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Cornell Fuel Cell Institute

Mission: develop new materials for fuel cells.

An Electrocatalyst must: |

o ; 1) Be electronically conducting i

- (electrons (e) |t

cfci =g

i

2) Facilitate both reactions

Platinum is the best known metalto
fulfill that role, but:

1) The reaction rate is still considered

f | slow (causing energy loss)

Electrolyte | !

o — . 2) Platinum is fairly costly, intolerant '

Fioure 1. Fuel oo scherrte . tofuel contaminants, and hasa |
f;r;zz‘mr;:;};ﬂ\j;;s of Energy and the Environment. http://energy.annualreviews.org/ i S h O rt I ifeti m e . |
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Motivation

' Recipe for finding alternatives to Platinum

1) In a vacuum chamber, place a silicon wafer.
'2) Add three metals.
3) Mix until smooth, using three sputter guns.

5 4) Bake for 2 hours at 650°C

______________________________________________________________________________

« Deliberately innomogeneous
composition on Si wafer

« Atoms are intimately mixed

(38% Ta, 45% Rh, 17% Pd)

Ta Pd
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Motivation {1es} (&)

ldentifying crystal structure using X-Ray Diffraction at CHESS
« XRD pattern characterizes the underlying crystal fairly well

« Expensive experimentations: Bruce van Dover’s research team
has access to the facility one week every year.

Rh

@n:_ﬁj% Cornell University

24/ Cornell High Energy S

(38% Ta, 45% Rh, 17% Pd)

Ta Pd




Motivation
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Motivation

INPUT:

Additional Physical characteristics:
* Phase Connectivity
» Mixtures of < 3 pure phases

« Peaks shift by < 15% within a region
— Continuous and Monotonic

* Noisy detection
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pure phase
region

QUTPUT:

m phase regions
- k pure regions
- m-k mixed regions

Mixed
phase
region
XRD pattern
characterizing
pure phases

Fe Si
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Motivation
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Fluorescence onset potent
(mV vs Ag/AgCl)

0.00 0.5 .0 oy . : 1.00
d Ta

Figure 1: Phase regions of Ta-Rh-Pd Figure 2: Fluorescence activity of Ta-Rh-Pd
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Problem Definition
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* Input:
» A graph G representing the points on the silicon wafer

Vs A
) )
U U

* Areal vector D, per vertex v; (diffraction patterns)
« K = user specified number of pure phases
* Goal: a basis of K vectors for
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Problem Definition

Minimize norm instead

/
D, =a,B, +...+a,B, j> min ||D; —a,B; +... +a,By ||

* There is experimental noise

* Non-negative basis vectors and coefficients

B,>0,a;>0

At most M (=3) non-zero coefficients per point

[ [a;>0} =M

« Basis patterns appear in contiguous locations on silicon wafer

The subgraph induced by [{i | a; > 0}/ is connected

CORNELL 13
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Problem Definition

Shift Shift
 Basis vector can be shifted operator coefficients

A

ID; — @;,S(B; S;1) + ... + a2y S(By Sik)|

» Shifts coefficients are bounded, continuous and monotonic

Sy £ S £ S;3 £ Sy

1IS1,- Syl =¢

It is a form of constrained Principal Component Analysis (Singular
Value Decomposition)

CORNELL 14
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Prior Work/Machine Learning

* Ignore most of the constraints, and shifting
* Non-negative matrix factorization

« Good scaling
« Cannot enforce the combinatorial constraints (e.g., connectivity)

¢

Synthetic

[Source:Le Bras et al., 2011]
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Prior Work / CP {1cs} (&

« Constraint Programming formulation [Le Bras et al., CP 2011]
Pattern Decomposition with Scaling:
 Imitate what humans do. Instead of considering full
spectra, focus on the peaks.
* Encoding based on set-variables
* Does not scale to realistic sized problems
« Useful in combination with clustering-based heuristic

CORNELL s
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Our Approach

« Arithmetic based approach (SMT):.
* Initial graph G representing points on the wafer

U NIV ERSITY
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Our Approach

« Arithmetic based approach (SMT):.

* Initial graph G representing points on the wafer
 Peak detection to extract a set of peaks P, for each
diffraction pattern D,

V9 P ——eooe0o- @ 0o @ 00 0 0
7,9 P, —— oo ® o0 0 e e 00 o
1,9 P, — e oo 0o 00 o @ o000
ve P, o ©® ® e o0 00 00 o
vs® D oo o o o o o
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Our Approach

« Arithmetic based approach (SMT):
* Initial graph G
 Peak detection to extract a set of peaks P, for each
diffraction pattern D,
* Real variables g; for the peak locations in each B,

K=2 €11 €12 €17
basis B, e o o o o o o
patterns ;¢ Pl — oo 000 @ o @ oo ° °
7,9 P, —— oo ® o0 0 e e 00 o
1,9 P, — e oo 0o 00 o @ o000
ve P, o ©® @ e 00 00 00 o
vs® D o o o o o o o
B,

CORNELL €51 €22 €57
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Our Approach

« Arithmetic based approach (SMT):
* Real variables g; for the peak locations in each B,
* Real variables for the shift coefficients s;

B, 9‘11 91'2 oo o o 6017
V9 P, — eo-oc0o0 @ o ® 00 0 0
7,9 P, —— oo ® o0 0 e e 00 o
1,9 P, — e oo 0o 00 o @ o000
ve P, o ©® @ e 00 00 00 o
vs® P o o o o o o o
B,
CORNELL €1 €2 €27
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Our Approach fesy (G

« Arithmetic based approach (SMT):
* Real variables g; for the peak locations in each B,
* Real variables for the shift coefficients s;
* An observed peak p is “explained”If there exists s;;,e; s.t.
Ip-(sj+e)l=¢
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Our approach {1es ) (1

*Arithmetic based approach (SMT):
» Every observed peak must be “explained”
* Bound the number of missing peaks < T
« Minimization by (binary) searchon T

o)
)

B, e o o o o o o

P —e o —0o 0 o 0 X 1= 55,=0.6
P, —e-—9o 00 o 5,=0.05 55,=0.5
P, — e o @ 00— o -0 515=0.1 5,3=0.2
P, o o 9o o o oo 51,=0.2 55,=0.1
P, % 915 525=0
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SMT formulation (continued) {les

* Arithmetic-based SMT encoding:
* Linear phase usage constraint (up to M basis patterns per point)
* Linear constraint for shift monotonicity and continuity (s; < s, )
« Lazy connectivity: add a cut if current solution is not connected
If disconnected regions Then Phase 1
explained with phase 1 must appear in at
S~ least one of
these points

* Symmetry breaking:
* Renaming of pure phases
* Order of the peaks location e; (per basis pattern)

—> Quantifier-free linear arithmetic

rrrrrrrrrr
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Experimental Results

» Use synthetic instances from the Al-Li-Fe ternary system

* Known ground truth
* Fairly complex system

Synthetic

e —
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Runtime

# Points | Unknown | Arithmetic + Z3 | Set-based + CPLEX
Phases (S) (s)
10 3 8 0.5

6 12 Timeout
15 3 13 0.5
0 20 Timeout ealinte svod
18 3 29 384.8 problems!
6 125 Timeout
29 3 78 276
6 186 Timeout
45 6 518 Timeout

Arithmetic encoding translated to CP and MIP:
* MIP is appealing because it can optimize the objective
* They don’t scale — SMT solving strategy

CORNELL 25
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Precision/Recall

]
» B 95.8 100
15 96.6 100
18 97.2 96.6
29 96.1 92.8
45 95.8 91.6
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Robustness {1cs) (&

* Remove some peaks to simulate experimental noise
 Size = 15 points

Missing Peaks Precision Recall
1 96.1 99.6
2 96.3 99.3
3 96.7 99.5
4 95.3 98.9
5 94.8 99.7

0 2 4 6 8 10
Missing peaks bound T

Solutions are still accurate. Runtime increases approx linearly.

CORNELL 27
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Conclusion

 New arithmetic-based encoding for Materials Discovery

« Good performance on synthetic data:
« Scales to realistic sized problems (~50 points)

« SMT outperforms previous one based on set-
variables

« (Good accuracy (>90% precision and recall)
* (likely) due to SMT solving procedure

« Exciting results analyzing and explaining real-world data
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Extra slides
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Previous Work 1: Cluster Analysis [Long et al., 2007]

Xi = = - E[.x‘,-—.x_')i}'..-—_?}
- — s D=(1-0)/2
,—H‘J

Feature vector Pearson correlation coefficients Distance matrix

PCA — 3 dimensional approx Hierarchical Agglomerative Clustering

Drawback: Requires sampling of pure phases, detects phase regions (not phases),
overlooks peak shifts, may violate physical constraints (phase continuity, etc.).

CORNELL 31
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Previous Work 2: NMF [Long et al., 2009]

X = - | X=AS+E Min ||E||
60 ] ﬁ H
Feature vector Linear positive combination (A) Minimizing squared
of basis patterns (S) Frobenius norm

Drawback: Overlooks peak shifts (linear combination only), may violate
physical constraints (phase continuity, etc.).

CORNELL 32
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SMT formulation

 Parameters

* Number of pure phases K, tolerance ¢
« Key components

» Variables peak positions per base

« Shifts per point

» Point p is explained by base k

CORNELL 33
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SMT formulation

* New arithmetic-based encoding:
* Real variables e; for the peak locations in each B;
* Real variables for the shift coefficients s;
(per base, per point)
* An observed peak p is explained if [p-s;- ;| < €
(Match the height of the peaks)
* Bound the number of missing peaks < T
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