
From Complete to Incomplete Information and Back

Lyublena Antova, Christoph Koch, and Dan Olteanu

Saarland University Database Group
Saarbrücken, Germany

{lublena, koch, olteanu}@infosys.uni-sb.de

ABSTRACT
Incomplete information arises naturally in numerous data manage-
ment applications. Recently, several researchers have studied query
processing in the context of incomplete information. Most work
has combined the syntax of a traditional query language likere-
lational algebra with a nonstandard semantics such as certain or
ranked possible answers. There are now also languages with spe-
cial features to deal with uncertainty. However, to the standards
of the data management community, to date no language proposal
has been made that can be considered a natural analog to SQL or
relational algebra for the case of incomplete information.

In this paper we propose such a language, World-set Algebra,
which satisfies the robustness criteria and analogies to relational
algebra that we expect. The language supports the contempla-
tion on alternatives and can thus map from a complete database
to an incomplete one comprising several possible worlds. Weshow
that World-set Algebra is conservative over relational algebra in
the sense that any query that maps from a complete database to
a complete database (a complete-to-complete query) is equivalent
to a relational algebra query. Moreover, we give an efficient algo-
rithm for effecting this translation. We then study algebraic query
optimization of such queries.

We argue that query languages with explicit constructs for han-
dling uncertainty allow for the more natural and simple expression
of many real-world decision support queries. The results ofthis
paper not only suggest a language for specifying queries in this
way, but also allow for their efficient evaluation in any relational
database management system.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query languages

General Terms
Design, languages

Keywords
Incomplete information, hypothetical queries, query rewriting,
world-set algebra, use cases

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07,June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 . . . $5.00.

1. INTRODUCTION
Incomplete information arises naturally in numerous data man-

agement applications like data integration [18], data cleaning [3],
or data exchange [11]. In the last decades the research community
has shown a vivid interest in efficiently managing incomplete infor-
mation viewed as aset of possible worlds[16, 12, 17, 2, 13, 19, 6,
7, 10, 11, 14, 8, 4]. When it comes to expressing queries on incom-
plete information, these contributions mostly consider standard lan-
guages for complete data such as relational algebra or SQL. While
[16] uses a compositional semantics for relational algebrain which
a query transforms each world individually, most recent work has
assumed nonstandard, noncompositional query semantics.

A significant amount of research has attempted to find the right
balance between the succinctness of world-set representations and
the efficiency of query evaluation on top of them (e.g., [2, 8, 4, 5]).
However there is a lack of expressive query languages which are
well tailored for sets of possible worlds.

In this paper we address the issue of supporting queries on in-
complete information. A query language for incomplete informa-
tion should fulfill at least the following four desiderata.

• It must begeneric, i.e., it must preserve the independence
of the data from its representation. Query results must not
depend on details of how the data is stored.

• It must beexpressiveenough to support common queries on
incomplete information. The expressiveness of the language
should be proven for a reasonable load of use cases.

• It should beconservativeover existing query languages such
as relational algebra in the sense that any query that maps
from a complete database to a complete database admits an
equivalent relational algebra query. Conservativity provides
an argument that the language is an analog of relational al-
gebra for the new data model. It formalizes our desire for
the language not to be overly expressive, at the expense of
high computational complexity or difficulty at adapting es-
tablished query processing techniques to the new language.

• It should allow forefficient evaluation.

To date, no proposal for a query language for incomplete infor-
mation has been made that satisfies all of the above desiderata. SQL
lacks explicit constructs for dealing with uncertainty, though there
are queries on incomplete information that can be expressedas SQL
queries on relational representations of incomplete databases with
complicated nesting and aggregations (as shown later in thepaper).
Extensions of relational algebra or SQL with limited constructs,
such ascertain or top-k, that close the possible worlds semantics
are presented in, e.g., [17, 6] and [10] respectively. Such extensions



are not expressive enough, as they do not allow for the convenient
construction of new worlds or for the use of data correlations across
worlds. Other recent query languages provide constructs that de-
pend to a large extent on the representation model. An example is
TriQL [23], the query language of the Trio system for managing
possible worlds [8]. Its constructs provide explicit access to the in-
ternal artifacts of the used representation model, which cannot be
interpreted independently from the model.

Languages for querying incomplete information can be moti-
vated even for querying complete data. This is the case for hypo-
thetical (“what if”) queries that are important in decisionsupport.
The TPC-H (Decision Support) Benchmark Specification [21] in-
cludes two “what if” queries (Q6 and Q17) [24]. For example,
Q6 asks for the amount of revenue increase thatwould have re-
sultedfrom eliminating certain company-wide discounts in a given
percentage range and year. This query thus reasons in alternative
worlds that contain counterfactual data.

Hypothetical queries have also been addressed in previous re-
search. For instance, [15] develops a language for determining in
queries what result would have been obtained from the database
if certain updates had been applied. While this work develops in-
teresting techniques for rewriting and optimizing queries, the lan-
guage itself does not use a possible worlds semantics and cannot be
used to map from or to uncertain data.

The technical contributions of this paper are as follows.

• We propose a new language, called I-SQL, which is a natu-
ral analog to SQL for the case of incomplete information. In
contrast to SQL queries, I-SQL queries can exploit the pos-
sible worlds interpretation of incomplete data.

• We motivate our language using scenarios from planning and
decision-support applications. We also argue that query lan-
guages with explicit constructs for handling incompleteness
allow for the simpler expression of many real-world queries
of the traditional one-world-to-one-world kind.

• We define an algebra for a clean fragment of I-SQL, which
we call world-set algebra. World-set algebra is to I-SQL
what relational algebra is to SQL. Our algebra focuses on the
new constructs that deal with incomplete information. Like
relational algebra, it does not consider SQL aggregations and
bag semantics.

• We show that world-set algebra is generic.

• We show that world-set algebra is conservative over rela-
tional algebra. This means that any world-set algebra query
that maps from a complete database to a complete database
(a “complete-to-complete” query) is equivalent to a relational
algebra query.

• We give an efficient algorithm for effecting this translation. It
follows that complete-to-complete world-set algebra queries
have the same low data complexity as relational algebra. Tra-
ditional techniques for efficiently processing relational alge-
bra queries can be directly employed to evaluate world-set
algebra queries.

• We establish equivalences and rewrite rules that hold for the
operations of world-set algebra and study algebraic query op-
timization.

Thus we show that world-set algebra fulfills all the above desider-
ata for a query language for incomplete information.

The structure of the paper follows the list of contributions. Due
to lack of space, we will treat I-SQL informally, mostly in exam-
ples. We will focus on world-set algebra in the formal treatment.

To make it easy to see the close connection between I-SQL and the
algebra, it is safe to assume a set-based semantics for I-SQL.

2. APPLICATION SCENARIOS
We next motivate our language I-SQL by examples from areas

such as decision support, trip planning and data cleaning.

Business decision support queries.Decision support queries as-
sist decision makers in various domains of business analysis, like
pricing and promotions, profit and revenue management, or stud-
ies on the market and customer satisfaction. Usually, such queries
are hypothetical (or “what if”) in the sense that they contemplate
possible alternatives based on various hypothetical assumptions of
decision makers.

Let us consider an example in which we have a (complete, i.e.
single-world) database containing information about companies,
their employees, and the various skills of these employees.

CompanyEmp CID EID
ACME e1
ACME e2
HAL e3
HAL e4
HAL e5

Emp Skills EID Skill
e1 Web
e2 Web
e3 Java
e3 Web
e4 SQL
e5 Java

Suppose we consider buying a single of these companies in or-
der to gain the competency ‘Web’. However, we want to take into
consideration that one of the employees might be disgruntled by
the takeover and leave; we want to guarantee that we acquire the
skill ‘Web’ nevertheless. We can phrase this query in the I-SQL
language as follows. In the following, we proceed constructing the
query step by step, and always also show the resulting relations.

• “Suppose I chooseto buy exactly one company.”

U←
select *
from CompanyEmp
choice of CID;

This results in two possible worlds, obtained by taking the
two input relations and addingU1 for the first world andU2

for the second:

U1 CID EID
ACME e1
ACME e2

U2 CID EID
HAL e3
HAL e4
HAL e5

• “Assumethat one (key) employee leaves that company.”

V ←

select R1.CID, R1.EID
from CompanyEmp R1,

(select * from Uchoice ofEID) R2
where R1.CID= R2.CID and R1.EID != R2.EID;

The result is five worlds (CompanyEmp,Emp Skills,U i ,Vi. j):

V1.1 CID EID
ACME e1

V1.2 CID EID
ACME e2

V2.1 CID EID
HAL e3
HAL e4

V2.2 CID EID
HAL e3
HAL e5

V2.3 CID EID
HAL e4
HAL e5



• “If I acquire that company, which skills can I obtain forcer-
tain?”

W←

selectcertain CID, Skill
from V, Emp Skill
where V.EID= Emp Skill.EID
group worlds by (select CID from V);

We stay at five worlds, and extend them by one of the two
following relations.

W1.∗ CID Skill
ACME Web

W2.∗ CID Skill
HAL Java

• “Now list thepossibleacquisition targets if I want to guaran-
tee to gain the skill “Web” by the acquisition.”

selectpossible CID
from W
where Skill= ‘Web’;

This results in the following relation, added to each of the
five worlds:

Result∗.∗ CID
ACME

Trip planning. Consider the relation

Flights(Fid, Dep, Arr, Dtime, Atime)

encoding information about daily flights with id Fid from departure
airport Dep to arrival airport Arr. The departure and arrival time
are given by Dtime and Atime, respectively. Suppose we want to
schedule a meeting of a group of people from a set of cities given
by unary relation ‘Hometowns’. We will use the view

create view HFlights as

select * from Flights where Dep in Hometowns;

below to save space. The individuals would like to meet by taking
direct flights to a single common city (in which none of them lives).
We express this query for eligible destinations using an extension
of SQL by two new constructs, choice-of and ‘certain’.

select certain Arr from HFlights choice of Dep;

For each of the departure airports (expressed by, intuitively, non-
deterministically choosing a departure airport and selecting all the
flights with that departure airport), we select the possibledestina-
tions (attribute Arr), and then compute the destinations common to
all departures (using ‘certain’). Using choice-of we interpret each
departure as an alternative world. In each world we find the desti-
nations, and then close the possible worlds semantics by computing
the certain destinations.

Assuming the existence of a division operator in SQL [22], we
can express the query in SQL as (assuming set-based semantics for
SQL and I-SQL):

select Arr

from (select Arr, Dep from HFlights) as F1

divide by

(select Dep from HFlights) as F2

on F1.Dep = F2.Dep;

This computes all arrival cities that appear in combinationwith
all departures. Division can be simulated in SQL using a nested
subquery with two not-exists constructs:

select Arr from HFlights F1

where not exists

(select * from HFlights F2

where not exists

(select * from HFlights F3

where F3.Dep = F2.Dep and F3.Arr = F1.Arr));

This shows that at least in certain cases, I-SQL allows to phrase
decision support queries more concisely than plain SQL.

TPC-H. A different example for decision support queries is query
Q6 in TPC-H [21] which quantifies the amount of revenue increase
that would have resulted from eliminating certain company-wide
discounts in a given percentage range in a given year. Also, query
Q17 in TPC-H determines how much revenue would be lost if or-
ders were no longer filled for somegivenquantities. Both queries
are expressible in SQL using fairly simple select-from-where state-
ments on one relation [24].

We next discuss one query similar in spirit toQ17. Assume we
have a simplified version of the TPC-H Lineitem relation

Lineitem(Product, Quantity, Price, Year)

containing information about products sold in fixed quantities or
package sizes, e.g., one hundred grams or one kilogram.

We would like to compute the years with a revenue loss over
1.000.000$ ifanyquantity of the sold products is no longer avail-
able. To answer this query, we first define all pairs of year and
missing quantity as possible worlds and compute the revenuefor
each of these pairs.

create view YearQuantity as

select A.Year, sum(A.Price) as Revenue

from (select * from Lineitem choice of Year) as A

where Quantity not in

(select * from Lineitem choice of Quantity)

group by A.Year;

The view YearQuantity creates a world for each year (by making
a choice of the year), and then for each year it creates a worldfor
each missing quantity (by specifying a choice of the quantity in the
subquery). Finally, in each of the created worlds we computethe
revenue, i.e., the sum of prices of all sold products.

For each pair of year and missing quantity, we can now compare
its computed revenue with the revenue of the year without missing
quantities. If the difference in revenues is greater that our threshold,
then we report the year.

select possible Year from YearQuantity as Y

where (select sum(Price) from Lineitem

where Lineitem.Year = Y.Year)

- Y.Revenue > 1000000;

Consistent views of inconsistent data. Consider the relation
Census (SSN, Name, POB, POW) containing simplified informa-
tion about social security number, name, place of birth, andplace
of work for a set of persons. When such data is manually entered, it
is highly likely that certain constraints are initially violated. For ex-
ample, the mistyping of the SSN can violate the functional depen-
dency SSN→ Name, POB, POW. In such cases, one particularly
useful view of this inconsistent relation is to consider theset of pos-
sible Census relations that are consistent w.r.t. the givenfunctional
dependency. We can support such a view using the new construct
repair-by-key.

select * from Census repair by key SSN;

The above query creates all possible relations that are consistent
w.r.t. our functional dependency and are contained in the relation
Census. This query construct fits naturally into data cleaning sce-
narios and provides support for deduplication based on key con-
straints. The above query can produce exponentially many worlds



select [possible | certain] sellist
from qlist
where cond
[group by attrlist]
[choice of attrlist]
[repair by key attrlist]
[group worlds by sqlquery];

insert into relnamevalues values;
delete from relname[where cond];
update relnameset settings[where cond];

Figure 1: Syntax of I-SQL queries and data manipulation com-
mands.

(representing all consistent combinations of social security num-
bers), and is thus not expressible in SQL (or relational algebra). In
fact, NP-hard problems can be expressed as queries with the repair-
by-key construct.

3. I-SQL
This section describes an SQL-like language, called I-SQL,for

querying possible worlds, part of which was already introduced in
Section 2 using examples. For the purposes of this paper we as-
sume set semantics for SQL and I-SQL. The generalization to bag
semantics is a subject of future work.

A main motivation of our work is to find a natural extension of
relational algebra and SQL to the context of incomplete informa-
tion. Traditionally, query evaluation in this context is defined as
mapping between sets of possible worlds. The query is evaluated
in each world independently, and the world is extended with the
result of the query in it. A different approach is followed in work
on computing certain or (ranked) possible answers which results in
closing the possible worlds semantics.

Here we combine the two approaches and also add support for
creating new worlds. The structure of an I-SQL query is summa-
rized in Figure 1. We next detail on the syntax and semantics of the
constructs separated in four groups.
Standard SQL constructs. In accordance to the possible worlds
semantics, a query is evaluated in each world independentlyand
the result is added as a new relation to that world. For example the
query

select * from Flights where Arr = ’BCN’;

will retrieve the flights to Barcelona in each world.

Merging worlds. This group contains constructs that go across
world borders to collect information that appears in other worlds as
well.

• possible and certain. These constructs compute the tuples
that appear in some, respectively all worlds. The result is
then added to each world of the input world-set.

• group-worlds-by. This construct is used in combination with
‘possible’ and ‘certain’ and allows specifying a conditionon
which the worlds are grouped. The condition is given in form
of an SQL query; worlds that produce the same result of that
query are then put into the same group. Then, ‘possible’ or
‘certain’, respectively, are computed within each of the cre-
ated groups. Sometimes, when the query on which we group
is a projection on a set of attributes, we will write directly
only the set of attributes, as is done in the group-by construct
of SQL.

Even though our language has the power to combine results from
different worlds into one, this is still accomplished in an “inside-
out” manner. This means that a query, as before, is evaluatedin
each world independently; however it can also occasionallylook
“outside” the current world to obtain the necessary information.
The result of the query remains local to the currently considered
world. This differs from the approach where a query can access the
worlds “from outside”, and preserves the spirit of traditional query
processing on sets of possible worlds.

E 3.1. Consider as input the set of three worldsA,B,
andC of Figure 2 (b) showing the flights from Frankfurt, Paris, and
Barcelona, respectively and the query that finds the certainarrivals:

select certain Arr from Flights;

Evaluated in the first world, the query produces a new relation F
which is the intersection of the Flights.Arr tuples from allworlds,
and this relation is added to the first world. The result in there-
maining two worlds is computed in the same way, see Figure 2 (d).

Even though we used the closing construct ‘certain’, the result is
again the set of three input worlds, where each of them is extended
with a new relation F. Only if the input is a single world, or ifone
is interested only in the result of the operation and not in the input
relations, will a ‘possible’ or ‘certain’ construct produce a single
world. �

Splitting up worlds . In addition to the merging constructs, the
language we propose enables the creation of new worlds usingthe
choice-of or repair-by-key operations.

• choice-of. This construct is used to freeze the values for a
given set of attributes and analyze each such combination
of values in a separate world. For example the following
choice-of query

select * from Flights choice of Dep;

applied on the world-set of Figure 2 (a) will produce a world
for each possible value of the Dep attribute of Flights, which
will contain all tuples with that value. The result of the query
is given in Figure 2 (b).

• repair-by-key. The repair-by-key construct generates, asits
name suggests, the possible repairs of a relation that violates
a uniqueness constraint for the values of a given set of at-
tributes. This makes sense in the context of cleaning incon-
sistent data, where tuples overlap on a set of key attributes
and each choice of a distinct tuple for each combination of
values is a possible repair of the database. As discussed in
the introduction, repair-by-key can also be used for generat-
ing possible configurations of items where each configura-
tion contains only one item of a type. For example,

select * from R repair by key A;

creates a world-set where each tuple has a unique A-value.

Data Manipulation. I-SQL uses the standard operations of SQL
‘insert’, ‘update’ and ‘delete’ to manipulate the data. Again, the
semantics follows the possible worlds scheme, where the query is
executed in each world of the world-set independently. For exam-
ple, a query that inserts a tuple into a relation will insert the tuple in
each world of the world-set. In case that inserting the tupleviolates
a constraint in some worlds, the update is discarded in all worlds.

The syntax of the data manipulation operations correspondsdi-
rectly to the one in SQL and is given in Figure 1.



Flights Dep Arr
FRA BCN
FRA ATL
PAR ATL
PAR BCN
PHL ATL

(a) Flights database

FlightsA Dep Arr
FRA BCN
FRA ATL

FlightsB Dep Arr
PAR ATL
PAR BCN

FlightsC Dep Arr
PHL ATL

(b) Creating worlds using choice-of on Dep

FlightsA Dep Arr
FRA BCN

FlightsB Dep Arr
PAR BCN

FlightsC Dep Arr

(c) Tuple deletion on the world-set of (b)

FlightsA Dep Arr
FRA BCN
FRA ATL

FA Arr
ATL

FlightsB Dep Arr
PAR ATL
PAR BCN

FB Arr
ATL

FlightsC Dep Arr
PHL ATL

FC Arr
ATL

(d) Result of “select certain Arr from Flights;” on the world-set of (b)

Figure 2: Trip planning.

E 3.2. Consider the world-set in Figure 2 (b) and the
command that deletes all entries containing ‘ATL’ as the Arrat-
tribute:

delete from Flights where Arr = ’ATL’;

The result is given in Figure 2 (c). �

Order of evaluation. The skeleton of each I-SQL query is an SQL
select-from-where statement which is conceptually evaluated in the
standard way by (1) computing the product of the relations pro-
duced by the subqueries in the from-clause, (2) applying thecondi-
tions of the where-clause on top, and (3) projecting on the attributes
given in the select list. If any of the new operators choice-of, repair-
by-key and group-worlds-by are specified, they are applied after
step (2) in the order given by Figure 1. In other words we first use
choice-of to create a world for each combination of values for the
specified attributes, and then repair-by-key in each of the created
worlds. The group-worlds-by operation is applied on the world-set
created after the repair-by-key construct. Only then we apply step
(3) to project the attributes given in the select-clause andif ‘pos-
sible’ or ‘certain’ are present we union, respectively intersect, the
tuples in that projection.

4. WORLD-SET ALGEBRA
In this section we define an algebra for the fragment of I-SQL

without SQL grouping and aggregation constructs. This algebra,
called World-set Algebra, is an extension of relational algebra with
the new constructs poss, cert, choice-of, and group-worlds-by. We
then show that world-set algebra is generic in the sense thatthe
semantics of a query is independent of the world-set representation.
Recall that genericity is a fundamental property of query languages
like relational algebra and SQL [1].

4.1 Syntax and Semantics
We consider the named perspective of the relational model and

relational algebra operators selectionσ, projectionπ, product×,
union ∪, difference−, and renamingδ. Sometimes we will also
use the operators intersect∩ and division÷ expressible using the
six base operators. Sets of attributes are denoted by capital let-
tersU andV. In addition to relational algebra operators, we con-
sider a fragment of the I-SQL operators, namely the unary oper-
ators poss, cert,χU (choice-of), pγV

U (possible-group-worlds-by),
andcγV

U (certain-group-worlds-by).

Figure 3 gives the semantics of world-set algebra defined as a
function ~·� mapping between world-sets. The semantics func-
tion is defined inductively on the structure of world-set algebra

queries. Let the initial world-setA contain worlds over schema
Σ = 〈R1, . . . ,Rk〉. By applying a queryq to A we add to each world
of A a new relationRk+1 that represents the answer toq in that
world. Thus we obtain a new world-set over schema〈R1, . . . ,Rk+1〉.
We next discuss the semantics of each of our operators.

If the query to evaluate is the identity on a relation (i.e., of the
form Ri), we add a copy of that relation to each world.

To evaluatef (q), where f is a unary relational algebra operator
(selection, projection, or renaming), we first evaluateq and produce
a relationRk+1 in each world. Then, in each world,f is evaluated
onRk+1 and the answer, obtained in standard way for this relational
algebra operation, replacesRk+1.

The case of relational algebra binary operators is a bit morein-
volved, because its operands can produce different world-sets. We
first evaluate the operands and obtain two world-setsA′ andA′′,
both representing sets of databases withk+1 relations. We then per-
form the binary operation in those combinations of one worldfrom
A′ and one world fromA′′ that agree on the relationsR1, . . . ,Rk.
This condition ensures that we forbid operations between relations
that occur in different worlds in the original world-set.

The choice-of operatorχU creates a new world for each choice of
the values in the projectionπU on Rk+1 in each world. The relation
Rk+1 is then replaced in each of the new worlds by the subset ofRk+1

consisting of those tuples that agree on the values ofU. Thus there
are no two new worlds created from the same world〈R1, . . . ,Rk+1〉

with the same values ofU. When applied to the empty relation,
choice-of produces an empty relation. Note that each newly created
world also contains the relationsR1, . . . ,Rk of the world from which
it was derived. This assures compositionality.

The group-worlds-by operatorspγV
U andcγV

U group worlds in a
world-set such that all worlds in a group agree onπU (Rk+1). We
then replaceRk+1 by πV(Rk+1) in each world. In the case ofpγV

U ,
Rk+1 in each worldA is replaced by the union of the relationsRk+1

from the group of worlds associated withA. Analogously, in the
case ofcγV

U , the new relationRk+1 in a worldA becomes the in-
tersection of the relationsRk+1 from the group of worlds associated
withA.

In case f is poss, thenRk+1 is replaced by the union of all its
instances across all worlds. (That is, this replacement is carried out
in all worlds.) If f is cert, thenRk+1 is replaced by the intersection
of all its instances across all worlds.

In Figure 3, pγV
U , cγV

U , poss and cert are all defined using the
auxiliary operatorspγV

∼ andcγV
∼ (which we assume not to be part

of world-set algebra).



~Ri�(A) := {〈R1, . . . ,Rk,Ri〉 | 〈R1, . . . ,Rk〉 ∈ A}, where 1≤ i ≤ k

~ f (q)�(A) := {〈R1, . . . ,Rk, f (Rk+1)〉 | 〈R1, . . . ,Rk+1〉 ∈ ~q�(A)}, where f ∈ {πU , σφ, δU→V}

~q1 Op q2�(A) := {〈R1, . . . ,Rk,R
1
k+1 Op R2

k+1〉 | 〈R1, . . . ,Rk,R
1
k+1〉 ∈ ~q1�(A), 〈R1, . . . ,Rk,R

2
k+1〉 ∈ ~q2�(A)}, whereOp ∈ {×,∪,∩,−}

~χA(q)�(A) := {〈R1, . . . ,Rk, σA=v(Rk+1)〉 | 〈R1, . . . ,Rk+1〉 ∈ ~q�(A), (v ∈ πA(Rk+1) ∨ (Rk+1 = ∅ ⇒ v = 1))}

~pγV
∼(q)�(A) :=

{〈

R1, . . . ,Rk,
⋃

{πV(R′k+1) | A
′ = 〈R1, . . . ,Rk,R

′
k+1〉 ∈ ~q�(A), A ∼ A′}

〉

| A = 〈R1, . . . ,Rk+1〉 ∈ ~q�(A)
}

~cγV
∼(q)�(A) :=

{〈

R1, . . . ,Rk,
⋂

{πV(R′k+1) | A
′ = 〈R1, . . . ,Rk,R

′
k+1〉 ∈ ~q�(A), A ∼ A′}

〉

| A = 〈R1, . . . ,Rk+1〉 ∈ ~q�(A)
}

~pγV
U(q)�(A) := ~pγV

πU (Rk+1)=πU (R′k+1)(q)�(A) ~poss(q)�(A) := ~pγ∗true(q)�(A)

~cγV
U(q)�(A) := ~cγV

πU (Rk+1)=πU (R′k+1)(q)�(A) ~cert(q)�(A) := ~cγ∗true(q)�(A)

Figure 3: Semantics of world-set algebra (with auxiliary definitions of pγV
∼ and cγV

∼ ).

E 4.1. The first query of Section 2 asking for possible
acquisition targets can be expressed in world set algebra as

poss(πCID(σSkill=‘Web′(cγ
∗
CID(π1.CID,1.EID(χCID,EID(CompanyEmp)

⊲⊳1.CID=2.CID∧1.EID,2.EID CompanyEmp)⊲⊳ Emp Skills)))). �

Operator Typing. We type the operators based on the cardinality
of their input and output world-sets. An operator has type 17→ 1
if it is a mapping between singleton world-sets, 17→ m if it maps
singleton world-sets to world-sets,m 7→ 1 if it maps world-sets to
singleton world-sets, andm 7→ m if it is a mapping between world-
sets. We also allow type overloading for operators.

The operators of the world-set algebra can then be characterized
as follows. The relational algebra operators and the world grouping
operators are either 17→ 1 or m 7→ m. The operators poss and cert
have the typem 7→ 1. Finally, the type of the operator choice-of is
either 17→ mor m 7→ m. The type of a world-set algebra query can
then be checked statically using standard typechecking inference
rules. For example, all queries from Section 2 have type 17→ 1,
because they start with a singleton world-set and their outermost
operators are either poss or cert.

The usefulness of query typing becomes evident in Section 5,
where we study query evaluation on an inlined representation of
world-sets. There, we use the type to decide whether the query
maps to a singleton world-set.

Extending World-set Algebra. The I-SQL operator repair-by-
key enforces a uniqueness constraint for the values of a given set
of attributes. We note here that by adding this operator to world-
set algebra, we can express complex guess and check programming
tasks. For example, one can easily reduce the 3-colorability prob-
lem to the evaluation of a world-set algebra query.

P 4.2. The evaluation of queries in world-set algebra
with repair-by-key is NP-hard.

In contrast, the evaluation of queries in relational algebra is in
PTIME w.r.t. data complexity.

4.2 Genericity
Genericity is a fundamental property of query languages. Itguar-

antees that query results are independent from the representation
of the data and interpretation of domain values. While relational
query languages such as relational algebra and SQL are generic,
this is not always obvious in possible worlds query languages. In
fact, as we will see later, this property does not hold for some lan-
guages for querying incompleteness. World-set algebra is generic,

i.e., its semantics does not depend on the world-set representation.
We next define the notion of isomorphism on world-sets, whichwe
later use to formally define genericity.

D 4.3. Given two world-setsA = {I1, . . . , In} andA′ =
{I ′1, . . . , I

′
n} and a bijectionθ : domA → domA′ between their do-

mains,A andA′ areisomorphic underθ, denotedA �θ A′, iff

(∀I ) I ∈ A ⇒ θ(I ) ∈ A′ and (∀I ′) I ′ ∈ A′ ⇒ θ−1(I ′) ∈ A.

Analogous to the relational case [1], we now define genericity
for the case of world-sets.

D 4.4. A queryq is genericiff for all world-setsA, A′

there is a domain value bijectionθ : domA → domA′ such that

A �θ A′ ⇒ q(A) �θ q(A′).

A query language is generic iff all of its queries are generic.

The above definition ignores the issue of constants in queries (in
selection conditions). However, it can be easily generalized, cf. [1].

P 4.5. World-set algebra is generic.

P S. Consider the world-setsA = {I1, . . . , In} andA′ =
{I ′1, . . . , I

′
n}, which are isomorphic under a bijectionθ: A �θ A′.

W.l.o.g. let the schema ofI j andI ′j be〈R1, . . . ,Rk〉 andθ(I j) = I ′j , for
1 ≤ j ≤ n. It can be shown using induction on the query structure
that any queryq in world-set algebra is generic, i.e.,q(A) �θ q(A′).
We show this for two operators: projection and poss.

The queryπB(R) creates in each world ofA (or A′) a new relation
Rk+1 (R′k+1) representing the projection ofB on R. Then, for any

world I j we haveθ(πB(RI j )) = πB(θ(RI j )) = πB(RI ′j ). The projection
commutes withθ because relational algebra is generic on complete
databases.

The queryposs(R) creates in each world ofA (or A′) a new
relationRk+1 (R′k+1) representing the union of relationsR over all

worlds: Rk+1 =
⋃

(RI j ) andR′k+1 =
⋃

(RI ′j ). By takingθ on Rk+1 we
obtain

θ(
⋃

(RI j )) = θ(RI1) ∪ . . . ∪ θ(RIk) = RI ′1 ∪ . . . ∪ RI ′k =
⋃

(RI ′j ).

Again,θ commutes with union because relational algebra is generic.

R 4.6. To demonstrate that genericity can be a subtle is-
sue in the context of queries on world-sets, we show that the lan-
guage TriQL [9, 23] lacks genericity. Consider two ULDBs [8]
(i.e., databases with lineage and uncertainty)U1 andU2:



RT A V
1 1
3 1
1 2

WT V
1
2
3

R1 A
1
3

R2 A
1

R3 A

(a) Inlined representation. (b) Represented worlds.

Figure 4: Inlined representation of a world-set.

U1 R(A) λ

t1 (1) || (2) {} ?

U2 R(A) λ

t1 (1) {(s1,1)} ?
t2 (2) {(s1,2)} ?

U1 has one maybe x-tuple with idt1, no lineageλ, and two alterna-
tives (1) and (2).U2 has two maybe x-tuples, each with one alter-
native. The lineage of the first x-tuple points to the first alternative
of an external x-tuple with ids1, whereas the lineage of the second
x-tuple points to the second alternative of the same x-tuples1. Al-
ternatives of the same x-tuple, or x-tuples whose lineage points to
different alternatives of the same tuple cannot appear in the same
world. Also, maybe x-tuples may be missing from a world. Both
U1 andU2 represent the same set of three worldsA,B,C:

RA A
1

RB A
2

RC A

Let q be a TriQL query which uses horizontal selection [·]:

select * from R where

exists [select * from R r1, R r2 where r1.A <> r2.A];

The meaning of this query is that an x-tuple fromR is selected
if it has at least two different alternatives. It is an adaptation of
a query example from [23] which uses count to express the same
condition. OnU1 the queryq is the identity, while onU2 it does
not select anything:

q(U1) R(A) λ

t1 (1) || (2) {} ?
q(U2) R(A) λ

It is easy to see that the identity isomorphism on the input world-
sets does not hold on the world-sets representing the answers toq
in the two cases. �

5. FROM WORLD-SET ALGEBRA
TO RELATIONAL ALGEBRA

In this section we show that any world-set algebra query can be
efficiently translated to an equivalent relational algebra query over
a completerepresentation of the input world-set. We propose such
a representation in Section 5.1, theinlined representation, where
the tuples of a relation over all worlds are represented in one table
that has special attributes to denote the identifier of the world each
tuple belongs to.

In the case of complete-to-complete world-set algebra queries
(i.e., those with type 17→ 1), the input database is not encoded as
an inlined representation. Complete-to-complete world-set algebra
queries admit equivalent relational algebra queries that operate di-
rectly on standard databases (thus the inlined representation is not
needed). However, the intermediate results of the operators present
in the relational algebra query can make use of the inlined repre-
sentation to keep track of which tuples belong to which world. This
result is in the spirit of the translation of flat-to-flat nested algebra
queries to relational algebra queries [20], and shows that world-set
algebra is conservative over relational algebra.

5.1 Inlined Representation of World-sets
We next define a representation of world-sets, where all instances

of a relation over all worlds are inlined into one single relation. The
main idea behind the representation is to assign identifiersto worlds
and use them to identify the tuples of any relation in a world.As we
will show in Section 5.2, such identifiers need not be provided from
the outside. Our world-set algebra queries can gracefully identify
worlds based on the choices of values used to create them.

D 5.1. Aninlined representationof a world-setA over
a schemaΣ = 〈R1[U1], . . . ,Rk[Uk]〉 is a structure

T = 〈RT
1 [U1 ∪ V], . . .RT

k [Uk ∪ V],W[V]〉

whereV is a possibly empty set of attributes disjoint with the sets
U1, . . . ,Uk. The attributes inV represent world identifiers. Each
table RT

i encodes the instances of a relationRi and the tableW
contains all world identifiers that appear in any tableRT

i .

We allow the world tableW to contain identifiers that do not appear
in any of the tablesRT

i . (ThusRT
i [V] ⊆ WT [V].) In this way, we

can encode the existence of an empty world. The empty world-
set is encoded by an empty world table. It is easy to see that our
representation can encode any finite set of possible worlds.

The set of possible worlds represented by an inlined representa-
tion T is defined by the functionrep

rep(T) = {〈πU1(σV=w(RT
1 )), . . . , πUk (σV=w(RT

k ))〉 | w ∈W}

We obtain a possible world by taking all tuples fromRT
1 , . . . ,R

T
k

with a given world identifier from the world tableW. Note thatT
can encode several equivalent worlds under different world ids.

E 5.2. The inlined representation of Figure 4 (a) encodes
the three possible worlds depicted in Figure 4 (b). �

R 5.3. The inlined representation of world-sets supports
our encoding of world-set queries as relational queries andis not
meant as a compact representation system for very large setsof
worlds, as considered in, e.g., [8, 4]. The evaluation of a relational
query on an inlined representation can only produce a world-set
whose cardinality is polynomial in the input size. This is due to the
polynomial data complexity of relational algebra. �

We next show how world-set algebra queries can be evaluated on
inlined representations.

E 5.4. Consider the database〈R,S〉 of Figure 5 (a) and
its inlined representationT of Figure 5 (b).

We first show how to evaluateR1 = χA(R). By definition, choice-
of creates a world for each distinct value of A. An A-value becomes
also the id of the world it determines. The world tableW is then
updated with the new world ids (using a join ofR1 andW) and each
other relation (hereR andS) is copied in the newly created worlds
(using a join of the newW and each ofRandS). Figure 5 (c) shows
R1 and the effect on the world tables in the inline representation (R
andS are not shown for reasons of space).

Let us now evaluateR3 = pγAB
A (R1). Our first step is to pair each

tuple with the ids of worlds that have the same projection onB as
the world the tuple belongs to. This is accomplished in a division-
like manner and is detailed in the next subsection. The set ofsuch
pairs is represented byR2 in Figure 5 (d). Note that the attribute
V2 now represents a group id for the groups of worlds we create.
To compute the possible tuples within each group, we only need
to remove the old world id column, see relationR3 in Figure 5 (e).
We obtain the result by renamingV2 to V1 to match the input set of
world-id attributes. The other tables remain unchanged. �



R A B
1 2
2 3
2 4
3 2

S C D
2 3
4 5

(a) RelationsRandS.

R A B
1 2
2 3
2 4
3 2

S C D
2 3
4 5

W
〈〉

(b) Representation ofRandS.

R1 A B V1
1 2 1
2 3 2
2 4 2
3 2 3

W V1
1
2
3

(c) Representation ofχA(R).

R2 A B V1 V2
1 2 1 1
1 2 1 3
2 3 2 2
2 4 2 2
3 2 3 1
3 2 3 3

(d) Pairing of tuples fromR1

R3 A B V2
1 2 1
1 2 3
2 3 2
2 4 2
3 2 1
3 2 3

(e) Representation ofpγA,B
B (R1)

Figure 5: Evaluating world-set algebra queries on inlined representation of world-sets.

5.2 World-set to relational algebra translation
Figure 6 defines the translation function~·�τ recursively on the

structure of world-set queries. The function~·�τ takes a world-set
query and an inlined representationT = 〈R1, . . . ,Rk,W〉 to a new
inlined representationT ′ = 〈R′1, . . . ,R

′
k+1,W

′〉, where each table
R′i is obtained fromRi using a relational algebra query, andR′k+1
encodes the answer to the input query. In case an operator creates
new worlds, the world tableW is updated to also represent their
ids. Also, the tablesR1 to Rk and W are copied in each of the
new worlds. The result of the translation is then the composition
of those relational algebra queries generated for each operator and
used to define the answer of the world-set query.

We make use of the following naming convention. For any table
in the inlined representation, the set of attributes defining the world
identifiers is denoted byV (possibly with indices) and called id
attributes. The remaining attributes, which define the values in the
relations encoded by the tables, are denoted byD and called value
attributes. This is with no loss of generality, as the id and value
attributes can be statically inferred from the input query.

R 5.5. For the translation of choice-of we use a slightly
modified left outer join (denoted=⊲⊳):

R=⊲⊳ S = R ⊲⊳ S ∪ (R− RX S) × {〈c, . . . , c〉}

The result of the left outer join contains all combinations of tuples
of R and S that fulfill the join condition, and the tuples fromR
without a join partner fromS padded1 with a special constantc up
to size|R ⊲⊳ S|. �

We next explain our translation. The base case of the translation
is the identity on a relationR, in which case we create the (k+ 1)st
table encodingR. This is the only case where the representation
is extended. In all other cases, the operators are translated to rela-
tional algebra queries that modify the (k+ 1)st table. The relational
algebra unary operators selection, projection, and renaming are ap-
plied to the tableRk+1 from the representation obtained by translat-
ing their subqueries. In the case of projection, we also keepthe id
attributes ofRk+1.

According to the semantics, choice-of is the only operator that
can create new worlds, see Section 4. On inlined representations,
we simulate a choice-ofχB(q) by extending the tableRk+1 with new
id attributesVR.B, whose values are the same as forB. Then the
tuples with the same values forB are in the same world (as en-
sured by the semantics of choice-of) or, equivalently, withthe same
1In the standard definition of outer joins the tuples are padded with
null values, whereas here we use a constant for practical reasons.

world identifier. Note that in this way, we do not need the expres-
sive power to create new world identifiers, as our world ids are
values already existing in the data. We also update the worldta-
ble with the new world ids and copy each other relation in the new
worlds created by the choice-of operator. An evaluation example
with choice-of is given in Example 5.4.

A queryposs(q) can be expressed on inlined representations by
simply dropping the id attributes from the tableRk+1. The obtained
relation is then copied in all worlds using a product of this relation
and the world tableW.

A querycert(q) requires to compute the tuples inRk+1 that appear
in all worlds. This can be expressed by a division ofRk+1 and the
world tableW, which consists of all world ids. The certain tuples
are then copied in all worlds.

E 5.6. Consider the trip-planning I-SQL query from Sec-
tion 2 that finds the cities that are a common destination to all de-
partures. We can express the query in world-set algebra as

cert(πArr(χDep(HFlights))).

We next show how this query can be translated to a relational alge-
bra query.

1. We represent the initial database as an inlined representation
〈HFlights,W〉, whereW = {〈〉} is a nullary world-id table
with a single tuple.

2. The innermost query, the reference to the HFlights relation
extends the input database with a new relation F which is a
copy of the relation HFlights:〈HFlights, F,W〉.

3. The choice-of operatorχDep adds a copy of the Dep attribute
of F as a new id attributeVDep to F: F′ = π∗,Dep asVDep(F).
The new world table is computed asW′ = W =⊲⊳ F′ and the
world ids are propagated to the input HFlights table:
〈HFlights⊲⊳W′, F′ ,W′〉.

4. The projection computesF′′ = πArr,VDep(F
′) and outputs

〈HFlights⊲⊳W′, F′′ ,W′〉.

5. Finally cert performs the division onF′′ with the current
world tableW′: F′′′ = (F′′ ÷W′) ×W′ and outputs
〈HFlights⊲⊳W′, F′′′ ,W′〉.

6. Since the query is a 17→ 1 query, we obtain the final result
by dropping the id attributes of the last computed relation:
πArr(F′′′).



[[Ri]] τ(〈R1, . . . ,Rk,W〉) = 〈R1, . . . ,Rk,Ri ,W〉

[[ f (q)]] τ(T) =
let 〈R1, . . . ,Rk,R,W〉 = [[q]] τ(T)
in 〈R1, . . . ,Rk, f (R),W〉

where f ∈ {σA=x, δA→A′ }

[[πA(q)]] τ(T) =
let 〈R1, . . . ,Rk,R,W〉 = [[q]] τ(T)
in 〈R1, . . . ,Rk, πA,V(R),W〉

[[χB(q)]] τ(T) =
let 〈R1, . . . ,Rk,R,W〉 = [[q]] τ(T),

D be the value attributes ofR (andB ⊆ D),
W′ = W =⊲⊳ δB→VB(R)

in 〈R1 ⊲⊳W′, . . . ,Rk ⊲⊳W′, πD,V,B as VB(R),W′〉

[[poss(q)]] τ(T) =
let 〈R1, . . . ,Rk,R,W〉 = [[q]] τ(T),
in 〈R1, . . . ,Rk, πD(R) ×W,W〉

[[cert(q)]] τ(T) =
let 〈R1, . . . ,Rk,R,W〉 = [[q]] τ(T)
in 〈R1, . . . ,Rk, (R÷W) ×W,W〉

[[γB
A(q)]] τ(T) =
let 〈R1, . . . ,Rk,R,W〉 = [[q]] τ(T),

S = πV,V2(πA,V(R) × πV2(δV→V2(R))−
πA,V,V2 (R ⊲⊳A=A′ (δA→A′ ,V→V2(R)))),

S′ = πV(R) × πV2(δV→V2(R)) − S,
R′ = πB,V,V2(R× πV2(δV→V2(R)) ⊲⊳R.V=S′ .V∧R.V2=S′ .V2 S′)

in 〈R1, . . . ,Rk,R′,W〉

[[pγB
A(q)]] τ(T) =

let 〈R1, . . . ,Rk,R,W〉 = [[γB
A(q)]] τ(T),

V be the attributes ofW,
V,V2 be the id attributes ofR,

in 〈R1, . . . ,Rk, πA,V(δV2→V(R)),W〉

[[cγB
A(q)]] τ(T) =

let 〈R1, . . . ,Rk,R,W〉 = [[γB
A(q)]] τ(T),

V be the attributes ofW,
V,V2 be the id attributes ofR,
P = πB,V,V2(R ⊲⊳B=B′∧V2=V′2

δB→B′,V→V′ ,V2→V′2
(R)),

P′ = πB,V,V2 (R ⊲⊳V2=V′2
δB→B′,V→V′ ,V2→V′2

(R)) − P,
R′ = πB,V(δV2→V(R)) − πB,V(δV2→V(P′))

in 〈R1, . . . ,Rk,R′,W〉

[[q1 × q2]] τ(〈R1, . . . ,Rk,W〉) =
let V be the attributes ofW,
〈R′1, . . . ,R

′
k,R

′,W′〉 = [[q1]] τ(〈R1, . . . ,Rk,W〉),
〈R′′1 , . . . ,R

′′
k ,R

′′,W′′〉 = [[q2]] τ(〈R1, . . . ,Rk,W〉),
W0 =W′ ⊲⊳W′′

in 〈R1 ⊲⊳W0, . . . ,Rk ⊲⊳W0,R′ ⊲⊳R′ .V=R′′ .V R′′,W0〉

[[q1 Θ q2]] τ(〈R1, . . . ,Rk,W〉) =
let 〈R′1, . . . ,R

′
k,R

′,W′〉 = [[q1]] τ(〈R1, . . . ,Rk,W〉),
〈R′′1 , . . . ,R

′′
k ,R

′′,W′′〉 = [[q2]] τ(〈R1, . . . ,Rk,W〉),
W0 =W′ ⊲⊳W′′,
R= (R′ ⊲⊳W0) Θ (R′′ ⊲⊳W0)

in 〈R1 ⊲⊳W0, . . . ,Rk ⊲⊳W0,R,W0〉

whereΘ ∈ {∪,∩,−}

Figure 6: Translation of world-set queries to relational queries.

We obtain the relational algebra query by composing the queries
we used to compute each of the intermediate results that produced
the final result:

πArr((πArr,VDep(π∗,Dep asVDep(HFlights))÷ qw) × (qw))

whereqw = ({〈〉} =⊲⊳ (π∗,Dep asVDep(HFlights))). �

The group-worlds-by operators first group the instances ofRk+1

that agree on the values of the grouping attributesA. This grouping
can be expressed using universal quantification over all pairs of
worlds and over the values of the grouping attributes of the paired
worlds. For this, we first compute all pairs of world ids that belong
to different groups (as given byS in Figure 6). These are the ids of
worlds that produce different answers to the projection onA. We
then compute all valid pairs of world ids by computing the possible
pairings and subtracting those that are invalid (as given byS′). Note
thatS′ is an equivalence relation over world ids. A pairs of world
ids (w1,w2) is in the equivalence relation iff w1 andw2 are in the
same group. Thenw1 represents the id of a world, whereasw2

represents the id of the group. Finally, to compute the possible
tuples in each group (as given byR′), we join Rk+1 with the set of
valid pairings we computed asS′.

To simulate poss-group-worlds-by, we keep the ids of the group
and drop the ids of the worlds. To simulate cert-group-worlds-by,
we further define relationP as the tuples with matches in some
world of their group, and thenP′ as the tuples that do not have a
match for some world of their group. Then, we obtain the tuples
that appear in each world within a group by subtracting thosede-
fined by P′ from those defined byRk+1. An evaluation example
with group-worlds-by is given in Example 5.4.

The translation of a product of two queries is the join on the
world id attributes of the translations of each of the two queries.
Thus we ensure that only tuples coming from the same original
world are combined. As a desirable side effect, this join also pro-
duces the possible combinations of worlds from the two queries. In
the case of union, we need to ensure that the union occurs in each
world defined by any of the two operands. Therefore, we need to
define the two sets of possible worlds of the operands, copy the re-
lations represented by one operand in each world of the other, and
then perform the union. The cases of intersection and difference
are treated similarly.

Figure 6 shows how to translate world-set algebra operatorsinto
relational algebra queries on inlined representations. Given a 17→
1 world-set algebra query, we obtain the equivalent relational al-
gebra query by composing the queries used at intermediate steps
towards the final result. Since the typing guarantees that the query
produces a single world as output, the last operator of the relational
algebra query projects away the id attributes created by anynested
operators.

Finally, we can state the main result of this section.

T 5.7. World-set algebra is conservative over relational
algebra, that is, for each1 7→ 1 query q in world-set algebra and
a complete databaseA, there exists a relational algebra query q′

such that

{q′(A)} = q({A}).

Note that using the translation function~·�τ, any world-set alge-
bra query can be translated into a relational algebra query of poly-
nomial size.



5.3 Optimized translation for
complete-to-complete queries

Section 5.2 gives a general translation for world-set queries to re-
lational algebra queries. We notice that in the case of complete-to-
complete queries, this translation can be changed so as to produce
more optimized equivalent relational algebra queries.

These optimizations are based on the following observations.
First, the general translation makes extensive use of the world ta-
ble W, although this table is only needed in the case of cert and
the binary operators union, intersect, and difference. We can adopt
here a lazy approach and compute the world table on demand. Sec-
ond, we can postpone and sometimes avoid the creation of copies
of existing relations in all worlds. In this way in case the input
world-set query is a relational algebra query, the translation natu-
rally produces that relational algebra query as output, thus avoiding
computation of world ids.

Our observations are supported by the following new interpre-
tation of the tables in an inlined representation. If a tablehas no
world identifiers, then the relation it encodes appears in all worlds.
Two tablesRT andST can have different sets of world identifiers,
say a set ofnR worlds and the other set withnS worlds, in which
case the representation encodesnR · nS worlds for each possible
combination of a world forRT and a world forST . This is correct,
as all worlds created by any operator derive from the same input
world corresponding to the input database.

We next explain how the world table can be computed on de-
mand. The binary operators and choice-of update the world table
W. The choice-of construct creates new ids based on the choice
attributes, which can be expressed using a projection. For exam-
ple the world-ids created by the queryχA(R) can be computed with
πA(R). In the case of a binary operatorq1 Θ q2 the new world ids
can be obtained by combining the ones produced by the two subex-
pressions. Ifq′1 andq′2 are the queries that compute the ids created
in q1 andq2, respectively, the ids after the binary operatorΘ can be
retrieved using the queryq′1 × q′2. Thus we avoid the creation and
updates to W until a reference to it is made. When this happens, one
can compute W with an expression which can be statically inferred
from the structure of the subquery.

E 5.8. Using the translation optimized for complete-to-
complete queries, the query of Example 5.6 can be translatedto

πArr,Dep(HFlights)÷ πDep(HFlights).

This relational algebra query is simpler than the one created using
the general translation and discussed in Example 5.6. �

6. ALGEBRAIC EQUIVALENCES
Figure 7 gives equivalences of queries in world-set algebra. We

turn each equivalencel = r into a rewrite rulel → r and define
logical optimizations in close analogy to the relational case.

We define two broad classes of equivalences. The first class cov-
ers the cases of pairs of operators that commute. The second class
covers simplifications of operator compositions.

Commute rules. This class reminds of the standard optimization
techniques of relational algebra like pushing selections and projec-
tions as down as possible in the logical query plan. The opera-
tor poss commutes with selection, projection, and union (Eq. (1)
through (3)). The operator cert commutes with selection, intersec-
tion, and product (Eq. (4) through (6)). The operator choice-of
commutes with product and with projection in the case the projec-
tion list includes the choice attributes (Eq. (7) and (8)). Finally, the
operators group-worlds-by commute with selection in case the se-

Commute

poss(σφ(q)) = σφ(poss(q)) (1)

poss(πX(q)) = πX(poss(q)) (2)

poss(q1 ∪ q2) = poss(q1) ∪ poss(q2) (3)

cert(σφ(q)) = σφ(cert(q)) (4)

cert(q1 ∩ q2) = cert(q1) ∩ cert(q2) (5)

cert(q1 × q2) = cert(q1) × cert(q2) (6)

πX∪Y(χX(q)) = χX(πX∪Y(q)) (7)

χX(q1) × q2 = χX(q1 × q2), if X ⊆ Attrs(q1) (8)

σφ(pγY
X(q)) = pγY

X(σφ(q)), if Attrs(φ) ⊆ X ∩ Y (9)

σφ(cγ
Y
X(q)) = cγY

X(σφ(q)), if Attrs(φ) ⊆ X ∩ Y (10)

Reduce

poss(χX(q)) = poss(q) (11)

pγX
X∪Y(q) = cγX

X∪Y(q) = πX(q) (12)

πZ(pγY∪Z
X∪Z(q)) = πZ(q) (13)

πZ(pγY∪Z
X (q)) = pγZ

X(q), if Z * X (14)

poss(pγY
X(q)) = poss(πY(q)) (15)

cert(cγY
X(q)) = cert(πY(q)) (16)

χX(χY(q)) = χY(χX(q)) = χX∪Y(q) (17)

pγY
X(pγX∪Z

X∪V(q)) = cγY
X(pγX∪Z

X∪V(q)) = pγY
X∪V(q) (18)

pγY
X(cγX∪Z

X∪V(q)) = cγY
X(cγX∪Z

X∪V(q)) = cγY
X∪V(q) (19)

pγY
X(χX∪Z(q)) = πY(χX(q)) (20)

cγY
X(χX∪Y∪Z(q)) = πY(χX∪Y∪Z(q)) (21)

poss(cert(q)) = cert(cert(q)) = cert(q) (22)

poss(poss(q)) = cert(poss(q)) = poss(q) (23)

Figure 7: Equivalences in World-set Algebra.

lection condition refers only to attributes among the grouping and
projecting attributes (Eq. (9) and (10)).

In the case of relational algebra the projections and selections
are usually pushed down in the query plan. In world-set alge-
bra the pushing down of the new operators poss and cert usually
bears even greater potential for optimization, and these operators
are pushed down even across selection and projection where this
is possible. This is because the latter operators close the possible
worlds semantics and can eliminate other world-set operators like
choice-of or group-worlds-by, as discussed below for the reduce
equivalences.

The most interesting cases of pairs of operators that do not com-
mute are selection and choice-of on one hand and and product and
poss on the other. The choice-of operator applied on top of a se-
lection can create a world with an empty relation only in the case
where the answet to the selection is empty. However, the selection
applied on top of a choice-of operator creates an empty relation in a
world if there exists at least one tuple that does not match the selec-
tion criteria. In the case of poss and product, tuples from different
worlds can be joined if the worlds are flattened using poss before
the product, and only tuples from the same world are paired ifposs
is applied after product. In both cases the operators poss and selec-
tion cannot be always pushed down to the relations in a plan. The
apparent drawback of the former case has, however, an interesting



cert

πCity

σArr=City

pγ∗Dep

χDep,City

×

HFlights Hotels
(a) Queryq1

cert

πCity

ZArr=City

χDep

HFlights

Hotels

(b) Queryq′1

Figure 8: Equivalent queriesq1 and q′1 of Example 6.1.

and useful side-effect that allows to easily specify properties that
must hold for all worlds.

Reduce rules. The operator poss eliminates choice-of operators,
because choice-of distributes tuples into a set of disjointworlds,
which is later flattened by the operator poss (Eq. (11)). In the
same way, poss can undo world grouping (Eq. (15)). The operator
cert can only undo world grouping expressed using certain-group-
worlds-by, because each group is formed on projections thatare
certain in all worlds in that group (Eq. (16)). Similarly, Eq. (12)
shows that special cases of world grouping can be expressed as
simple projections. This is because if all worlds in a group agree
on a projectionπX∪Y, thenπX is the same in all these worlds and
its evaluation in each world expresses precisely the computation of
πX in each group. Nested choice-of operators can be reduced to a
single choice-of (Eq. (17)). By Eq. (8) and Eq. (17), we can derive
thatχX(q1) × χY(q2) = χX∪Y(q1 × q2).

Eq. (18) and (19) show that nested group-worlds-by can also be
reduced to a single group-worlds-by in case all grouping andpro-
jecting attributes of the outer operator occur as grouping and pro-
jecting attributes, respectively, of the inner operator. Similarly, a
projection applied to a world grouping can eliminate the group-
ing, in case the attributes of the projection occur as both group-
ing and projecting attributes of the group-worlds-by operator (Eq.
(13)). In case the attributes of a projection occur as projecting (but
not as grouping) attributes of the group-worlds-by operator, then
the projection is removed and its attributes become the new pro-
jecting attributes (Eq. (14)). In the presence of choice-ofoperators,
the group-worlds-by operators are reduced to simple projections in
case the choice attributes occur as both grouping and projecting at-
tributes, as shown in Eq. (20) and (21). Eq. (22) and (23) consider
the case of redundant poss or cert operators.

We next use these equivalences to rewrite world-set algebraqueries.

E 6.1. Consider a possibly incomplete version of our
HFlights database from Section 2, where additionally we have in-
formation on hotels given by relation Hotels(Name,City,Price). The
participants of our meeting would all like to book a direct flight to
and a hotel in the same city (‘*’ stands for all attributes of arela-
tion):

q1 = cert(πCity(σArr=City(pγ
∗
Dep(χDep,City(HFlights× Hotels)))))

Query q1 first considers each possible combination of departures
and arrivals, then groups them on common departures, and finally
computes the arrivals (cities) common to the departures.

poss

πCity

σArr=City

pγ∗Dep

χDep,City

×

HFlights Hotels
(a) Queryq2

πCity

poss

ZArr=City

HFlights Hotels
(b) Queryq′2

Figure 9: Equivalent queriesq2 and q′2 of Example 6.2.

Queryq1 can be rewritten as follows.

q′1
(20)
= cert(πCity(σArr=City(π∗(χDep(HFlights× Hotels)))))
(8)
=cert(πCity(σArr=City(π∗(χDep(HFlights) × Hotels))))

=cert(πCity(χDep(HFlights) ZArr=City Hotels)).

In constructingq′1, we absorbed the group-worlds-by operator in
the choice-of operator and a projection on all attributes (*), we
pushed down the choice-of operator and transformed the product
in a join. Figure 8 shows the logical query plans forq1 andq′1. �

E 6.2. Let us now consider a slight modification ofq1

where the operator cert is replaced by poss.

q2 = poss(πCity(σArr=City(pγ
∗
Dep(χDep,City(HFlights× Hotels)))))

Query q2 can be rewritten similarly toq1, where in addition we
make use of the equivalences for the operator poss.

q′2
(20)
= poss(πCity(σArr=City(π∗(χDep(HFlights× Hotels)))))

(1,2)
= πCity(σArr=City(π∗(poss(χDep(HFlights× Hotels)))))
(11)
= πCity(σArr=City(π∗(poss(HFlights× Hotels))))
(1)
=πCity(π∗(poss(HFlightsZArr=City Hotels)))

=πCity(poss(HFlightsZArr=City Hotels)).

Note thatq′2 has no grouping or choice constructs. In case the input
data is complete, the operator poss can be dropped andq′2 becomes
a relational algebra query, as one would expect. Figure 9 shows the
logical query plans forq2 andq′2. �

So far we have not addressed the difference operation of rela-
tional algebra. Apart from rewrite rules involving difference and
the other operators of relational algebra, the following equivalence
is of interest:

cert(R− S) = cert(cert(R) − S). (24)

Furthermore, cert and poss are mutually expressible using differ-
ence and a domain relationD which holds the values that appear in
the union of all the worlds.

P 6.3.

cert(Q) = Q− poss(Darity(Q)− Q)

= Q− poss(poss(Q) − Q) (25)

poss(Q) = Darity(Q)− cert(Darity(Q)− Q). (26)



7. FURTHER EXPRESSIVENESS ISSUES
We have shown that each world-set algebra query is generic and

can be translated to an equivalent relational algebra queryon in-
lined representations. The converse is not true: Consider world-sets
whose schema contains just one relationR and a query that com-
putes all pairs of worlds in a world-set, i.e., which, for each world
I and every choice ofother world J, creates a world containing the
relationRI and, renamed, the relationRJ. This query is generic and
expressible in relational algebra on inlined representations. How-
ever, it is not expressible in world-set algebra: If|poss(R)| = n
and the world-set consists of all 2n subsets of this set, the pairing
query will compute a world-set of cardinality 22n, too great to be
produced in world-set algebra using a fixed query and choice-of as
the only operation to increase the number of worlds.

It is an interesting open question whether all queries of thetypes
1 7→ 1 andm 7→ 1 in world-set algebra extended by the world-
pairing operation are expressible in world-set algebra.

We did not add a world-pairing operation to world-set algebra
because it would take away from the intuition of queries being eval-
uated on each world individually, with an occasional look outside
the world. Also, the pairing operation cannot replace choice-of:
For example, starting with a single world, pairing will not increase
the cardinality of the world-set, while choice-of in general does.

8. CONCLUSION
This paper introduces I-SQL, an analog to SQL for the case of

incomplete information. An I-SQL query allows for the conve-
nient formulation of “what if” queries and is thus even relevant for
queries on complete data. We motivate I-SQL using several ap-
plication scenarios and point out that many natural queriesin such
scenarios can be expressed easily in I-SQL and are rather compli-
cated (or not even possible) in SQL.

We then formalize a clean fragment of I-SQL, World-set Alge-
bra, and show its fundamental properties, like genericity and con-
servativity over relational algebra. From the more practical side
of world-set algebra, we give a set of equivalences and show how
they can be used to produce more efficient logical query plans. We
also investigate the relationship between world-set algebra and re-
lational algebra and give a translation of any world-set query to a
relational query over an inlined representation of world-sets. For
the case of world-set algebra queries that map between complete
databases, we show how the general translation scheme can beim-
proved so that the generated relational queries become shorter.

One future research direction is the implementation of I-SQL on
top of a relational engine. In some sense, the optimized translation
of complete-to-complete queries to relational queries canprovide
one way to evaluate such queries in any relational database engine.
We believe, however, that query plans with dedicated physical op-
erators for our I-SQL constructs should perform much betterthan
the default relational algebra query over the (nonsuccinct, and thus
in practice too large) inlined representation. Another research di-
rection is to implement I-SQL on top of an existing representation
system for finite world-sets, like databases with lineage and uncer-
tainty [8] or world-set decompositions [4].

9. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of

Databases. Addison-Wesley, 1995.
[2] S. Abiteboul, P. Kanellakis, and G. Grahne. On the

representation and querying of sets of possible worlds.
Theor. Comput. Sci., 78(1):158–187, 1991.

[3] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers
over dirty databases: A probabilistic approach. InProc.
ICDE, 2006.

[4] L. Antova, C. Koch, and D. Olteanu. 10106
worlds and

beyond: Efficient representation and processing of
incomplete information. InProc. ICDE, 2007.

[5] L. Antova, C. Koch, and D. Olteanu. World-set
decompositions: Expressiveness and efficient algorithms. In
Proc. ICDT, 2007.

[6] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query
answers in inconsistent databases. InProc. PODS, 1999.

[7] M. Arenas, L. E. Bertossi, and J. Chomicki. “Answer sets for
consistent query answering in inconsistent databases”.TPLP,
3(4–5):393–424, 2003.

[8] O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineage. InProc.
VLDB, 2006.

[9] O. Benjelloun, A. D. Sarma, C. Hayworth, and J. Widom. An
Introduction to ULDBs and the Trio System.IEEE Data
Engineering Bulletin, 29(1):5–16, Mar. 2006.

[10] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. InProc. VLDB, 2004.

[11] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: semantics and query answering.Theoretical
Computer Science, 336(1):89–124, 2005.

[12] G. Grahne. Dependency satisfaction in databases with
incomplete information. InProc. VLDB, pages 37–45, 1984.

[13] G. Grahne.The Problem of Incomplete Information in
Relational Databases. Number 554 in LNCS.
Springer-Verlag, 1991.

[14] T. J. Green and V. Tannen. “Models for Incomplete and
Probabilistic Information”. InInternational Workshop on
Incompleteness and Inconsistency in Databases (IIDB),
2006.

[15] T. Griffin and R. Hull. “A Framework for Implementing
Hypothetical Queries”. InProc. SIGMOD, 1997.

[16] T. Imielinski and W. Lipski. Incomplete information in
relational databases.Journal of ACM, 31:761–791, 1984.

[17] T. Imielinski, S. Naqvi, and K. Vadaparty. Incomplete
objects — a data model for design and planning applications.
In Proc. SIGMOD, pages 288–297, 1991.

[18] N. Leone, G. Greco, G. Ianni, V. Lio, G. Terracina, T. Eiter,
W. Faber, M. Fink, G. Gottlob, R. Rosati, D. Lembo,
M. Lenzerini, M. Ruzzi, E. Kalka, B. Nowicki, and
W. Staniszkis. “The INFOMIX system for advanced
integration of incomplete and inconsistent data”. InProc.
SIGMOD, pages 915–917, 2005.

[19] L. Libkin and L. Wong. Semantic representations and query
languages for OR-sets. InProc. PODS, pages 37–48, 1993.

[20] J. Paredaens and D. V. Gucht. Converting nested algebra
expressions into flat algebra expressions.TODS,
17(1):65–93, 1992.

[21] M. Poess and C. Floyd. New TPC Benchmarks for Decision
Support and Web Commerce.SIGMOD Record, 29(4), 2000.

[22] R. Rantzau and C. Mangold. Laws for rewriting queries
containing division operators. InProc. ICDE, 2006.

[23] Stanford Trio Project.TriQL – The Trio Query Language,
Oct. 2006. http://infolab.stanford.edu/∼widom/triql.html.

[24] Transaction Processing Performance Council.TPC
Benchmark H (Decision Support), revision 2.6.0 edition,
2006. http://www.tpc.org/tpch/spec/tpch2.6.0.pdf.


