boldsymbol{S}(\boldsymbol{B_{I,S_{il}}}) + \dots + a_{iK} \boldsymbol{S}(\boldsymbol{B_{K,S_{iK}}}) \|$$

Shifts coefficients are bounded, continuous and monotonic

$$|S_{11}| \leq |S_{12}| \leq |S_{13}| \leq |S_{14}|$$

$$|S_{12} - S_{11}| \leq c$$

It is a form of constrained Principal Component Analysis (Singular Value Decomposition)

Prior Work/Machine Learning

- Ignore most of the constraints, and shifting
 - Non-negative matrix factorization
 - Good scaling
 - Cannot enforce the combinatorial constraints (e.g., connectivity)

[Source:Le Bras et al., 2011]

Prior Work / CP

- Constraint Programming formulation [Le Bras et al., CP 2011]
 Pattern Decomposition with Scaling:
 - Imitate what humans do. Instead of considering full spectra, focus on the peaks.
 - Encoding based on set-variables
 - Does not scale to realistic sized problems
 - Useful in combination with clustering-based heuristic

- Arithmetic based approach (SMT):
 - Initial graph G representing points on the wafer

- Arithmetic based approach (SMT):
 - Initial graph G representing points on the wafer
 - Peak detection to extract a set of peaks P_i for each diffraction pattern D_i

- Arithmetic based approach (SMT):
 - Initial graph G
 - Peak detection to extract a set of peaks P_i for each diffraction pattern D_i
 - Real variables e_{ij} for the **peak locations** in each B_i

- Arithmetic based approach (SMT):
 - Real variables e_{ij} for the **peak locations** in each B_i
 - Real variables for the shift coefficients s_{ij}

Arithmetic based approach (SMT):

- Real variables e_{ii} for the **peak locations** in each B_i
- Real variables for the shift coefficients s_{ij}
- An observed peak p is "explained" if there exists s_{ij} , e_{il} s.t. $|p-(s_{ii}+e_{il})| \le \varepsilon$

•Arithmetic based approach (SMT):

- Every observed peak must be "explained"
- Bound the number of missing peaks $\leq T$
- Minimization by (binary) search on T

$$s_{11}=0$$
 $s_{21}=0.6$

$$s_{12} = 0.05$$
 $s_{22} = 0.5$

$$s_{13} = 0.1$$
 $s_{23} = 0.2$

$$s_{14} = 0.2$$
 $s_{24} = 0.1$

$$s_{15}$$
 $s_{25}=0$

SMT formulation (continued)

- Arithmetic-based SMT encoding:
 - Linear phase usage constraint (up to M basis patterns per point)
 - Linear constraint for shift monotonicity and continuity ($s_{ij} \le s_{lm}$)
 - Lazy connectivity: add a cut if current solution is not connected

If disconnected regions explained with phase 1

Then Phase 1
must appear in at
least one of
these points

- Symmetry breaking:
 - Renaming of pure phases
 - Order of the peaks location e_{ii} (per basis pattern)

Quantifier-free linear arithmetic

Experimental Results

- Use synthetic instances from the Al-Li-Fe ternary system
 - Known ground truth
 - Fairly complex system

Runtime

# Points	Unknown Phases	Arithmetic + Z3 (s)	Set-based + CPLEX (s)
10	3	8	0.5
	6	12	Timeout
15	3	13	0.5
	6	20	Timeout
18	3	29	384.8
	6	125	Timeout
29	3	78	276
	6	186	Timeout
45	6	518	Timeout

Z3 scales to realistic sized problems!

Arithmetic encoding translated to CP and MIP:

- MIP is appealing because it can optimize the objective
- They don't scale → SMT solving strategy

Precision/Recall

Recovers ground truth

Size	Precision	Recall
10	95.8	100
15	96.6	100
18	97.2	96.6
29	96.1	92.8
45	95.8	91.6

Ground SMT

Truth Results

Robustness

- Remove some peaks to simulate experimental noise
- Size = 15 points

Missing Peaks	Precision	Recall
1	96.1	99.6
2	96.3	99.3
3	96.7	99.5
4	95.3	98.9
5	94.8	99.7

Solutions are still accurate. Runtime increases approx linearly.

Conclusion

- New arithmetic-based encoding for Materials Discovery
- Good performance on synthetic data:
 - Scales to realistic sized problems (~50 points)
 - SMT outperforms previous one based on setvariables
 - Good accuracy (>90% precision and recall)
 - (likely) due to SMT solving procedure
- Exciting results analyzing and explaining real-world data

THANK YOU!

Extra slides

Previous Work 1: Cluster Analysis [Long et al., 2007]

Drawback: Requires sampling of pure phases, detects phase regions (not phases), overlooks peak shifts, may violate physical constraints (phase continuity, etc.).

Previous Work 2: NMF [Long et al., 2009]

Drawback: Overlooks peak shifts (linear combination only), may violate physical constraints (phase continuity, etc.).

SMT formulation

Parameters

- Number of pure phases K, tolerance ε
- Key components
 - Variables peak positions per base
 - Shifts per point
 - Point p is explained by base k

SMT formulation

- New arithmetic-based encoding:
 - Real variables e_{ii} for the peak locations in each B_i
 - Real variables for the shift coefficients s_{ij} (per base, per point)
 - An observed peak p is explained if $|p-s_{ij}-e_{ij}| \le \varepsilon$ (Match the height of the peaks)
 - Bound the number of missing peaks ≤ *T*

