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Abstract. We study database application programming interfaces for
uncertain and probabilistic databases and present a programming model
that is independent of representation details. Conceptually, we use the
possible worlds semantics, and programs are independently evaluated in
each world. We study a class of programs that appear to the user as if
they are running in a single world rather than on a set of possible worlds.
We present an algorithm for efficiently verifying this property. We discuss
how updates can be implemented in uncertain database management
systems, and propose techniques for optimizing database programs.

1 Introduction

In the last years there has been a profusion of research on managing uncertain
and probabilistic data in different application scenarios such as Web information
extraction, data cleaning, and tracking moving objects [1, 3,4, 8-10]. Research on
managing uncertainty has been focused on space-efficient models for representing
uncertain information, query languages and efficient query processing, as well as
confidence computation and ranking. Several systems for managing uncertain
data are being developed (see e.g. [4,3,1]). However, no mature systems have
evolved that support application development for uncertain databases.

A widely used approach to managing uncertain data is the possible worlds
model. For example, in a moving object tracking scenario there can be several
possible guesses for the identity of an object where the exact one is not known
for sure. Each such option corresponds to one possible world. Under the possible
worlds semantics, a query on an uncertain database is conceptually evaluated on
each world independently, and the result is added to that world. In the special
case when the possible world-set consists of a single world, this semantics coin-
cides with the standard query evaluation semantics. In many scenarios however
the set of possible worlds can be very large, or even infinite. Systems for man-
aging uncertain data usually employ a compact representation for storing the
possible worlds: e.g. MystiQ uses the tuple-independence model, Trio’s represen-
tation is called ULDBs (databases with uncertainty and lineage), and MayBMS
uses U-relations. All these systems rewrite queries on the set of possible worlds
into queries on the representation.

An important component missing from current systems for managing un-
certain data is the ability to write database application programs that access
and update data through an application programming interface (API). Current
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Fig. 1. Levels of abstraction provided by a Database Management System.

systems either allow only batch execution of SQL-like queries on the uncertain
database with no user interaction, or have a representation-dependent program-
ming model that requires knowledge of system-specific implementation details.

Traditional database management systems abstract away the physical details
of how the data is stored. External applications interact with the database by
formulating queries and updates on the logical schema, which are then translated
into operations on the physical storage structures on disk. Figure 1 shows an
architecture of a traditional DBMS, and one of a DBMS for uncertain data.
Compared to traditional DBMSs, systems for managing uncertain data need to
deal with two additional levels of abstraction, the representation system and the
possible worlds model.

To demonstrate some of the challenges of designing an API for uncertain
databases, consider the following example (essentially from [3]). Figure 2 shows
an example of a police database containing reports on stolen cars. Due to con-
flicting or missing information, several instances are possible, as shown in the
figure. An application that manages such data should provide users with the
ability to update or insert new evidence regarding observed objects, execute
queries, or apply expert knowledge to resolve inconsistency.

The following program allows to enter new evidence about a stolen car. In
case the car already exists in the database, and the information about it matches
the user’s input, the program increments the number of witnesses; otherwise a
new entry is inserted into the database.

read("Enter license plate:", $x);
if (exists select * from cars where num=$x){ // modify existing entry
for($t in select * from cars where num=$x){
write("Current entry: $t");
read("New location and color:", $loc,$color);
if (exists select * from cars where num=$x and loc=$loc and color=$color)



Cars!|num color loc wit Cars'|num color loc wit

1 |S87 red MN 1 gzﬁgﬁzyaﬁfcéfiMN 1 |S87 red MN 2
2 |M34 blue PA 1 - 2 |M34 blue PA 1

Cars?|num color loc wit
Current entry: S87 red TX 1 |S87 red TX 1
New location and color: _ 2 |M34 blue MD 1
3 |S87 red MN 1

Cars?|num color loc wit
1 [S87 red TX 1
2 |M34 blue MD 1

Cars®|num color loc wit
No entry found for S87 1 |B87 red TX 1
Enter location and color: _ 2 |M34 blue PA 1
3 |S87 red MN 1

Carsg"num color loc wit
1 |B87 red TX 1
2 |M34 blue PA 1

Cars*|num color loc wit

Carsﬂnum color loc wit

T |B87 red TX 1 |No cnry found for 587 1 |B87 red TX 1
2 |M34 blue MD 1 Enter location and color: _ 2 |M34 blue MD 1
h 3 |S87 red MN 1

(2) (b) (c)

Fig. 2. Executing programs on uncertain databases: (a) set of possible worlds reporting
information on stolen cars; (b) output of the program in each of the worlds of (a); (c)
result of running the program on the world-set of (a).

update cars set wit=wit+l where num=$x and loc=$loc and color=$color;
else
insert into cars values($x,$loc,$color,1);
}
}
else { // entry does not exist
write("No entry found for $x");
read("Enter location and color:", $loc, $color);
insert into cars values($x,$loc,$color,1);

The program makes sense in the case of certain databases and is straight-
forward to execute. What is different in the presence of uncertainty? Consider
the world-set in Figure 2 (a). The four worlds differ in the license plate number
specified for car 1, and the reported location for cars 1 and 2. If the user enters
S87 for the license plate number, in worlds 1 and 2 the car already exists in
the database, so its entry will be shown to the user. In worlds 3 and 4 the car
is not found and the user will receive a message reporting that. As shown in
Figure 2 (b), there are three different outputs for the four worlds of Figure 2 (a),
and the meaning of the expected input is also different. Figure 2 (¢) shows the
outcome of the program on each of the worlds if the user specifies S57, MN, red
as input in each of the worlds. In world 1 the witness count for S57 is increased
to 2, and in the remaining worlds a new tuple is added to the database.

Clearly, we cannot expect users to supply input for each world individually,
or to deal with different output produced in each of the worlds. Such programs
are not only unintuitive to the user: they are also infeasible to implement as in



practice the number of possible worlds can be prohibitively large. One solution to
this problem is to introduce an intermediate level between the database and the
user that verifies that the messages (output and input) that are passed between
the database and the user are the same in all worlds, and collapses those into
one. This has the advantage of hiding the uncertain nature of the data from the
users, allowing them to work with the database as if it were complete. We say
that in this case the program is observationally deterministic. A second approach
is to only allow programs that are guaranteed to have the same behavior on all
worlds, and to verify observational determinism in a static manner. For example,
the above program can be modified to first request all evidence information, and
then carry out the update in each of the worlds by either updating existing tuples
or inserting new ones, without disclosing this different behavior to the user.

The second major challenge in API development for uncertain databases is
to map programs that are conceptually executed on each world individually
into programs on the representation. There have been studies on how to do
this efficiently for queries. Programs are more complex as they provide richer
structure such as updates, looping and branching constructs and the flow of
execution can be different in each world. We take the approach of first pushing
as much of the program code as possible into (set-at-a-time) queries and updates,
which we then map to queries and updates on representations.

In this paper we present novel techniques for database programming. The
contributions of this paper are:

— Updates. Updating uncertain databases presents a challenge as often a com-
pressed representation is used that stores a single copy of a tuple appearing
in multiple worlds. Updates can require decompressing the representation
to allow changing a tuple in some worlds only. We discuss techniques for
implementing updates on several recent representation systems, such as the
U-relations of MayBMS [1]. Our techniques preserve compactness of the rep-
resentation despite the need for decompression.

— Programming model. We describe a programming model for developing
applications for uncertain databases where users can interactively execute
queries and updates on the database and process the results in a high-level
language. Our model is independent of the underlying representation. For
that we adopt the possible worlds semantics. Conceptually, programs run on
all worlds in parallel.

— Observational determinism. We study a class of programs whose be-
havior on uncertain databases is indistinguishable to the user from that on
complete/certain databases, without restricting the way programs behave
in the background where no user interaction occurs. We call such programs
observationally deterministic and argue that this property is crucial if we
want to design efficient programs for uncertain databases with intuitive user-
friendly interfaces. We also devise an efficient algorithm for deciding statically
whether a program satisfies observational determinism. The underlying idea
consists of examining the output sent to the user in terms of the query that
produces it and checking whether the query can return uncertain results. As
a side effect we obtain an efficient heuristic for deciding tuple g-certainty,



i.e. whether a tuple is certain in the answer to a query. The heuristic in-
volves positive relational algebra operators only, which are often efficiently
implementable on succinct representations.

— Optimizing database programs. Avoiding iteration over the possible
worlds is crucial for achieving efficient execution. For that we need to map
programs with update operations into ones that execute in bulk on all worlds.
However, it is not clear how to deal with branching and for-loops in the pro-
grams, as the control flow can be very different in each world. For that we
provide rewrite rules that map nested update programs into sequences of
simple update programs that execute on all worlds. These results, while im-
portant in the context of uncertain databases, are relevant also in the case
of certain databases.

2 Database Programming

A database programming model enables the development of applications that
access and manipulate data stored in a database from a high-level programming
language. A database program connects to a DBMS and can execute update
commands, or issue queries and obtain cursors to iterate over the result. APIs
provide means of accessing the data without knowing how the data is stored
on disk, and often allow for porting programs between different database man-
agement systems. We next propose and study the properties of a programming
model for uncertain data.

2.1 Queries and updates on uncertain DBMSs

We consider queries and updates specified using the SQL select, insert, update
and delete statements. We take the possible worlds semantics to define the mean-
ing of queries and updates. A query, applied on a set of possible worlds extends
each world with the result of the query in that world. Similarly, an update op-
eration is executed on each world of the world-set. For querying we will also
consider the operator conf for computing the confidence of the possible tuples
in the result of a query. The confidence of a tuple t is defined as the sum of the
probabilities of all worlds containing t. We also consider two special cases of this
operator: possible, which computes all possible tuples (tuples with confidence
greater than 0), and certain, which returns the tuples appearing in all possible
worlds (i.e., confidence = 1), see e.g. [2].

There have been a number of studies on how to evaluate queries on uncertain
databases by translating them into queries on the representation, see e.g. [6, 3,
1]. None of the present works however has considered the problem of applying
updates on uncertain databases. As with querying, we would like to execute
updates on the representation rather than iterate over the possible worlds.

Most systems for managing uncertain data use a compact representation for
storing large sets of worlds. This usually means that tuple or attribute values
that appear in several worlds are stored only once, with additional constraints



that describe to which worlds they belong. Correlations are represented by means
of lineage in Trio, using world-set descriptors in MayBMS, and with graphical
models in [9].
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Fig. 3. Updating uncertain databases: (a) U-relational database; (b) relation U; after
applying the update of Example 1.

We will use as running example the U-relational database of Figure 3 (a)
representing a relation R(A, B) in an uncertain database. It consists of two
vertical partitions Uy (Dq, TID, A) and Uy (D;, TID, B) containing the possible
values for the A and the B attribute of R, respectively. The column D; in the
two relations is used to specify correlations of the possible values. For example
t1.A has a value of 1 whenever the variable 7 is mapped to 1 (which happens
with probability 0.2), and with probability 0.8 has value 2 whenever zy — 2. In
this way the U-relational database represents compactly eight possible worlds,
one for each of the possible combinations of values for the variables x1, z2, y1, yo.

Ezample 1. Let T1 be an operation that updates R:
T1: update R set A = 8 where B = 1;

This operation will update tuple ¢; for the worlds where B = 1. These worlds
are constructed by taking y; to be 1. However, the current representation does
not capture the desired correlation; therefore we need to create two copies of
each of the alternatives of tuple ¢; in U; for the cases where it has to be updated
or not. To compute the result we have to undo part of the decomposition, as
shown in Figure 3 (b). O

Intuitively, each update operation consists of two steps: in the first one we
create copies of those tuples that will need to be updated in some worlds only,
and in the second step we execute the update. The first step only changes the
representation, but not the world-set itself. We only decompress when it is nec-
essary — when in some world the attribute value needs to be updated, and we
do not merge in tuples that will not be updated in any world.

2.2 Programming interface

The programming language we will use is summarized in Table 1. As in the clas-
sical setting of certain databases, a database program is a sequence of statements



construct meaning

update statements|Execution of SQL create table, insert, update and delete queries.
The query statements can be constructed using constants, values
read from the database or user-supplied values.

read($x,%zin); Read user input into variable $z;,. The user is displayed a prompt
$x.

write($x); User output operation. The program can output messages to the
user, including values stored in tuple variables.

+,-,%,/ Arithmetic operations on variables and constants.

for($t in Q){P} |Iterate over the result of a query @) and execute the nested pro-
gram P for each binding of the tuple variable $t. The query lan-
guage we consider is an extension of SQL with the keywords pos-
sible and certain, that compute the tuples appearing in some,
or all worlds, respectively, and the construct conf returning the
confidence of a tuple in the result of a query.

Table 1. Language constructs for database programming.

that can execute select and update commands on the database, iterate over query
results and provide user interaction through read and write commands.

How are programs executed on an uncertain database? We strive for a model
for database programs for uncertain databases that satisfies the following desider-
ata. First, the execution model should be independent of the underlying uncer-
tain database management system. This is important as it will allow porting of
programs between different uncertain DBMSs. Second, programs should allow
for efficient execution. Third, despite the fact that data is uncertain, programs
should have intuitive user interfaces and should not expect users of the program
to be aware of the uncertainty.

To satisfy the first requirement, we naturally adopt the possible worlds se-
mantics that has been the standard semantics used to define the meaning of
queries on uncertain databases. According to this, the program is executed in all
worlds in parallel; within a world it behaves in the same way as on a complete
database; all updates the program makes are applied to the current world. Of
course, a direct implementation of this semantics is unrealistic as there are far
too many worlds that can be represented by an uncertain database. In the con-
text of querying several works have studied [6, 1, 3] how to avoid iterating over
the possible worlds and evaluate a query directly on the representation. While
for queries specified in a relational query language it is often possible to find
an efficient translation of the query into one on the representation, a database
programming language provides richer capabilities, such as executing updates,
branching and user interaction that complicate the situation. In the next sections
we study the implications of the requirements specified above. We will study cri-
teria for programs to have an observationally deterministic behavior and will
provide algorithms for optimizing database programs for set-based execution.



3 Optimizing database programs

The programming model of Section 2 is very powerful and allows for the writing
of interesting but also potentially infeasible programs that access the database.
We defined the semantics of a database program on uncertain databases to be
the one where the program is executed on all worlds in parallel. A direct imple-
mentation of this semantics is not possible as uncertain DMBSs often represent
compactly a large number of possible worlds. We would therefore like to execute
programs in bulk on all worlds at the same time.

Previous work has studied how to translate queries on world-sets into ones
on the representation, and in Section 2 we have seen how to do this for updates
as well. A database program has richer constructs such as branching and loops
and it is not clear how to map those to operations on the representation, as the
flow of execution can be different on each world of the world-set. For that we will
study techniques for unnesting programs, i.e. mapping programs to a sequence of
read and write operations with no branching and loops. Another major issue is
that a database program allows users to interact with the database via the read()
and write() commands. This can cause problems whenever the user is returned
output that is not the same in all worlds or when user is asked to supply differ-
ent input in each world. Given that uncertain DBMSs often store an exponential
number of worlds, such behavior is clearly unacceptable. We will therefore re-
quire that the uncertain database be observationally indistinguishable from a
complete database (i.e. single-world database). We word this property observa-
tional determinism: a program is called observationally deterministic if the user
interaction in terms of input and output of the program in one world is identical
to the user interaction in all other worlds of the world-set.

We will first treat the problems of checking for observational determinism
and of unnesting updates in isolation. We will start by discussing a method
for statically checking whether a given program is observationally deterministic
using a technique called c-indicators. We will then present rules that map up-
date programs to linear sequences of update statements. The techniques from
Sections 3.2 and 3.1 will be then used as building blocks of an algorithm that
optimizes a database program containing both user interaction and updates.

3.1 Checking observational determinism

A program P is not observationally deterministic whenever it involves different
user interaction in each world of the world-set. Let z() be a user interaction
operation that appears in P and let Q be the query that binds the values for
z(). Then we can reason about whether () is the same in all worlds by checking
whether the query Q produces only certain results. We illustrate the idea with
the following examples.

Ezample 2. Consider for example an uncertain database that stores data as the
or-set relation of Figure 4. Some fields of the table contain sets, the semantics
being that one of the values in the set is the correct one for the respective
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Fig. 4. Or-set relation

field. In our example the table represents 3 * 2 * 3 = 18 possible worlds over
schema R(A, B,C), one for each combination of values in the or-sets. Consider
the following three programs that run on R':

P1: for($t in "select * from R") write($t);
P2: for($t in "select possible * from R") write($t);
P3: for($t in select certain * from R where A=1
union select * from R where A <> 1")
if($t.A=1) write($t);

When executing P1 we run into the problem that the output is not the same in all
worlds. On the other hand P2 is observationally deterministic, as in each world
it outputs the possible tuples, i.e. the tuples that appear in at least one world.
For our example the program will print 10 tuples in total: the different versions
of t1,ts and t3. Deciding whether a program is observationally deterministic is
not always simple. Consider P3: If we trace the origin of the tuples that are
output by this program, we will see that these are exactly the certain tuples
with A-value 1 in R. Thus the program satisfies observational determinism. [

We next present our algorithm for deciding whether a program is observa-
tionally deterministic. We first construct a query corresponding to each user
interaction (UT) operation in the program, and we couple this with a procedure
for deciding whether a query produces only certain results.

Let us suppose that we have annotated the input database and we know
which tuples are certain and which are not. More precisely, for each input relation
R, we think of R as consisting of two disjoint partitions R = R U R", where
R¢ contains the certain tuples of R, and R": the tuples that appear only in
some worlds. R¢ and R* can be computed with the queries R® = certain(R)
and R* = R — certain(R). According to our semantics both queries R® and R*
produce one result for each world, where the result of R¢ is the same in all
worlds, and the one of R* is potentially different.

It is interesting to see how the annotations propagate from the input into
the results of querying. For example a selection applied on a relation R can only
discard tuples, but cannot make any uncertain tuples certain, and vice versa: no
certain tuple will become uncertain. A ’possible’ query will make all tuples from
the input certain in the result since every world will contain those tuples.

Figure 5 defines an operator [-] that takes a query expressed in positive
relational algebra extended with the confidence computation predicate and its
two special cases: possible and certain, and returns a pair of queries (Q°, Q%),

! While the programs are somewhat artificial, they are simple enough and help demon-
strate the challenges when deciding whether a program is observationally determin-
istic.
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Let R — relation name, ¢ — boolean condition
Q,Q1, Q2 — queries in RAT U {conf,possible,certain}

[R] := (R, R")

[possible(Q)] :
[certain(Q)] :

QI UpOSSlble(ﬂQ]] ), 0)
QI

[ (Q)] = (mu ([QI°), 7u ([Q]"))
[o6(Q)] := (04([Q]), 70 ([Q]"))
[Q1 >y Q2] := ([Q1]° 6 [Q2]°, [@1]" < [Q2]" U [Q1]° by [Q2]" U [@1]° < [Q2]")
[Q:1UQ2] == ([Q:]° U [Q:]" [@:]" U [Q:2]%)
[conf(Q)] := (
(
(

[
[
[Q]° U possible([Q]"), V)
[
[

Fig. 5. Propagation of certainty during querying and update operations.

whose components compute the certain and the uncertain tuples in the result,
respectively. This construction is conservative in the sense that it produces cor-
rect results but can omit some on particular inputs. This is the case for queries
containing either a projection or a union operation. For example if we apply the
projection w¢(R) on the world-set represented as the or-set relation of Figure 4,
all tuples in the result are certain although the only certain tuple in the input
was to. Nevertheless, we shall see that for performing static checks, no other
construction will produce better results and will be correct on all inputs.

Ezxample 3. The query Q = ga=1(certain(ca=1(R)) Uoaxi(R)) corresponds to
the write statement of P3 of Example 2. Applying the construction of Figure 5
yields the pair of queries (0 4=1(R), 0a=1n421(R")). Independent of the actual
instance of the database, we can conclude that P3 is observationally determinis-
tic, as the query defining the uncertain partition of the result has an unsatisfiable
selection condition and will always return the empty set as result. O

Using these ideas we can construct a procedure, called c-indicator, that “cer-
tifies” tuples that are certain in the result of a query.

Ideally we would like to design c-indicators that do not require evaluation of
the whole query and then checking which tuples are certain in the output, but
instead try to predict this information based on the query and possibly on some
constraints that hold on the data. We can measure the quality of a c-indicator
based on two criteria. The first one asks for soundness of the c-indicator, that
is, that no false positives are produced. The second condition requires that the
c-indicator is as close as possible in predicting which tuples are certain in the
output. We formalize these requirements below.

Definition 1. We say that a c-indicator C is sound if for all queries ), databases
A and tuples t, if C(Q)(t,A) = true, then ¢ is certain in Q(A). A c-indicator
C dominates another c-indicator C' (C D C’) iff for all tuples ¢, queries @ and
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Algorithm 1: Checking observational determinism

Input: P: program
Output: true or false
foreach UI operation z() in P do
Q< be the query corresponding to x();
if [Q=]" is satisfiable then
| return false;
end

end
return true;

databases A, if C'(Q)(t,A) = true, then C(Q)(¢t,A) = true, and there is a
tuple ¢ such that C(Q)(¢, A) = true and C'(Q)(t, A) = false. This means that C
identifies strictly more tuples as being certain than C’. A c-indicator C is maximal
iff there is no other c-indicator C’ for the same query @ such that C' O C.

There are two obvious solutions to the problem of constructing a c-indicator
which is sound. The first one is a procedure that rejects all tuples and is therefore
trivially guaranteed to produce no false positives. The second way is to enclose
the input query ) in a ’certain’ construct and check whether the condition
t € certain(Q) is satisfied. This c-indicator will not only be sound but maximal
as well. However, deciding tuple Q-certainty, that is, whether a tuple is certain
in the result of a query is coNP-hard on succinct representation systems [6].
Succinct representation systems are such that can represent an exponentially
large, or even infinite set of worlds. For example, the tuple-independent model
of [4] can represent 2™ possible worlds using n tuples only. Ideally we would like to
have c-indicators that use relational algebra only. We will relax this condition to
allow querying certain tuples in the input relations. Intuitively, we can annotate
the certain tuples once at the beginning, and then incrementally maintain the
annotations when the database is updated.

Theorem 1. For each query Q expressed in positive relational algebra with pos-
sible and certain there exists a c-indicator using relational algebra operators only
which is sound and maximal when we assume no knowledge about the data.

Proof (sketch). Using the construction [-] of Figure 5, we define a c-indicator
CP" (pr stands for propagating uncertainty, the idea used in defining [-]) as the
following test: CP"(Q)(t, A) := {t € [Q]°(A)}.

CP" is sound and maximal. Let A be an uncertain database, Q be a query
expressed in positive relational algebra with possible and certain over the schema
of A and ¢ be a tuple in the schema of ). By induction on the structure of the
query @ we show that if ¢t € [Q]°(A), then t is certain in Q(A). On the other
hand, if ¢ ¢ [Q]°(A), then there is a witness world-set B such that ¢ is not
possible in Q(B). If @ is a positive relational algebra query, we can take as
witness the world-set By containing one world where all relations are empty.

Finally, using the idea of c-indicators we construct a procedure that auto-
matically decides whether a given program is observationally deterministic or
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not on all inputs. For each UT operation z() of the given program P we compute
the query @, that corresponds to z() by composing the for-loop statements that
are ancestors of z() in the parse tree of P. Algorithm 1 rewrites @, using the
c-indicator rules of Figure 5 and checks whether the uncertain partition of that
query is satisfiable.

Theorem 2. Algorithm 1 rejects all programs that are not observationally de-
terministic.

3.2 Unnesting updates

We next study how an update program can be turned into a sequence of update
statements without for-loops or if-conditions.

Ezxample 4. Consider a modification of the program from Section 1 that satisfies
observational determinism:

read("Enter license plate, location and color:", $x,$loc,$col);
if (select * from cars where num=$x != NULL) {
if (select * from cars where num=%$x and loc=$loc and color=$col '= NULL)
update cars set wit=wit+l where num=$x and loc=%$loc and color=$col;
else insert into cars values($x,$loc,$col,1);
}

else insert into cars values ($x,$loc,$col,1);

We can linearize the program by mapping the if-else block to the following
three update statements:

update cars set wit=wit+1

where num=$x and loc=$loc and color=$col;

insert into cars select $x,$loc,$col,1

where not exists (select * from cars where num=$x and loc=$loc and
color=$col) and exists (select * from cars where num=%$x);

insert into cars select $x,$loc,$col,1

where not exists (select * from cars where num=9%$x);

This program is equivalent to the first one. Using the techniques of Section 2 we
can translate it into a program on the representation, which then executes on
all worlds at the same time. O

As seen in the above example we can often push if-conditions into the where-
clause of an update operation. For this to work however we need to restrict the
update such that it does not interfere with subsequent operations necessary to
evaluate a query. For example if we exchange the first and the second update
statement of the second program we will obtain a different result, although
exchanging the if and the else block of the first program does not change its
semantics.

We next formalize rules for unnesting update programs. We consider a some-
what simplified version of the API from Section 2, where the control structures
are only for-loops and updates are of the following kind. Let R be a relation,
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Let @ be a query, Ui, ..., U, be update operations, and Q4 be a semi-join query on R

(Dfor($t in Q)(A—7¢| Qg) -
(A—7¢|Qu), where Qy ={r|r € RAt € QA ¢'} and ¢ is obtained from ¢
by replacing all occurrences of $t by ¢

(2) for($t in Q){U1;Us;...;Un}t
for($t in Q){Ux1; }; for($t in Q){Uz2;...;Un; }

Fig. 6. Rules for unnesting update programs.

{A41,..., A} Csch(R), c1,...,c, be constants and ¢ be a condition involving
constants and attributes of R. We will restrict ourselves to updates that add
tuples of constant values, or change tuples fields to constant values. We consider
updates of the form:

’ update R set A = where ¢; ‘

where A = ¢ is a shortcut for A1 =ci,...,4m = cm.

Let ¢ denote the semi-join query returning the tuples of R that need to be
updated. We will use the notation U = (A + ¢ | Q4) for update operations.

To define rules for optimizing programs we rely on the independence of
queries from the updates:

Definition 2. Let @) be a query and U be an update operation. For a database
A let U(A) denote the database obtained as a result of executing U on A. We
say that @ is independent of U iff for any input database A Q(A) = Q(U(A)).
Similarly, we say that update U; is independent of another update U, if for any
input database A : Uy (A) = Uy (Uz(A)).

Figure 6 shows two rewrite rules that can be applied iteratively to optimize
a database program. Recall that SQL updates have transactional semantics:
changes made by update U are not visible to the update condition before the
end of the update operation. However, if the update is nested within a for-loop,
U will in general be executed multiple times - once for each result tuple returned
by Q. Thus changes made by U will be visible in subsequent loop iterations. We
next discuss when these rewrite rules produce equivalent programs.

Lemma 1. (a) If Q4 is independent of the update U = (A ¢ | Qg), then rule
(1) preserves equivalence.

(b) If Q4 is independent of Uy, Uy is independent of U;,2 < i <n and U; is
independent of Uy,2 < i < mn, then rule (2) preserves equivalence.

Proof. (a) Let P and P’ denote the programs on the lhs and rhs of rule (1),
respectively. Let 7 € R be a tuple that is updated in P and let this occur when
iterating over tuple ¢ from Q. Then r € Qy)(A’) where ¢(t) is the condition
obtained by substituting the variable $¢ in ¢ with the values from ¢ and A’ is
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the state of the database at the beginning of that iteration of the loop. Since
Q4 is independent of U, Q4(A") = Q4(U(A")) = Q4(A), where A is the initial
database before the start of P. But then this is equivalent to r € Q4 (A), where
Qy ={r e RAt € QA¢'} is the query on the rhs of Rule (1). Thus r is also
updated in P’, and P and P’ are equivalent.

(b) Let P and P’ be the programs on the lhs and rhs of Rule (2), respectively.
Suppose U; is updating relation R; with Ry, ..., R, not necessarily disjoint. Since
Q is independent of U;, each loop in P’ performs exactly the same iterations as
the loop in P. In addition, since U is independent of Us, ..., U, a tuple r € R
is updated by Uy in P iff it is updated by Uy in P’. Similarly, since each Uj;,
2 < j < nis independent of Uy, a tuple » € R; is updated by U; in P iff it is
updated by Uj in P’.

The correctness proof for Rule (2) does not use the fact that attribute val-
ues can be changed to constants only. Under the independence assumptions of
Lemma 1 the rule remains correct when updates can change fields to arbitrary
values, not only constants. We next discuss the implications for Rule (1) of al-
lowing variables to appear in the set list. Consider for example the following
update block, where z; is either a constant or a reference of the form $t.A:

for($t in @){update R set Ay = x1,..., Ay, = z,, where ¢}

In such an update block it is possible that the same field is set to two different

values in two different loop iterations. Hence the final value of the field will
depend on the order of reading the for-loop tuples, which is often undesirable.
We require that this never happens, that is, a field is always set to the same
value or is left unchanged. We can then generalize rule (1) for the case where
variables can appear in the set-clause of an update statement.
Checking independence of queries from updates. The problem of sta-
tically deciding whether a query is independent from an insertion or deletion
update has been studied in [5] and [7]. The proposed solution consists in check-
ing equivalence of two programs: one that computes the query answer before the
update, and one after the update. In our setting we are also considering updates
specified with an SQL update statement. Since those can be simulated with a
pair of insert/delete, one can reduce the problem of deciding independence from
a general update statement to independence of insertion and deletions. Note
however that for Rule 1 we need to check independence of the query correspond-
ing to the where clause of an update statement from the update itself. Thus
deciding independence at the level of inserts and deletes will be unnecessarily
restrictive, as it will always return a negative answer. We can use a simpler but
more precise condition to check update independence, namely: if no attribute
appears both on the left side of the set-clause and in the where-clause of an
update statement, then the update query is independent of the update.

3.3 Rewriting database programs for bulk execution

We will consider database programs where both updates and user interaction
commands can be nested. Let P be the parse tree for a program, where P’s
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Algorithm 2: Optimize programs

Input: P: program
Output: P’: program equivalent to P that can be executed on all worlds or
FAIL.
foreach mazimal subtree Py of P with no Ul operations do
Let L:=unnest(Fp);
return 'FAIL’ if Py cannot be unnested;
Replace Py by L in P;
end
return 'FAIL’ if P is not observationally deterministic;
Otherwise return P;

nodes are sequences of for-loops, update statements and user interaction (UT)
commands. Algorithm 2 shows an algorithm that optimizes a program for bulk
execution on all worlds, or returns 'FAIL’ if no optimization is found. On success
the algorithm returns a program that satisfies the following two conditions:

1. All update operations are on the top-level or are nested within loops that
operate on certain query results only.
2. The program is observationally deterministic.

The algorithm considers all maximal rooted subtrees of the parse tree for P that
do not contain any UI operations. For those the algorithm applies the unnesting
techniques (presented in the previous subsection) to turn them into flat sequences
of update statements. Let P’ be the program that results from this step. If we
can verify that P’ is observationally deterministic, then P’ is the result of the
optimization procedure. Finally, we can state our main result:

Theorem 3. If Algorithm 2 returns program P’', P’ is equivalent to the input
program P, satisfies observational determinism, and all update operations are
either on the top level or are nested in for-loops that iterate over certain results.
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