

Large Landscape Conservation — Synthetic and Real-world Datasets

Bistra Dilkina

Carla P. Gomes

Katherine Lai

Ronan Le Bras

Kevin S. McKelvey

Ashish Sabharwal

Michael K. Schwartz

Jordan Suter

Yexiang Xue

Cornell University

Cornell University

Cornell University

Cornell University

US Forest Service

IBM Research

US Forest Service

Oberlin College

Cornell University

Motivation: Biodiversity & Conservation

Key causes of biodiversity loss:

Habitat Loss and Fragmentation

urbanization

deforestation

agriculture

Maintaining landscape connectivity is critical to reduce inbreeding, increase genetic diversity and provide resilience

Cost-effective Wildlife Conservation

- Conservation targets and priorities set considering only ecological benefits
- Limited economic resources have to be used in the most effective way possible
 - Budget-constrained conservation planning
- Underlying computational challenges:
 - Discrete Optimization
 - Network Design

Wolverines

Lynx

Grizzly Bear

Landscape connectivity vs. Network Design

Steiner tree problem, Survivable network design, etc

How do we choose which habitats to protect so that landscapes will stay robustly well-connected for wild animal species?

Network Design

New general models and methodologies

- Minimum Steiner Multigraph Problem
- Budget-Constrained Steiner Connected Subgraph Problem with Node Profits and Node Costs
- Upgrading Shortest Path
- Minimum Delay Generalized Steiner Network

Landscape Connectivity

How do factor in specific features of wildlife conservation, e.g., different species requirements, interactions of species, etc?

Research challenges in Landscape Connectivity

- Better approaches to previously addressed planning setting
- Other planning questions related to landscape connectivity
 - Climate change
 - Adaptive management
 - Multi-period budgets
- Real-world datasets
 - Scale and structure of real problems
- Synthetic generator:
 - Large number of instances
 - Typical-case performance analysis of solution methods

Synthetic Instance Generator

- Fully Random and Structured Instances
- Parameters: size of grid, number of core areas and pairs, size of core areas, resistance structure as Mixture of Gaussian Functions, multiple species

Grizzly Bears in the US Northern Rockies

connecting 3 reserves:

Yellowstone National Park
Glacier Park / Northern Continental
Divide
Salmon-Selway Ecosystem

Different resolutions:

40x40km grid cells 10x10km grid cells 5x5km grid cells 25 sq. km hexagonal cells

- 1) Problem instances in graph format
- 2) GIS layers to visualize data and proposed solutions

West Montana: Wolverine and Lynx

6x6km grid cells GIS ascii data

Please follow up with research:

http://www.cis.cornell.edu/ics/Datasets

Thank you!

Wolverines in West Montana

