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ABSTRACT

Incomplete information arises naturally in numerous dataage-
ment applications. Recently, several researchers hadiedtquery
processing in the context of incomplete information. Mostrkv
has combined the syntax of a traditional query languagerkke
lational algebra with a nonstandard semantics such asircenta
ranked possible answers. There are now also languagespeith s
cial features to deal with uncertainty. However, to the déads

1. INTRODUCTION

Incomplete information arises naturally in numerous daten-m
agement applications like data integration [18], datardteg[3],
or data exchange [11]. In the last decades the research coitymu
has shown a vivid interest iffeciently managing incomplete infor-
mation viewed as aet of possible worldfl6, 12, 17, 2, 13, 19, 6,
7,10, 11, 14, 8, 4]. When it comes to expressing queries @mnc
plete information, these contributions mostly considandard lan-

of the data management community, to date no language fbpos guages for complete data such as relational algebra or SQllewW
has been made that can be considered a natural analog to SQL of16] uses a compositional semantics for relational algebvehich

relational algebra for the case of incomplete information.

a query transforms each world individually, most recentknlueis

In this paper we propose such a language, World-set Algebra, assumed nonstandard, noncompositional query semantics.

which satisfies the robustness criteria and analogies &tioahl

A significant amount of research has attempted to find the righ

algebra that we expect. The language supports the contempla balancg between the succinc.tness of world-set repressrgatnd
tion on alternatives and can thus map from a complete databas the dficiency of query evaluation on top of them (e.g., [2, 8, 4, 5]).

to an incomplete one comprising several possible worldsshag/
that World-set Algebra is conservative over relationalealg in

However there is a lack of expressive query languages whieh a
well tailored for sets of possible worlds.

the sense that any query that maps from a complete database to In this paper we address the issue of supporting queries-on in

a complete database (a complete-to-complete query) isadgnt
to a relational algebra query. Moreover, we give #icent algo-
rithm for effecting this translation. We then study algebraic query
optimization of such queries.

We argue that query languages with explicit constructs é-h
dling uncertainty allow for the more natural and simple eggion
of many real-world decision support queries. The resultthisf
paper not only suggest a language for specifying queriehi@ t
way, but also allow for their ficient evaluation in any relational
database management system.

Categories and Subject Descriptors
H.2.3 [Database Managemerjt Languages—Query languages

General Terms
Design, languages
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complete information. A query language for incomplete infa-
tion should fulfill at least the following four desiderata.

e It must begeneric i.e., it must preserve the independence
of the data from its representation. Query results must not
depend on details of how the data is stored.

e |t must beexpressiveenough to support common queries on
incomplete information. The expressiveness of the languag
should be proven for a reasonable load of use cases.

e It should beconservativeover existing query languages such
as relational algebra in the sense that any query that maps
from a complete database to a complete database admits an
equivalent relational algebra query. Conservativity fles
an argument that the language is an analog of relational al-
gebra for the new data model. It formalizes our desire for
the language not to be overly expressive, at the expense of
high computational complexity or fiiculty at adapting es-
tablished query processing technigues to the new language.

e It should allow forefficient evaluation

To date, no proposal for a query language for incomplete-info
mation has been made that satisfies all of the above desid&@t
lacks explicit constructs for dealing with uncertaintyptigh there
are queries on incomplete information that can be express8@QL
queries on relational representations of incomplete dadwith
complicated nesting and aggregations (as shown later ipetber).
Extensions of relational algebra or SQL with limited couosts,
such ascertain or top-k that close the possible worlds semantics
are presented in, e.g., [17, 6] and [10] respectively. Sutdnsions



are not expressive enough, as they do not allow for the coernen
construction of new worlds or for the use of data correlatiacross
worlds. Other recent query languages provide construetscié-
pend to a large extent on the representation model. An exainpl
TriQL [23], the query language of the Trio system for manggin
possible worlds [8]. Its constructs provide explicit acctsthe in-
ternal artifacts of the used representation model, whicincgbe
interpreted independently from the model.

Languages for querying incomplete information can be moti-
vated even for querying complete data. This is the case fpo-hy
thetical (“what if”) queries that are important in decisisapport.
The TPC-H (Decision Support) Benchmark Specification [21] i
cludes two “what if” queries Qs and Qi7) [24]. For example,
Qs asks for the amount of revenue increase thatild have re-
sultedfrom eliminating certain company-wide discounts in a given
percentage range and year. This query thus reasons inaditern
worlds that contain counterfactual data.

Hypothetical queries have also been addressed in prevesus r
search. For instance, [15] develops a language for detargnin
queries what result would have been obtained from the ds¢aba
if certain updates had been applied. While this work dexelop
teresting techniques for rewriting and optimizing quertbe lan-
guage itself does not use a possible worlds semantics andidag
used to map from or to uncertain data.

The technical contributions of this paper are as follows.

e \We propose a new language, called I-SQL, which is a natu-
ral analog to SQL for the case of incomplete information. In
contrast to SQL queries, I-SQL queries can exploit the pos-
sible worlds interpretation of incomplete data.

decision-support applications. We also argue that query la
guages with explicit constructs for handling incompletne
allow for the simpler expression of many real-world queries
of the traditional one-world-to-one-world kind.

We define an algebra for a clean fragment of I-SQL, which
we call world-set algebra World-set algebra is to I-SQL

what relational algebra is to SQL. Our algebra focuses on the

new constructs that deal with incomplete information. Like
relational algebra, it does not consider SQL aggregatinds a
bag semantics.

We show that world-set algebra is generic.
We show that world-set algebra is conservative over rela-

tional algebra. This means that any world-set algebra query
that maps from a complete database to a complete database

(a“complete-to-complete” query) is equivalent to a reladil
algebra query.

We give an €icient algorithm for €ecting this translation. It
follows that complete-to-complete world-set algebra pser
have the same low data complexity as relational algebra. Tra
ditional techniques forféiciently processing relational alge-

bra queries can be directly employed to evaluate world-set

algebra queries.

We establish equivalences and rewrite rules that hold for th
operations of world-set algebra and study algebraic query o
timization.

Thus we show that world-set algebra fulfills all the abovedtss
ata for a query language for incomplete information.

The structure of the paper follows the list of contributiobsie
to lack of space, we will treat I-SQL informally, mostly inax-
ples. We will focus on world-set algebra in the formal treaiin

We motivate our language using scenarios from planning and

To make it easy to see the close connection between [-SQLhand t
algebra, it is safe to assume a set-based semantics for I-SQL

2. APPLICATION SCENARIOS

We next motivate our language I-SQL by examples from areas
such as decision support, trip planning and data cleaning.

Business decision support queries.Decision support queries as-
sist decision makers in various domains of business asallisd
pricing and promotions, profit and revenue management,uok st
ies on the market and customer satisfaction. Usually, suehiep
are hypothetical (or “what if") in the sense that they corpéate
possible alternatives based on various hypothetical gssoms of
decision makers.

Let us consider an example in which we have a (complete, i.e.
single-world) database containing information about canigs,
their employees, and the various skills of these employees.

CompanyEmp | CID EID Emp.Skills | E:ILD ?/:/(el,*”b
ACME el
e2 Web
ACME e2
e3 Java
HAL e3
e3 Web
HAL e4
HAL €5 e4  SQL
e5 Java

Suppose we consider buying a single of these companies in or-
der to gain the competency ‘Web’. However, we want to take int
consideration that one of the employees might be disgririie
the takeover and leave; we want to guarantee that we acdpgre t
skill ‘Web’ nevertheless. We can phrase this query in th&lL-S
language as follows. In the following, we proceed consingcthe
query step by step, and always also show the resulting oakati

e “Suppose | choode buy exactly one company.”

select *
U« from CompanyEmp
choice of CID;

This results in two possible worlds, obtained by taking the

two input relations and adding* for the first world andJ?
for the second:

2
ul]ci EID v E'ADL E;D
ACME el HAL o4
ACME  e2 HAL o5

e “Assumehat one (key) employee leaves that company.”

select
from

R1.CID, R1.EID
CompanyEmp R1,
(select * from Uchoice ofEID) R2

where R1.CID= R2.CID and R1.EID+ R2.EID;

The result s five worlds (Compargmp, Emp.Skills, U', Vi-i):

vil | cip EID V12 | CID EID
ACME el ACME e2

vl cib ED V22 |ciD ED V22| cCID EID
HAL e3 HAL e3 HAL e4
HAL e4 HAL e5 HAL e5




e “If I acquire that company, which skills can | obtain foer-

tain?”
selectcertain CID, Skill
W e from V, Emp.Skill
where V.EID= Emp.Skill.EID
group worlds by  (select CID from V);

We stay at five worlds, and extend them by one of the two
following relations.
WZ_*

wk* | CID Skill

[ACME _ Web

CcID
[ HAL

Skill
Java

e “Now list the possibleacquisition targets if | want to guaran-
tee to gain the skill “Web” by the acquisition.”

selectpossible CID
from w
where Skill= ‘Web’;

This results in the following relation, added to each of the
five worlds:
Result* | CID
| ACME

Trip planning. Consider the relation
Flights(Fid, Dep, Arr, Dtime, Atime)

encoding information about daily flights with id Fid from defure
airport Dep to arrival airport Arr. The departure and afrivane
are given by Dtime and Atime, respectively. Suppose we want t
schedule a meeting of a group of people from a set of citiesngiv
by unary relation ‘Hometowns'. We will use the view

create view HFlights as
select * from Flights where Dep in Hometowns;

below to save space. The individuals would like to meet byntak
direct flights to a single common city (in which none of thene$).
We express this query for eligible destinations using aeresibn
of SQL by two new constructs, choice-of and ‘certain’.

select certain Arr from HFlights choice of Dep;

For each of the departure airports (expressed by, intbjtiveon-
deterministically choosing a departure airport and selgall the
flights with that departure airport), we select the possitastina-
tions (attribute Arr), and then compute the destinatiomaroon to
all departures (using ‘certain’). Using choice-of we ipt@t each
departure as an alternative world. In each world we find tteti-de
nations, and then close the possible worlds semantics bpuiimgy
the certain destinations.

Assuming the existence of a division operator in SQL [22], we
can express the query in SQL as (assuming set-based sesrfantic
SQL and I-SQL):

select Arr

from (select Arr, Dep from HFlights) as F1
divide by
(select Dep from HFlights) as F2
on Fl.Dep = F2.Dep;

This computes all arrival cities that appear in combinatidtin
all departures. Division can be simulated in SQL using aetest
subquery with two not-exists constructs:

select Arr from HFlights F1
where not exists
(select * from HFlights F2
where not exists
(select * from HFlights F3
where F3.Dep = F2.Dep and F3.Arr = Fl.Arr));

This shows that at least in certain cases, I-SQL allows tagghr
decision support queries more concisely than plain SQL.

TPC-H. A different example for decision support queries is query
Qs in TPC-H [21] which quantifies the amount of revenue increase
that would have resulted from eliminating certain company-wide
discounts in a given percentage range in a given year. Alseryq
Q17 in TPC-H determines how much revenue would be lost if or-
ders were no longer filled for songgvenquantities. Both queries
are expressible in SQL using fairly simple select-from-rehstate-
ments on one relation [24].

We next discuss one query similar in spirit@;. Assume we
have a simplified version of the TPC-H Lineitem relation

Lineitem(Product, Quantity, Price, Year)

containing information about products sold in fixed quaesitor
package sizes, e.g., one hundred grams or one kilogram.

We would like to compute the years with a revenue loss over
1.000.000%$ ifany quantity of the sold products is no longer avail-
able. To answer this query, we first define all pairs of year and
missing quantity as possible worlds and compute the revésue
each of these pairs.

create view YearQuantity as
select A.Year, sum(A.Price) as Revenue
from (select * from Lineitem choice of Year) as A
where Quantity not in

(select * from Lineitem choice of Quantity)
group by A.Year;

The view YearQuantity creates a world for each year (by nakin
a choice of the year), and then for each year it creates a viarld
each missing quantity (by specifying a choice of the qugintithe
subquery). Finally, in each of the created worlds we comghee
revenue, i.e., the sum of prices of all sold products.

For each pair of year and missing quantity, we can now compare
its computed revenue with the revenue of the year withousimgs
quantities. If the dierence in revenues is greater that our threshold,
then we report the year.

select possible Year from YearQuantity as Y
where (select sum(Price) from Lineitem
where Lineitem.Year = Y.Year)
- Y.Revenue > 1000000;

Consistent views of inconsistent data. Consider the relation
Census (SSN, Name, POB, POW) containing simplified informa-
tion about social security number, name, place of birth, glade

of work for a set of persons. When such data is manually ethtére

is highly likely that certain constraints are initially Véded. For ex-
ample, the mistyping of the SSN can violate the functionglete
dency SSN— Name, POB, POW. In such cases, one particularly
useful view of this inconsistent relation is to considergkeof pos-
sible Census relations that are consistent w.r.t. the divectional
dependency. We can support such a view using the new cohstruc
repair-by-key.

select * from Census repair by key SSN;

The above query creates all possible relations that areistens
w.r.t. our functional dependency and are contained in theioa
Census. This query construct fits naturally into data clegasce-
narios and provides support for deduplication based on key c
straints. The above query can produce exponentially mamids/o



select [possible | certain] sellist
from glist

where cond

[group by attrlist]

[choice of attrlist]

[repair by key attrlist]

[group worlds by sqlquery;
insert into relnamevalues values

delete from relname[where cond;
update relnameset settinggwhere cond|;

Figure 1: Syntax of I-SQL queries and data manipulation com-
mands.

(representing all consistent combinations of social sgcaum-
bers), and is thus not expressible in SQL (or relationaltaiae In
fact, NP-hard problems can be expressed as queries witbphe+
by-key construct.

3. I-SQL

This section describes an SQL-like language, called I-SQL_,
querying possible worlds, part of which was already intemtlin
Section 2 using examples. For the purposes of this paper we as
sume set semantics for SQL and I-SQL. The generalizatiomago b
semantics is a subject of future work.

A main motivation of our work is to find a natural extension of
relational algebra and SQL to the context of incompleterimn
tion. Traditionally, query evaluation in this context isfided as
mapping between sets of possible worlds. The query is eua
in each world independently, and the world is extended with t
result of the query in it. A dferent approach is followed in work
on computing certain or (ranked) possible answers whiakitses
closing the possible worlds semantics.

Here we combine the two approaches and also add support for
creating new worlds. The structure of an I-SQL query is summa
rized in Figure 1. We next detail on the syntax and semantfittseo
constructs separated in four groups.

Standard SQL constructs In accordance to the possible worlds
semantics, a query is evaluated in each world independanty
the result is added as a new relation to that world. For exartie

query

select * from Flights where Arr = 'BCN’;

will retrieve the flights to Barcelona in each world.

Merging worlds. This group contains constructs that go across
world borders to collect information that appears in otherlds as
well.

e possible and certain. These constructs compute the tuples
that appear in some, respectively all worlds. The result is
then added to each world of the input world-set.

group-worlds-by. This construct is used in combinatiorhwit
‘possible’ and ‘certain’ and allows specifying a condition
which the worlds are grouped. The condition is given in form

Even though our language has the power to combine resutfis fro
different worlds into one, this is still accomplished in an “desi
out” manner. This means that a query, as before, is evaluated
each world independently; however it can also occasioratik
“outside” the current world to obtain the necessary infdiora
The result of the query remains local to the currently cosrsid
world. This difers from the approach where a query can access the
worlds “from outside”, and preserves the spirit of traditibquery
processing on sets of possible worlds.

ExampLe 3.1. Consider as input the set of three worlds8,
andc of Figure 2 (b) showing the flights from Frankfurt, Paris, and
Barcelona, respectively and the query that finds the ceataivals:

select certain Arr from Flights;

Evaluated in the first world, the query produces a new reidtio
which is the intersection of the Flights.Arr tuples fromabrids,
and this relation is added to the first world. The result inrhe
maining two worlds is computed in the same way, see Figure.2 (d

Even though we used the closing construct ‘certain’, theltés
again the set of three input worlds, where each of them is\det
with a new relation F. Only if the input is a single world, oifie
is interested only in the result of the operation and not itiput
relations, will a ‘possible’ or ‘certain’ construct procei@a single
world. |

Splitting up worlds. In addition to the merging constructs, the
language we propose enables the creation of new worlds theing
choice-of or repair-by-key operations.

e choice-of. This construct is used to freeze the values for a
given set of attributes and analyze each such combination
of values in a separate world. For example the following
choice-of query

select * from Flights choice of Dep;

applied on the world-set of Figure 2 (a) will produce a world
for each possible value of the Dep attribute of Flights, \whic
will contain all tuples with that value. The result of the que
is given in Figure 2 (b).

repair-by-key. The repair-by-key construct generatestsas
name suggests, the possible repairs of a relation thate®la

a uniqueness constraint for the values of a given set of at-
tributes. This makes sense in the context of cleaning incon-
sistent data, where tuples overlap on a set of key attributes
and each choice of a distinct tuple for each combination of
values is a possible repair of the database. As discussed in
the introduction, repair-by-key can also be used for ganera
ing possible configurations of items where each configura-
tion contains only one item of a type. For example,

select * from R repair by key A;
creates a world-set where each tuple has a unique A-value.

Data Manipulation. I-SQL uses the standard operations of SQL
‘insert’, ‘update’ and ‘delete’ to manipulate the data. Agahe

of an SQL query; worlds that produce the same result of that semantics follows the possible worlds scheme, where the/dsie
query are then put into the same group. Then, ‘possible’ or executed in each world of the world-set independently. Kkare
‘certain’, respectively, are computed within each of the-cr  ple, a query that inserts a tuple into a relation will insket tuple in
ated groups. Sometimes, when the query on which we group each world of the world-set. In case that inserting the tujdkates
is a projection on a set of attributes, we will write directly a constraint in some worlds, the update is discarded in aldso
only the set of attributes, as is done in the group-by constru The syntax of the data manipulation operations correspdirds
of SQL. rectly to the one in SQL and is given in Figure 1.



- Flights® | Dep  Arr Flights® | Dep  Arr Flight€ | Dep A
thms| Dep Arr FRA BCN PAR  ATL | PAL  ATL
FRA BCN FRA ATL PAR BCN
FRA  ATL (b) Creating worlds using choice-of on Dep
PAR  ATL _ ,
PAR BCN Flights® | Dep  Arr Flights® | Dep  Arr Flight | Dep A
PHL ATL FRA BCN |PAR BCN |
(a) Flights database (c) Tuple deletion on the world-set of (b)
Flights” | Dep _Arr F* | Ar Flights” | Dep A 2| Ar Flight | Dep Ar  F° | Ar
FRA BCN ATL PAR ~ ATL AT [PAL ATL AT
FRA ATL PAR BCN

(d) Result of ‘select certain Arr from Flights;” on the world-set of (b)

Figure 2: Trip planning.

Exampre 3.2. Consider the world-set in Figure 2 (b) and the
command that deletes all entries containing ‘ATL’ as the At
tribute:

delete from Flights where Arr = ’'ATL’;

The result is given in Figure 2 (c). O

Order of evaluation. The skeleton of each I-SQL query is an SQL
select-from-where statement which is conceptually evatlian the
standard way by (1) computing the product of the relatiores pr
duced by the subqueries in the from-clause, (2) applyingdimeli-
tions of the where-clause on top, and (3) projecting on ttréates
given in the select list. If any of the new operators choiteapair-
by-key and group-worlds-by are specified, they are applfeat a
step (2) in the order given by Figure 1. In other words we fisgt u
choice-of to create a world for each combination of valuegtie
specified attributes, and then repair-by-key in each of thated
worlds. The group-worlds-by operation is applied on theld:set
created after the repair-by-key construct. Only then wdyagtep
(3) to project the attributes given in the select-clause idfbs-
sible’ or ‘certain’ are present we union, respectively inget, the
tuples in that projection.

4. WORLD-SET ALGEBRA

In this section we define an algebra for the fragment of [-SQL
without SQL grouping and aggregation constructs. Thiskakge
called World-set Algebra, is an extension of relationakhlg with
the new constructs poss, cert, choice-of, and group-wdnyds\Ve
then show that world-set algebra is generic in the sensettieat
semantics of a query is independent of the world-set reptaten.
Recall that genericity is a fundamental property of quenglaages
like relational algebra and SQL [1].

4.1 Syntax and Semantics

We consider the named perspective of the relational modkl an
relational algebra operators selection projections, productx,
union U, difference—, and renaming. Sometimes we will also
use the operators intersesgtand division+ expressible using the
six base operators. Sets of attributes are denoted by chgiita
tersU andV. In addition to relational algebra operators, we con-
sider a fragment of the I-SQL operators, namely the unary-ope
ators poss, cerfyy (choice-of), pyy, (possible-group-worlds-by),
andcyy, (certain-group-worlds-by).

Figure 3 gives the semantics of world-set algebra defined as a

function [-] mapping between world-sets. The semantics func-
tion is defined inductively on the structure of world-setedicp

queries. Let the initial world-seA contain worlds over schema
¥ =(Ry,...,R). By applying a querg to A we add to each world
of A a new relationR,; that represents the answer dan that
world. Thus we obtain a new world-set over schelRa. .., R¢1).
We next discuss the semantics of each of our operators.

If the query to evaluate is the identity on a relation (i.é.the
form R}), we add a copy of that relation to each world.

To evaluatef (g), wheref is a unary relational algebra operator
(selection, projection, or renaming), we first evaluggand produce
a relationRy, 1 in each world. Then, in each world, is evaluated
onRy,; and the answer, obtained in standard way for this relational
algebra operation, replacgg, .

The case of relational algebra binary operators is a bit rimere
volved, because its operands can produéieidint world-sets. We
first evaluate the operands and obtain two world-getand A",
both representing sets of databases Witlh relations. We then per-
form the binary operation in those combinations of one wodd
A’ and one world fromA” that agree on the relatiors, . .., R.
This condition ensures that we forbid operations betwektioas
that occur in diferent worlds in the original world-set.

The choice-of operatgr, creates a new world for each choice of
the values in the projectiany onRy,1 in each world. The relation
R«:1 is then replaced in each of the new worlds by the subset.of
consisting of those tuples that agree on the valués.dfhus there
are no two new worlds created from the same woRd . .., Rq.1)
with the same values dfi. When applied to the empty relation,
choice-of produces an empty relation. Note that each nesglyted
world also contains the relatioR, . . ., R, of the world from which
it was derived. This assures compositionality.

The group-worlds-by operatorsy; andcy, group worlds in a
world-set such that all worlds in a group agreemr(R.1). We
then replaceRy,1 by my(R.1) in each world. In the case qfyY,,
R«:1 in each world#A is replaced by the union of the relatioRg, 1
from the group of worlds associated with. Analogously, in the
case ony\Lﬁ, the new relatiorR,; in a world A becomes the in-
tersection of the relatior®.,; from the group of worlds associated
with A.

In casef is poss, therRy,; is replaced by the union of all its
instances across all worlds. (That is, this replacemerarisex] out
in all worlds.) If f is cert, therRy,, is replaced by the intersection
of all its instances across all worlds.

In Figure 3,pyy), ¢y}, poss and cert are all defined using the
auxiliary operatorgpy¥ andcyY (which we assume not to be part
of world-set algebra).



[RI(A) :={(Ry,....ReR) Ry, ...,

Dxa(@I(A) == Ry, ..., Re, oa-v(Res1)) | (R, ...

I[py\d (Q)]](A) = [[WXU(RM)WU(R@)(Q)]](A)
[Cy\d (@I(A) = [[C'}’,YU(R(+1):”U(F<>{<+1)(Q)]](A)

R) € A}, where 1<i <k
[f(@I(A) = {(Ru.... Re F(Ra1)) | (Re..... Reea) € [G1(A)}, wheref € {my, oy, 6uv)
[ Op &l(A) := Ry, -, Re Ries OP Ria) | (Ru - R Reea) € [Al(A), Ry, ..,
={ »Re1) € [Al(A), (v € ma(Re1) V (R = 0 = v = 1))}
[pyY @1A) = {(Ro, -, R [ Jimv(R) | A = Ry, , R Ry} € [Al(A), A~ AN) | A = (R, ..., Ra) € [GI(A)]
[ (@I(A) = {(Re.. ... Ro [ Jmv(Rea) | A = (Ry,..., R Ry} € [Al(A), A~ A1) | A = (Ry,....,Re1) € [1(A)]
[PosEI(A) := [Pyl DI(A)
fcert(@1(A) = [Cyyu(DT(A)

Re R2,.1) € [Ql(A)}, whereOpe {x,U,N, -}

Figure 3: Semantics of world-set algebra (with auxiliary déinitions of pyY and cyY).

Exameie 4.1. The first query of Section 2 asking for possible
acquisition targets can be expressed in world set algebra as

posgrcip (o skit=wet (CY¢ip (r1.cip,1.E10 (Ycip,ei0 (COmpanyEmp)
> cip=2.ciDALEIDz2EI0 COMpanyEmp)s=« Emp Skills)))). o

Operator Typing. We type the operators based on the cardinality
of their input and output world-sets. An operator has type 1L

if it is a mapping between singleton world-setsi—sL m if it maps
singleton world-sets to world-sets) — 1 if it maps world-sets to
singleton world-sets, anth — mif it is a mapping between world-
sets. We also allow type overloading for operators.

The operators of the world-set algebra can then be chaizeder
as follows. The relational algebra operators and the waddgjng
operators are either 1 orm— m. The operators poss and cert
have the typen — 1. Finally, the type of the operator choice-of is
either 1~ mor m~— m. The type of a world-set algebra query can
then be checked statically using standard typecheckirggente
rules. For example, all queries from Section 2 have type 1,
because they start with a singleton world-set and theirrmdst
operators are either poss or cert.

The usefulness of query typing becomes evident in Section 5,

where we study query evaluation on an inlined represemaifo
world-sets. There, we use the type to decide whether theyquer
maps to a singleton world-set.

Extending World-set Algebra. The I-SQL operator repair-by-
key enforces a uniqueness constraint for the values of a gige

of attributes. We note here that by adding this operator tddwo
set algebra, we can express complex guess and check progrgmm
tasks. For example, one can easily reduce the 3-colosapilith-
lem to the evaluation of a world-set algebra query.

ProposiTioNn 4.2. The evaluation of queries in world-set algebra
with repair-by-key is NP-hard.

In contrast, the evaluation of queries in relational algeisr in
PTIME w.r.t. data complexity.

4.2 Genericity

Genericity is a fundamental property of query languageguat-
antees that query results are independent from the repatisen
of the data and interpretation of domain values. While et
query languages such as relational algebra and SQL areigener
this is not always obvious in possible worlds query langsade
fact, as we will see later, this property does not hold for edam-
guages for querying incompleteness. World-set algebrarisfic,

i.e., its semantics does not depend on the world-set reptetim.
We next define the notion of isomorphism on world-sets, whieh
later use to formally define genericity.

Dernition 4.3. Given two world-seté = {l4,...,l,} andA’ =
{I3,...,1},} and a bijectiorp : dom® — dom®" between their do-
mains,A andA’ areisomorphic undep, denotedA =, A’, iff

(VDleA=6(1)eA and {I)I'e A’ =67Y(")eA.

Analogous to the relational case [1], we now define gengricit
for the case of world-sets.

DeriniTion 4.4, A queryq is genericift for all world-setsA, A’
there is a domain value bijectign. dom® — dom”’ such that

A= A" = q(A) = q(A").

A query language is generiff all of its queries are generic.

The above definition ignores the issue of constants in geiéirie
selection conditions). However, it can be easily genegdlizf. [1].

Prorosition 4.5. World-set algebra is generic.

Proor Skercu. Consider the world-sets = {14,..., 1} andA’ =
{I3,...,1},}, which are isomorphic under a bijectioh A =, A’.
W.l.o.g. letthe schema of andlj be(Ry, ..., Ry andd(l;) = IJf, for
1 < j < n. It can be shown using induction on the query structure
that any query) in world-set algebra is generic, i.g(A) =, q(A’).

We show this for two operators: projection and poss.

The queryrg(R) creates in each world &f (or A’) a new relation
R«1 (R, ;) representing the projection & on R. Then, for any
world 1; we haved(rg(R'1)) = 7a(8(R1)) = 7s(R'). The projection
commutes withd because relational algebra is generic on complete
databases.

The queryposgR) creates in each world oA (or A’) a new
relationRy,1 (R, ,) representing the union of relatiofsover all
worlds: Re.1 = U(R') andR,, = J(R'). By taking6 on Ry,; we
obtain

G(U(R'i)) =9RY)U...UHRY) =R1U...URk = U(R‘i).
Again,d commutes with union because relational algebra is genefit.

Remark 4.6. To demonstrate that genericity can be a subtle is-
sue in the context of queries on world-sets, we show thatahe |

guage TriQL [9, 23] lacks genericity. Consider two ULDBs [8]
(i.e., databases with lineage and uncertaitty)andU5:



R|A
|

A
1

w k>

Ll'»m
|

(b) Represented worlds.

wNR<

(a) Inlined representation.

Figure 4: Inlined representation of a world-set.
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U; has one maybe x-tuple with ig, no lineaget, and two alterna-
tives (1) and (2).U, has two maybe x-tuples, each with one alter-
native. The lineage of the first x-tuple points to the firstaiative

of an external x-tuple with id;, whereas the lineage of the second
x-tuple points to the second alternative of the same x-tgplél-
ternatives of the same x-tuple, or x-tuples whose lineagetpto
different alternatives of the same tuple cannot appear in the sam
world. Also, maybe x-tuples may be missing from a world. Both
U; andU, represent the same set of three worllsB, C:

R | RS | RE|A
| ! |

Let g be a TriQL query which uses horizontal selectign [

A A
1 2

select * from R where
exists [select * from R rl, R r2 where rl1.A <> r2.A];

The meaning of this query is that an x-tuple fréis selected
if it has at least two dferent alternatives. It is an adaptation of

a query example from [23] which uses count to express the samethe three possible worlds depicted in Figure 4 (b).

condition. OnU; the queryq is the identity, while orlJ, it does
not select anything:

qU) || R(A)
b [DIA

4 qUz) || R(A) | 2

| | |
[0 ]2 | ]

Itis easy to see that the identity isomorphism on the inputdvo
sets does not hold on the world-sets representing the assogr
in the two cases. O

5. FROM WORLD-SET ALGEBRA
TO RELATIONAL ALGEBRA

In this section we show that any world-set algebra query @an b
efficiently translated to an equivalent relational algebrargjoger
acompleterepresentation of the input world-set. We propose such
a representation in Section 5.1, tiitined representationwhere
the tuples of a relation over all worlds are represented etable
that has special attributes to denote the identifier of thedieach
tuple belongs to.

In the case of complete-to-complete world-set algebraigsier
(i.e., those with type 1 1), the input database is not encoded as
an inlined representation. Complete-to-complete woeldatgebra
queries admit equivalent relational algebra queries thatate di-
rectly on standard databases (thus the inlined repregantatnot
needed). However, the intermediate results of the operatesent
in the relational algebra query can make use of the inlinpdere
sentation to keep track of which tuples belong to which wofldis
result is in the spirit of the translation of flat-to-flat nestalgebra
queries to relational algebra queries [20], and shows tbatset
algebra is conservative over relational algebra.

5.1 Inlined Representation of World-sets

We next define a representation of world-sets, where aliintss
of a relation over all worlds are inlined into one single tiela. The
main idea behind the representation is to assign identtfiersrlds
and use them to identify the tuples of any relation in a wolslwe
will show in Section 5.2, such identifiers need not be prodifiem
the outside. Our world-set algebra queries can gracefdéntify
worlds based on the choices of values used to create them.

DeriniTion 5.1, Aninlined representationf a world-setA over
a schem& = (Ry[U4], ..., R Ux]) is a structure

T =(R{[U1UV],...R[Uc U V],W[V])

whereV is a possibly empty set of attributes disjoint with the sets
Uy,...,Ux. The attributes irV represent world identifiers. Each
table RT encodes the instances of a relatiBhand the tableN
contains all world identifiers that appear in any taRJe

We allow the world tabl&V to contain identifiers that do not appear
in any of the tablesR". (ThusR'[V] € WT[V].) In this way, we
can encode the existence of an empty world. The empty world-
set is encoded by an empty world table. It is easy to see that ou
representation can encode any finite set of possible worlds.

The set of possible worlds represented by an inlined reptase
tion T is defined by the functiorep

re FKT) = {<7TU1 (O—V:W(RI))’ s Ty (O-V:W(RI))> | we W}

We obtain a possible world by taking all tuples frdRj, ..., R}
with a given world identifier from the world tabMy. Note thatT
can encode several equivalent worlds undéedent world ids.

Examere 5.2. Theinlined representation of Figure 4 (a) encodes
m]

Remark 5.3. The inlined representation of world-sets supports
our encoding of world-set queries as relational queriesismbt
meant as a compact representation system for very largeokets
worlds, as considered in, e.g., [8, 4]. The evaluation ofaianal
query on an inlined representation can only produce a wsetd-
whose cardinality is polynomial in the input size. This igda the
polynomial data complexity of relational algebra. o

We next show how world-set algebra queries can be evaluated o
inlined representations.

ExampLe 5.4. Consider the databag®, S) of Figure 5 (a) and
its inlined representation of Figure 5 (b).

We first show how to evaluaf®; = ya(R). By definition, choice-
of creates a world for each distinct value of A. An A-value iees
also the id of the world it determines. The world tableis then
updated with the new world ids (using a joinRf andW) and each
other relation (her® andS) is copied in the newly created worlds
(using a join of the newV and each oRandS). Figure 5 (c) shows
R; and the &ect on the world tables in the inline representati@n (
andS are not shown for reasons of space).

Let us now evaluat® = py2®(R,). Our first step is to pair each
tuple with the ids of worlds that have the same projectiorBas
the world the tuple belongs to. This is accomplished in asitivi-
like manner and is detailed in the next subsection. The sefidf
pairs is represented Wy, in Figure 5 (d). Note that the attribute
V>, now represents a group id for the groups of worlds we create.
To compute the possible tuples within each group, we onlylnee
to remove the old world id column, see relati@nin Figure 5 (e).
We obtain the result by renaming to V; to match the input set of
world-id attributes. The other tables remain unchanged. O
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Figure 5: Evaluating world-set algebra queries on inlined epresentation of world-sets.

5.2 World-setto relational algebra translation

Figure 6 defines the translation functifyfi, recursively on the
structure of world-set queries. The functipr. takes a world-set
query and an inlined representation= (Ry, ..., R, W) to a new
inlined representatio’ = (R;,...,R,;, W), where each table
R is obtained fromR using a relational algebra query, aRfl
encodes the answer to the input query. In case an operatiesre
new worlds, the world tabl&V is updated to also represent their
ids. Also, the table®}; to R¢ and W are copied in each of the
new worlds. The result of the translation is then the contjosi
of those relational algebra queries generated for eaclatipeand
used to define the answer of the world-set query.

world identifier. Note that in this way, we do not need the esgpr
sive power to create new world identifiers, as our world ids ar
values already existing in the data. We also update the warld
ble with the new world ids and copy each other relation in tew n
worlds created by the choice-of operator. An evaluationmeta
with choice-of is given in Example 5.4.

A queryposgq) can be expressed on inlined representations by
simply dropping the id attributes from the talite ;. The obtained
relation is then copied in all worlds using a product of tlekation
and the world tabl&V.

A querycert(q) requires to compute the tuplesi,; that appear
in all worlds. This can be expressed by a divisiorRgf; and the

We make use of the following naming convention. For any table world tableW, which consists of all world ids. The certain tuples

in the inlined representation, the set of attributes degjtie world
identifiers is denoted by (possibly with indices) and called id
attributes. The remaining attributes, which define theesin the
relations encoded by the tables, are denote®land called value
attributes. This is with no loss of generality, as the id anthe
attributes can be statically inferred from the input query.

Remark 5.5. For the translation of choice-of we use a slightly
modified left outer join (denotegh):

R=<S=R=SU(R-RxS)x{(C,...,c)}

The result of the left outer join contains all combinatiotfisuples
of R and S that fulfill the join condition, and the tuples frolR
without a join partner frons padded with a special constartup
to size|R» S|. |

We next explain our translation. The base case of the tramsla
is the identity on a relatioR, in which case we create thle { 1)st
table encodindR. This is the only case where the representation
is extended. In all other cases, the operators are traddlarela-
tional algebra queries that modify tHe« 1)st table. The relational
algebra unary operators selection, projection, and remgarie ap-
plied to the tabldz.; from the representation obtained by translat-
ing their subqueries. In the case of projection, we also kisepd
attributes ofR, 1.

According to the semantics, choice-of is the only operatat t
can create new worlds, see Section 4. On inlined represamat
we simulate a choice-gfg(q) by extending the tablB,; with new
id attributesVgg, whose values are the same as Bor Then the
tuples with the same values f@& are in the same world (as en-
sured by the semantics of choice-of) or, equivalently, withsame

LIn the standard definition of outer joins the tuples are pdduiéh
null values, whereas here we use a constant for practicabnea

are then copied in all worlds.

ExampLe 5.6. Consider the trip-planning I-SQL query from Sec-
tion 2 that finds the cities that are a common destinationltdeal
partures. We can express the query in world-set algebra as

cert(mar (xpep(HFlights)))

We next show how this query can be translated to a relatidget a
bra query.

1. We represent the initial database as an inlined repratsamt
(HFlights W), whereW = {{)} is a nullary world-id table
with a single tuple.

2. The innermost query, the reference to the HFlights afati
extends the input database with a new relation F which is a
copy of the relation HFlights¢HFlights F, W).

3. The choice-of operatarpe, adds a copy of the Dep attribute
of F as a new id attribut¥pe, t0 F: F' = 1, pep asvpe, (F)-
The new world table is computed ¥ = W == F’ and the
world ids are propagated to the input HFlights table:
(HFlightss< W', F", W').

4. The projection computes” = marr vy, (F’) and outputs
(HFlightse< W, F”,W’).

5. Finally cert performs the division oR” with the current
world tableW’: F”” = (F” + W) x W' and outputs
(HFlightse< W', F"”", W’).

6. Since the query is a®> 1 query, we obtain the final result
by dropping the id attributes of the last computed relation:

mar(F™).



[RI:(Ry.....ReW)) = (Ry,....R. R, W)

[F(@](T) =
let (Ry,...,ReRW) = |[q]|‘r(T)
in (Ry,..., R, f(R),W>
wheref € {oa_y, Spn )

[7a(@](T) =
let(Ry,...,R, RW) =[] (T)
in <R1, ceey Rk, JTAv(R), W)

Lxs(@]1-(T) =
let (Ry,..... R RW) = [q](T),
D be the value attributes & (andB ¢ D),
W =W =< 6B~>VB(R)
in <R1 > W/, ey Rk > W,yﬂ'D,\/,B as VB(R)’W/>

[posga)]-(T) =
let(Ry,...,R, RW) = [q](T),
in (Ry,..., Rk,ﬂ'D(R) x W, W)

[cer(@)].(T) =
let (Ry,...,R. R W) =[] (T)
in(Ry,...,R. (R+W) xWW)

[y3@1-(T) =
let (Ry,..., R, RW) = [q]l(T),
S = nyy, (mav(R) X 1y, (Gv-v, (R) -
Ay, (Reacn (asn vov, (R))),
S = ny(R) X 7y, (v, (R)) = S,
R = 7TB,\/,V2(R>< Ty, (5vHv2(R)) PRV=S' VARV,=5".V, S’)
in(Ry,...,R, R, W)

[pyR(@1-(T) =
let (R, ..., R. RW) = [y3(@)](T),
V be the attributes ofv,

V, V, be the id attributes dR,
in (Ry, ..., R, mav(dv,-v(R), W)

[oya(@]-(T) =

let (Ry, ..., R, R W) = [¥2(a)](T),
V be the attributes ofv,
V, V, be the id attributes dR,
P=n B.V.V> (R PB=B'AV,=V) BB VoV ,VgaVé(R))-
P’ = mavv, (Re<v,-vy 0858 v-vr v,-v; (R) = P,
R = 7gv(6v,-v(R)) = ey (6v,-v(P))

in{Ry,...,R.R. W)

[or x gl-(Ry..... R W)) =
let V be the attributes ofV,
<R1’ (R R(’ R”W,> = |[q1]IT(<R1a cee Rka W>):
<W7 ey R{(’? R”’WH> = |[q2]IT(<Rl’ RN Rk’ W>)1
W0 =W >« W’
in (Ry =W, ..., Rc> Wy, R >r v_rv R”, Wp)

[[ql ) qZ]IT(<Rl’~ .. 7Rk’W>) =
let(R;,...., R, R, W) =[au]:((Ry,..., R, W)),
<W7 cees RI,(/7 R”’WH> = |[q2]IT(<Rl’ LR Rk’ W>)1
W0 =W =W,
R= (R = Wp) O (R” > W)
in (R W, ..., R Wy, R Wp)
where® € {U,N, -}

Figure 6: Translation of world-set queries to relational gueries.

We obtain the relational algebra query by composing theigsier
we used to compute each of the intermediate results thatipead
the final result:

e (A Vpep (71,Dep asvpe, (HFlIGtS)) + Q) X (ahw))
whereqy = ({()} == (ﬂ*.Dep asVDep(HF”ghtS)))- o

The group-worlds-by operators first group the instanceR.of
that agree on the values of the grouping attribéte$his grouping
can be expressed using universal quantification over afb pi
worlds and over the values of the grouping attributes of thiecgl
worlds. For this, we first compute all pairs of world ids thatdng
to different groups (as given t§in Figure 6). These are the ids of
worlds that produce élierent answers to the projection én We
then compute all valid pairs of world ids by computing thegible
pairings and subtracting those that are invalid (as give®'hyNote
thatS’ is an equivalence relation over world ids. A pairs of world
ids (Wi, w,) is in the equivalence relatioiffiw; andw, are in the
same group. Them; represents the id of a world, whereas
represents the id of the group. Finally, to compute the ptessi
tuples in each group (as given B)), we join Ry, with the set of
valid pairings we computed &.

To simulate poss-group-worlds-by, we keep the ids of thegro
and drop the ids of the worlds. To simulate cert-group-wstig,
we further define relatio® as the tuples with matches in some
world of their group, and the® as the tuples that do not have a
match for some world of their group. Then, we obtain the tsiple
that appear in each world within a group by subtracting thiese
fined by P’ from those defined byR.,;. An evaluation example
with group-worlds-by is given in Example 5.4.

The translation of a product of two queries is the join on the
world id attributes of the translations of each of the tworepse
Thus we ensure that only tuples coming from the same original
world are combined. As a desirable sid&eet, this join also pro-
duces the possible combinations of worlds from the two gsefin
the case of union, we need to ensure that the union occurgim ea
world defined by any of the two operands. Therefore, we need to
define the two sets of possible worlds of the operands, capyeth
lations represented by one operand in each world of the,aiher
then perform the union. The cases of intersection afiéréince
are treated similarly.

Figure 6 shows how to translate world-set algebra operattos
relational algebra queries on inlined representationsera 1—

1 world-set algebra query, we obtain the equivalent retatial-
gebra query by composing the queries used at intermedigps st
towards the final result. Since the typing guarantees tleadtiery
produces a single world as output, the last operator of fatéaaal
algebra query projects away the id attributes created byhasted
operators.

Finally, we can state the main result of this section.

Tueorem 5.7. World-set algebra is conservative over relational
algebra, that is, for eac — 1 query g in world-set algebra and
a complete databas#, there exists a relational algebra query q
such that

{g(A)} = a({AY).

Note that using the translation functifr,, any world-set alge-
bra query can be translated into a relational algebra qugpyplg-
nomial size.



5.3 Optimized translation for
complete-to-complete queries

Section 5.2 gives a general translation for world-set s re-
lational algebra queries. We notice that in the case of cetefb-
complete queries, this translation can be changed so asdoi¢e
more optimized equivalent relational algebra queries.

These optimizations are based on the following observation
First, the general translation makes extensive use of thrd wa-

ble W, although this table is only needed in the case of cert and

the binary operators union, intersect, anflatence. We can adopt

here a lazy approach and compute the world table on demand. Se

ond, we can postpone and sometimes avoid the creation af<opi
of existing relations in all worlds. In this way in case th@umn
world-set query is a relational algebra query, the traisiatatu-
rally produces that relational algebra query as output dwoiding
computation of world ids.

Our observations are supported by the following new ingerpr
tation of the tables in an inlined representation. If a tdide no
world identifiers, then the relation it encodes appearsliwailds.
Two tablesR™ andST can have dferent sets of world identifiers,
say a set ohg worlds and the other set withs worlds, in which
case the representation encoags ns worlds for each possible
combination of a world foR™ and a world forS™. This is correct,
as all worlds created by any operator derive from the samatinp
world corresponding to the input database.

We next explain how the world table can be computed on de-

mand. The binary operators and choice-of update the woble ta

W. The choice-of construct creates new ids based on the choice

attributes, which can be expressed using a projection. ¥ame
ple the world-ids created by the query(R) can be computed with
7a(R). In the case of a binary operatgr ® g, the new world ids
can be obtained by combining the ones produced by the twosube
pressions. Ify; andd, are the queries that compute the ids created
in g, andag,, respectively, the ids after the binary opera®ocan be
retrieved using the queny, x g,. Thus we avoid the creation and
updates to W until a reference to it is made. When this happerrs
can compute W with an expression which can be staticallyriede
from the structure of the subquery.

ExampLe 5.8. Using the translation optimized for complete-to-
complete queries, the query of Example 5.6 can be trandlated

mar pep(HFlights) + mpep(HFlights).

This relational algebra query is simpler than the one coeasing
the general translation and discussed in Example 5.6. O

6. ALGEBRAIC EQUIVALENCES

Figure 7 gives equivalences of queries in world-set algetifa
turn each equivalence= r into a rewrite rulel — r and define
logical optimizations in close analogy to the relationadea

We define two broad classes of equivalences. The first class co
ers the cases of pairs of operators that commute. The setassl ¢
covers simplifications of operator compositions.

Commute rules This class reminds of the standard optimization
techniques of relational algebra like pushing selectiombsmojec-
tions as down as possible in the logical query plan. The epera
tor poss commutes with selection, projection, and union (&}
through (3)). The operator cert commutes with selectioergec-
tion, and product (Eq. (4) through (6)). The operator chaite
commutes with product and with projection in the case thgepro
tion list includes the choice attributes (Eg. (7) and (8)haly, the
operators group-worlds-by commute with selection in casese-

Commute
posgos(a)) = oy(posgd)) (1)
posgrx(Q)) = mx(posga)) (2
posga: U 0z) = posgds) U posgdyz) 3)
cert(oy(0)) = oy(cert(q)) 4
cert(d N 0) = cert(qy) N cert(dy) (5)
cert(dy X gz) = cert(ch) x cert(dy) (6)
7xuy Oex (@) = xx(xov () (7)
Xx(01) X G2 = xx(t1 X Gp), if X C Attrs(ch) (8)
os(Pyx(@) = Prx(os(a)), if Attrs(g) € XN'Y 9)
os(Cyx(a)) = cyx(oy(d)), ifAttrs(g) c XNY  (10)

Reduce

posgyx(d)) = posgq) (11)
PYiov(@ = vy (@) = 7x(A) (12)
m2(Pyx5 (@) = 7z(0) (13)
nz(Pyx 2(@) = pyx(@), if Z & X (14)
posgpyx(a)) = posgrv(a)) (15)
cert{cyx(q)) = cert(rv(q)) (16)
Xx0ev(@) = xv(xx(@) = xxuv(Q) (17)
PYx(PYXou (@) = cyx(Pyxov(a) = Prxuv (@) (18)
Pyx(Cy%9(@)) = cyx(Cyxu(a)) = cyxuv(Q) (19)
Pyx(exuz(@)) = mv(xx(d)) (20)
CV;(XXUYUZ(q)) = my(xxuvuz(0)) (21)
posgcert(q)) = cert(cert(q)) = cert(q) (22)
posgposga)) = certposgd)) = posga) (23)

Figure 7: Equivalences in World-set Algebra.

lection condition refers only to attributes among the gingmnd
projecting attributes (Eq. (9) and (10)).

In the case of relational algebra the projections and select
are usually pushed down in the query plan. In world-set alge-
bra the pushing down of the new operators poss and cert ysuall
bears even greater potential for optimization, and thessabprs
are pushed down even across selection and projection whisre t
is possible. This is because the latter operators closedbsihpe
worlds semantics and can eliminate other world-set operdite
choice-of or group-worlds-by, as discussed below for thice
equivalences.

The most interesting cases of pairs of operators that doamt ¢
mute are selection and choice-of on one hand and and proddct a
poss on the other. The choice-of operator applied on top efa s
lection can create a world with an empty relation only in thsec
where the answet to the selection is empty. However, thetsahe
applied on top of a choice-of operator creates an emptyioalat a
world if there exists at least one tuple that does not matelsétec-
tion criteria. In the case of poss and product, tuples frofiieidnt
worlds can be joined if the worlds are flattened using poserbef
the product, and only tuples from the same world are pairpdsé
is applied after product. In both cases the operators pabseiac-
tion cannot be always pushed down to the relations in a plae. T
apparent drawback of the former case has, however, an stitege
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Figure 8: Equivalent queriesq; and g; of Example 6.1.

and useful sidefect that allows to easily specify properties that
must hold for all worlds.

Reduce rules The operator poss eliminates choice-of operators,
because choice-of distributes tuples into a set of disjointds,
which is later flattened by the operator poss (Eq. (11)). I th
same way, poss can undo world grouping (Eg. (15)). The operat
cert can only undo world grouping expressed using certeoni
worlds-by, because each group is formed on projectionséatet
certain in all worlds in that group (Eg. (16)). Similarly, E{2)

shows that special cases of world grouping can be expressed a

simple projections. This is because if all worlds in a grogpea
on a projectiontyyy, thenny is the same in all these worlds and
its evaluation in each world expresses precisely the coatiput of

poss TiCity
I I
TCity poss
I
T Arr=City
I
pyE)ep
I
X DepCity
|
X MArr=City
PN - ~
HFlights Hotels HFlights Hotels

(a) Queryq, (b) Queryd,
Figure 9: Equivalent queriesq, and g, of Example 6.2.

Queryq; can be rewritten as follows.

o, Ecert(nciy (o an—ciy (. (xoep(HFlights x Hotels))))

©cert(mciy (0 ar—city (r. (xpep(HFlights) x Hotels)))
=cert(rcity(xpep(HFlights) »aar—city Hotels).
In constructingg;, we absorbed the group-worlds-by operator in
the choice-of operator and a projection on all attributés e

pushed down the choice-of operator and transformed theuptod
in a join. Figure 8 shows the logical query plansdgfandc;. O

ExampLe 6.2. Let us now consider a slight modification aqyf
where the operator cert is replaced by poss.

7% in each group. Nested choice-of operators can be reduced to a % = POS%ciy(oar=city (PYpeptpencity(HFlights x Hotels))))

single choice-of (Eq. (17)). By Eq. (8) and Eq. (17), we carivde
thatyx (d1) X xv(G) = xxuv (G X ).

Eqg. (18) and (19) show that nested group-worlds-by can aso b
reduced to a single group-worlds-by in case all grouping fznod
jecting attributes of the outer operator occur as groupimg) @o-
jecting attributes, respectively, of the inner operatoimi&rly, a
projection applied to a world grouping can eliminate theugro
ing, in case the attributes of the projection occur as bothugyr
ing and projecting attributes of the group-worlds-by oparéEq.
(13)). In case the attributes of a projection occur as ptivjgcbut
not as grouping) attributes of the group-worlds-by operateen
the projection is removed and its attributes become the mew p
jecting attributes (Eq. (14)). In the presence of choiceqmrators,
the group-worlds-by operators are reduced to simple pliojexin
case the choice attributes occur as both grouping and pirggestt-
tributes, as shown in Eq. (20) and (21). Eq. (22) and (23)idens
the case of redundant poss or cert operators.

We next use these equivalences to rewrite world-set algplades.

ExampLe 6.1. Consider a possibly incomplete version of our
HFlights database from Section 2, where additionally weshav
formation on hotels given by relation Hotels(Name,CiticE). The
participants of our meeting would all like to book a direagffii to
and a hotel in the same city (**’ stands for all attributes aka-
tion):

th = cert(mcity(oarr=city(PYpepl¥pencity(HFlights x Hotels))))

Query q; first considers each possible combination of departures
and arrivals, then groups them on common departures, antyfina
computes the arrivals (cities) common to the departures.

Query g, can be rewritten similarly ta;, where in addition we
make use of the equivalences for the operator poss.

o, Dposgrciy(oar-ciy (. (voep(HF lights x Hotels))))
) ity (0 arr—city (. (POSE pep(HFlights x Hotel)))
ity (0 ar—city (7. (POSEHFlights x Hotels)))

(é)ﬂcity(n*(pos:{H Flights saar—ciry Hotels))
=nciy(POSEHFlights siar—city Hotels).

Note thatg, has no grouping or choice constructs. In case the input
data is complete, the operator poss can be dropped;dmecomes

a relational algebra query, as one would expect. Figure @skiwe
logical query plans fog, andg;. O

So far we have not addressed th&atience operation of rela-
tional algebra. Apart from rewrite rules involvingfiirence and
the other operators of relational algebra, the followingiealence
is of interest:

cer(R- S) = cert(cert(R) — S). (24)

Furthermore, cert and poss are mutually expressible usifey-d
ence and a domain relati@which holds the values that appear in
the union of all the worlds.

ProposiTioN 6.3.

Cel’t(Q) = Q - pOSiDamY(Q) _ Q)
= Q- posgposgQ) - Q) (25)
posgQ) DY@ _ Cert(Dari‘Y(Q) -Q). (26)



7. FURTHER EXPRESSIVENESS ISSUES

We have shown that each world-set algebra query is genatlic an
can be translated to an equivalent relational algebra qoerin-
lined representations. The converse is not true: Considddvgets
whose schema contains just one relat®and a query that com-
putes all pairs of worlds in a world-set, i.e., which, for leaeorld
| and every choice afther world J creates a world containing the
relationR' and, renamed, the relati&l. This query is generic and
expressible in relational algebra on inlined represeorati How-
ever, it is not expressible in world-set algebra:|dés¢R)| = n
and the world-set consists of alt 8ubsets of this set, the pairing
query will compute a world-set of cardinality2 too great to be
produced in world-set algebra using a fixed query and choiees
the only operation to increase the number of worlds.

Itis an interesting open question whether all queries ofyhes
1~ 1andm — 1 in world-set algebra extended by the world-
pairing operation are expressible in world-set algebra.

We did not add a world-pairing operation to world-set algebr
because it would take away from the intuition of queries geival-
uated on each world individually, with an occasional looksiie
the world. Also, the pairing operation cannot replace ohat
For example, starting with a single world, pairing will natrease
the cardinality of the world-set, while choice-of in gerlefaes.
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incomplete information. An I-SQL query allows for the conve
nient formulation of “what if” queries and is thus even relat/for
queries on complete data. We motivate I-SQL using several ap
plication scenarios and point out that many natural quéniesich
scenarios can be expressed easily in [-SQL and are rathgslieom
cated (or not even possible) in SQL.

We then formalize a clean fragment of I-SQL, World-set Alge-
bra, and show its fundamental properties, like generiaity eon-
servativity over relational algebra. From the more prattgide
of world-set algebra, we give a set of equivalences and stoyw h
they can be used to produce mofeaent logical query plans. We
also investigate the relationship between world-set algahd re-
lational algebra and give a translation of any world-setrygte a
relational query over an inlined representation of woetss For
the case of world-set algebra queries that map between etenpl
databases, we show how the general translation scheme @an be
proved so that the generated relational queries becomgeshor

One future research direction is the implementation of -9
top of a relational engine. In some sense, the optimizedlation
of complete-to-complete queries to relational queries awide
one way to evaluate such queries in any relational databvagee
We believe, however, that query plans with dedicated playsip-
erators for our I-SQL constructs should perform much bettan
the default relational algebra query over the (nonsuccarad thus
in practice too large) inlined representation. Anotheeagsh di-
rection is to implement I-SQL on top of an existing repreaéon
system for finite world-sets, like databases with lineagkwrcer-
tainty [8] or world-set decompositions [4].
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