MayBMS - A System for Managing Large Amounts of Probabilistic Data

Lyublena Antova

Cornell University

February 18, 2009, A-Exam

Motivation: census data

Enter the information from census forms like these into a database:

Smith's SSN?
Brown's marital status?
How to make sure SSN is unique?

R	SSN	N	M
t_{1}	null	Smith	null
t_{2}	null	Brown	null

Motivation: web information extraction

Automatic extraction of structured data from the web:

Volkswagen Cars For Sale			
	Volkswagen : Rabbit Volkswagen 2008 VW	\$10,750	
	Rabbit		
	2008 Volkswagen Rabbit, 184 miles, Red Location: Carmel, IN		
	Source: visint on eBay, 1 week ago		
	Details \| Share	Report	
	2008 Volkswagen Rabbit	\$10,750	
	2008 Volkswagen Rabbit, 183 miles		
	Location: Carmel, IN		
	Details \| Share	Report	
	2005 Volkswagen Passat	\$10,999	
	2005 Volkswagen Passat, 8,075 miles Location: Pittsford, NY		
	Source: Auction Piranha, 4 days ago		

Motivation: uncertain data

Data integration:

DB1:		DB2:	
John	\$1200	John	\$4000

John	$\$ 1200$
John	$\$ 4000$

Scientific data:

Sensor networks:

ID	Time	Temp
s1	$7: 00$	25
s1	$8: 00$	27
s2	$7: 00$	25

Decision support queries:

Given sales and competitors data and a number of possible solutions which is the one that maximizes the expected profit

Managing uncertain data: motivation

- Uncertainty present in many real-world applications: information extraction, data integration, scientific data,...
- Limited support for managing uncertain data in traditional database management systems (DBMS)
- Other solutions typically not expressive or not scalable enough
- Goal of the MayBMS project: create a scalable probabilistic database management system
- Representation system
- Query language
- Updates and transactions
- ...

Outline

(1) Motivation
(2) Representing uncertain information.
(3) Querying uncertain data.

4 Implementation and experimental evaluation.
(5) APIs for Probabilistic Databases

Representing Uncertain Information

Representing uncertain data

Definition

Representation system is a tuple ($\mathbf{T}, r e p$) of a a set of structures \mathbf{T} and a function rep : $\mathbf{T} \rightarrow$ sets of worlds.

Desiderata for a representation system:
(3) Space-efficient storage.
(2) Efficient query processing.
(3) Expressiveness: represent the result of any query.

Representing uncertain data: U-relational databases

$U_{R[S S N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	SSN
	$x \mapsto 1$	t_{1}	185
	$x \mapsto 2$	t_{1}	785
	$y \mapsto 1$	t_{2}	185
	$y \mapsto 2$	t_{2}	186

$U_{R[\text { Name }]}$	TID	N
	t_{1}	Smith
	t_{2}	Brown

$U_{R[M S]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	M
	$v \mapsto 1$	t_{1}	1
	$v \mapsto 2$	t_{1}	2
	$w \mapsto 1$	t_{2}	1
	$w \mapsto 2$	t_{2}	2
	$w \mapsto 3$	t_{2}	3
	$w \mapsto 4$	t_{2}	4

U-relational databases

$U_{R[S S N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	SSN
	$x \mapsto 1$	t_{1}	185
	$x \mapsto 2$	t_{1}	785
	$y \mapsto 1$	t_{2}	185
	$y \mapsto 2$	t_{2}	186
$U_{R[N]}$	TID	N	
	t_{1}	Smith	
	t_{2}	Brown	

W	$\mathrm{~V} \mapsto \mathrm{D}$	P
	$x \mapsto 1$.4
	$x \mapsto 2$.6
	$y \mapsto 1$.7
	$y \mapsto 2$.3
	$v \mapsto 1$.8
	$v \mapsto 2$.2
	$v \mapsto r$	
	$w \mapsto 1$.25
	$w \mapsto 2$.25
	$w \mapsto 3$.25
	$w \mapsto 4$.25

- Table W: discrete independent (random) variables
- U-relations: the schema of each U-relation consists of
- a tuple id column,
- a set of column pairs (Vi, Di) representing variable assignments, and
- a set of value columns.

U-relational databases: semantics (example)

- Pick a valuation θ that assigns a value to each variable.

$U_{R[S S N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	SSN
	$x \mapsto 1$	t_{1}	185
	$x \mapsto 2$	t_{1}	785
	$y \mapsto 1$	t_{2}	185
	$y \mapsto 2$	t_{2}	186

$U_{R[N]}$	TID	N
	$\begin{aligned} & \hline t_{1} \\ & t_{2} \end{aligned}$	Smith Brown
W	$\mathrm{V} \mapsto \mathrm{D}$	P
-	$x \mapsto 1$. 4
	$x \mapsto 2$. 6
	$y \mapsto 1$. 7
	$y \mapsto 2$. 3
	$v \mapsto 1$	\|. 8
	$v \mapsto 2$. 2
	$w \mapsto 1$. 25
	$w \mapsto 2$. 25
	$w \mapsto 3$. 25
	$w \mapsto 4$	\| 25

U-relational databases: semantics (example)

- Select the tuples consistent with θ.

$U_{R[S S N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	SSN
$x \mapsto 1 \quad t_{1} \quad 185$			
	$x \mapsto 2$	t_{1}	785
	$y \mapsto 1$	t_{2}	185
$y \mapsto 2$		t_{2}	186
$\underline{U R[M S]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	M
	$v \mapsto 1$	t_{1}	1
	$v \mapsto 2$	t_{1}	2
	$w \mapsto 1$	t_{2}	1
	$w \mapsto 2$	t_{2}	2
	$w \mapsto 3$	t_{2}	3
	$w \mapsto 4$	t_{2}	4

$\underline{U R[N]}$	TID	N
	t_{1}	Smith Brown
	t_{2}	
W	$\mathrm{V} \mapsto \mathrm{D}$	P
	$x \mapsto 1$. 4
	$x \mapsto 2$. 6
	$y \mapsto 1$. 7
	$y \mapsto 2$. 3
	$v \mapsto 1$. 8
	$v \mapsto 2$. 2
	$w \mapsto 1$. 25
	$w \mapsto 2$. 25
	$w \mapsto 3$	
	$w \mapsto 4$	\| 25

U-relational databases: semantics (example)

- Select the tuples consistent with θ.

U-relational databases: semantics (example)

- Undo the vertical decompositioning by rejoining the partitions.
- Possible world:

- Probability of the world: $0.4 \cdot 0.3 \cdot 0.2 \cdot 0.25=0.006$

Representing correlations in U-relational databases

- SSN is unique:

$U_{R[S S N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	SSN
	$x \mapsto 1$	t_{1}	185
	$x \mapsto 2$	t_{1}	785
	$x \mapsto 3$	t_{1}	785
	$x \mapsto 1$	t_{2}	186
	$x \mapsto 2$	t_{2}	185
	$x \mapsto 3$	t_{2}	186

- No valuation exists that results in both t_{1} and t_{2} having 185 for SSN.

Properties of U-relational databases

Desiderata for a representation system:
(3) Space-efficient storage.

- U-relations can represent compactly an exponential number of possible worlds
- Purely relational
(2) Efficient query processing.
- (next)
(3) Expressiveness: represent the result of any query.
- U-relations are complete for finite sets of possible worlds

Querying Uncertain Data

Possible worlds semantics

- T: probabilistic database.
- Conceptually, evaluate Q on each world
- Find a query \bar{Q} on the representation that produces the representation of the result.

Query evaluation on U-relations

Names of possibly married persons: possible $\left(\pi_{N}\left(\sigma_{M S=2}(R)\right)\right)$

$U_{R[N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	N
	$x \mapsto 1$	t_{1}	Smith
	$y \mapsto 1$	t_{2}	Brown

$U_{R[M S]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	MS
	$x \mapsto 1$	t_{1}	1
	$x \mapsto 2$	t_{1}	2
	$z \mapsto 1$	t_{2}	1
	$z \mapsto 2$	t_{2}	2

Evaluation steps:

Query evaluation on U-relations

Names of possibly married persons: possible $\left(\pi_{N}\left(\sigma_{M S=2}(R)\right)\right)$

$U_{R[N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	N
	$x \mapsto 1$	t_{1}	Smith
	$y \mapsto 1$	t_{2}	Brown

$U_{R[M S]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	MS
	$x \mapsto 1$	t_{1}	1
	$x \mapsto 2$	t_{1}	2
	$z \mapsto 1$	t_{2}	1
	$z \mapsto 2$	t_{2}	2

Evaluation steps:
(3) Merge the U-relations storing the necessary columns

$$
Q=\operatorname{possible}\left(\pi_{N}\left(\sigma_{M S}=2\left(\operatorname{merge}\left(\pi_{N} R, \pi_{M S} R\right)\right)\right)\right.
$$

Query evaluation on U-relations

Names of possibly married persons: possible $\left(\pi_{N}\left(\sigma_{M S=2}(R)\right)\right)$

$U_{R[N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	N
	$x \mapsto 1$	t_{1}	Smith
	$y \mapsto 1$	t_{2}	Brown

$U_{R[M S]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	MS
	$x \mapsto 1$	t_{1}	1
	$x \mapsto 2$	t_{1}	2
	$z \mapsto 1$	t_{2}	1
	$z \mapsto 2$	t_{2}	2

Evaluation steps:
(3) Merge the U-relations storing the necessary columns
$Q=\operatorname{possible}\left(\pi_{N}\left(\sigma_{M S}=2\left(\right.\right.\right.$ merge $\left.\left.\left(\pi_{N} R, \pi_{M S} R\right)\right)\right)$
(2) Rewrite Q on column-stores:
$\left.\operatorname{merge}\left(\pi_{N} R, \pi_{M S} R\right)\right)=U_{R[N]} \bowtie_{\psi \wedge \phi} U_{R[M S]}$

- ψ : do not create inconsistent conditions:

$$
\psi:=\left(U_{R[N]} \cdot V=U_{R[M S]} \cdot V \Rightarrow U_{R[N]} \cdot D=U_{R[M S]} \cdot D\right)
$$

- ϕ : tuple reconstruction:

$$
\phi:=\left(U_{R[N]} \cdot T I D=U R_{[M S]} \cdot T I D\right)
$$

Query evaluation on U-relations

Names of possibly married persons: possible $\left(\pi_{N}\left(\sigma_{M S=2}(R)\right)\right)$

$U_{R[N]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	N
	$x \mapsto 1$	t_{1}	Smith
	$y \mapsto 1$	t_{2}	Brown

$U_{R[M S]}$	$\mathrm{V} \mapsto \mathrm{D}$	TID	MS
	$x \mapsto 2$	t_{1}	2
	$z \mapsto 2$	t_{2}	2

Evaluation steps:
(3) Merge the U-relations storing the necessary columns
$Q=\operatorname{possible}\left(\pi_{N}\left(\sigma_{M S}=2\left(\right.\right.\right.$ merge $\left.\left.\left(\pi_{N} R, \pi_{M S} R\right)\right)\right)$
(2) Rewrite Q on column-stores: $\left.\operatorname{merge}\left(\pi_{N} R, \pi_{M S} R\right)\right)=U_{R[N]} \bowtie_{\psi \wedge \phi} U_{R[M S]}$

- ψ : do not create inconsistent conditions:

$$
\psi:=\left(U_{R[N]} \cdot V=U_{R[M S]} \cdot V \Rightarrow U_{R[N]} \cdot D=U_{R[M S]} \cdot D\right)
$$

- ϕ : tuple reconstruction:

$$
\phi:=\left(U_{R[N]} \cdot T I D=U R_{[M S]} \cdot T I D\right)
$$

Query evaluation on U-relations

Names of possibly married persons: possible $\left(\pi_{N}\left(\sigma_{M S=2}(R)\right)\right)$

$U_{R[N]}$	$\mathrm{V}_{1} \mapsto \mathrm{D}_{1}$	$\mathrm{~V}_{2} \mapsto \mathrm{D}_{2}$	TID	N
	$x \mapsto 1$	$x \mapsto 2$	t_{1}	Smith
	$y \mapsto 1$	$z \mapsto 2$	t_{2}	Brown

Result:

Q	N
	Brown

Evaluating positive relation algebra queries on U-relations

$$
\begin{aligned}
\llbracket R \times S \rrbracket & :=\pi_{\left(U_{R} \cdot \overline{V D} \cup U_{S} \cdot \overline{V D}\right) \rightarrow \overline{V D}, \operatorname{sch}(R), \operatorname{sch}(S)} \quad\left(U_{R} \bowtie_{\psi} U_{S}\right) \\
\llbracket \sigma_{\phi} R \rrbracket & :=\sigma_{\phi}\left(U_{R}\right) \\
\llbracket \pi_{\vec{B}} R \rrbracket & :=\pi_{\overline{V D}, \vec{B}}(R) \\
\llbracket R \cup S \rrbracket & :=U_{R} \cup U_{S} \\
\llbracket \operatorname{poss}(R) \rrbracket & :=\pi_{\operatorname{sch}(R)}\left(U_{R}\right)
\end{aligned}
$$

- Simple translation, essentially preserves number of joins
- Can be fed to any relational query optimizer

Query language of MayBMS

- Relational algebra operations
- Confidence computation: conf (Q) for computing tuple confidence values.
- For each tuple that occurs in Q in at least one world, sum up the probabilities of the worlds where it occurs.
- repair-key
- operation for introducing uncertainty.
- turns a possible world into the set of worlds consisting of all possible maximal repairs.

Random graph example

- Random graphs as probabilistic databases
- Consider table Edge(A,B,bit,P):

Edge	A	B	bit	P
e_{10}	1	2	0	0.5
e_{11}	1	2	1	0.5
e_{20}	1	3	0	0.5
e_{21}	1	3	0	0.5

- Pick edges non-deterministically: create table T as (repair key A, B in Edge weight by P);
create table E1 as (select A, B from T where bit $=1$);
create table $E 0$ as (select A, B from T where bit $=0$);

Random graph example

- Random graphs as probabilistic databases
- Consider table Edge(A,B,bit,P):

Edge	A	B	bit	P
e_{10}	1	2	0	0.5
e_{11}	1	2	1	0.5
e_{20}	1	3	0	0.5
e_{21}	1	3	0	0.5

E1	$\mathrm{V} \mapsto \mathrm{D}, \mathrm{P}$	A	B
	$x_{1} \mapsto 1,0.5$	1	2
	$x_{2} \mapsto 1,0.5$	1	3

- Pick edges non-deterministically: create table T as (repair key A, B in Edge weight by P);
create table E1 as (select A, B from T where bit $=1$);
create table E0 as (select A, B from T where bit $=0$);

Random graph example

- U-relational representation of the random graph:

E0	$\mathrm{V} \mapsto \mathrm{D}, \mathrm{P}$	A	B
	$x_{1} \mapsto 0,0.5$	1	2
	$x_{2} \mapsto 0,0.5$	1	3
	$x_{3} \mapsto 0,0.5$	1	4
	$x_{4} \mapsto 0,0.5$	2	3

E1	$\mathrm{V} \mapsto \mathrm{D}, \mathrm{P}$	A	B
	$x_{1} \mapsto 1,0.5$	1	2
	$x_{2} \mapsto 1,0.5$	1	3
	$x_{3} \mapsto 1,0.5$	1	4
	$x_{4} \mapsto 1,0.5$	2	3

- Queries:
- Probability for a triangle in the random graph:
select conf()
from E1 R, E1 S, E1 T
where R.A $=S . B$ and $S . A=T . A$ and $T . B=R . B$ and R.A $!=S . A$ and R.A $!=T . A$ and $S . A!=T . A$;

Random graph example

- U-relational representation of the random graph:

E0	$\mathrm{V} \mapsto \mathrm{D}, \mathrm{P}$	A	B
	$x_{1} \mapsto 0,0.5$	1	2
	$x_{2} \mapsto 0,0.5$	1	3
	$x_{3} \mapsto 0,0.5$	1	4
	$x_{4} \mapsto 0,0.5$	2	3

E1	$\mathrm{V} \mapsto \mathrm{D}, \mathrm{P}$	A	B
	$x_{1} \mapsto 1,0.5$	1	2
	$x_{2} \mapsto 1,0.5$	1	3
	$x_{3} \mapsto 1,0.5$	1	4
	$x_{4} \mapsto 1,0.5$	2	3

- Queries:
- Probability for a triangle in the random graph:
select conf()
from E1 R, E1 S, E1 T
where R.A $=S . B$ and $S . A=T . A$ and $T . B=R . B$
and R.A! $=$ S.A and R.A $!=$ T.A and S.A $!=$ T.A;
- Probability of a 4-clique
- Probability of a path of length 5
- ...

Experimental Evaluation

Experimental evaluation

- Uncertain data generator
- extend TPC-H generator 2.6 to generate U-relational databases
- parameters: scale (s), uncertainty ratio (x), correlation ratio (z), max alternatives per field (8), drop after correlation (0.25)
- Evaluate modified TPC-H queries (without aggregation) on the generated data

Experimental results: storage

S	z	TPC-H dbsize	\#worlds	Rng	size	\#worlds	Rng	dbsize	\#worlds	Rng	dbsize
0.01	0.1	17	$10^{857.076}$	21	82	$10^{7955.30}$	57	85	$10^{79354.1}$	57	114
0.01	0.5	17	$10^{523.031}$	71	82	$10^{4724.56}$	901	88	$10^{46675.6}$	662	139
0.05	0.1	85	$10^{4287.23}$	22	389	$10^{39913.8}$	33	403	10^{396137}	65	547
0.05	0.5	85	$10^{2549.14}$	178	390	$10^{23515.5}$	449	416	10^{232650}	1155	672
0.10	0.1	170	$10^{8606.77}$	27	773	$10^{79889.9}$	49	802	10^{793611}	53	1090
0.10	0.5	170	$10^{5044.65}$	181	776	$10^{46901.8}$	773	826	10^{466038}	924	1339
0.50	0.1	853	$10^{43368.0}$	49	3843	10^{400185}	71	3987	$10^{3.97 e+06}$	85	5427
0.50	0.5	853	$10^{25528.9}$	214	3856	10^{234840}	1832	4012	$10^{2.33 e+06}$	2586	6682
1.00	0.1	1706	$10^{87203.0}$	57	7683	10^{800997}	99	7971	$10^{\text {. } 949+06}$	113	11264
1.00	0.5	1706	$10^{51290.9}$	993	7712	10^{470401}	1675	8228	$10^{4.66 e+06}$	3392	13312
		$x=0.0$	$\mathbf{x}=0.001$			$x=0.01$			$\mathbf{x}=0.1$		

Figure: Total number of worlds, max. number of domain values for a variable (Rng), and size in MB of the U-relational database for each of our settings.

- exponentially more succinct than representing worlds individually
- $10^{8 \cdot 10^{6}}$ worlds need $13 \mathrm{GBs} \approx 8$ times the size of one world (1.4 GBs)
- case $x=0$ is the DB generated by the original TPC-H (without uncertainty)

Experimental results: evaluation of positive relational algebra queries.

Q1:
possible (select o.orderkey, o.orderdate, o.shippriority from customer c, orders o, lineitem I where c .mktsegment $=$ 'BUILDING' and c.custkey $=0 . c u s t k e y ~ a n d ~ o . o r d e r k e y ~=1 . o r d e r k e y ~$ and o.orderdate > '1995-03-15' and I.shipdate < '1995-03-17')

Query 1 z 0.1

Query 1 z 0.5

Figure: Performance of query evaluation for various scale, uncertainty, and correlation.

Experimental results: effect of vertical partitioning.

SPJ query on six relations represented by equivalent

- attribute-level U-relational databases
- tuple-level U-relational databases
- Trios ULDBs (are tuple-level only)

Query 3 z 0.1

- Experiment only possible for small scenarios: 1% uncertainty, lowest correlation factor 0.1, and scale up to 0.1.
- an increase in any of our parameters would create prohibitively large (exponential in the arity of relations) tuple-level representations.

MayBMS

MAYBEN

- Built inside Postgres.
- Representation system: U-relations.
- Query language: an extension of SQL with uncertainty-aware constructs.
- Supports updates.
- Exact and approximate confidence computation.
- Prototype available at http://maybms.sourceforge.net
- Project website: http://www.cs.cornell.edu/bigreddata/maybms/

APIs for Probabilistic Databases

Database APIs for RDBMS

Write programs that involve:

- queries
- updates
- user interaction (input/output)
- ANSI 3-layer model: abstract away from physical representation details.
- What about APIs for uncertain DBMS?

Levels of Abstraction in DBMS

(a) Traditional DBMS
(b) DBMS for uncertain data

Data Independence

Clean reference model for uncertain DBMS:

- Sets of possible worlds.
- Any representation system can be modeled by possible worlds.

- Challenges:
- How to find \bar{P} ?
- What if there is user interaction?

Programs on uncertain databases

```
read("Enter license plate:", $x);
if (exists select * from cars where num=$x){ // modify existing entry
    for($t in select * from cars where num=$x){
        write("Current entry: $t");
        read("New location and color:", $loc,$color);
        if (exists select * from cars where num=$x and loc=$loc and color=$color)
            update cars set wit=wit+1 where num=$x and loc=$loc and color=$color;
        else
            insert into cars values($x,$loc,$color,1);
    }
}
else { // entry does not exist
    write(" No entry found for $x");
    read("Enter location and color:", $loc, $color);
    insert into cars values($x,$loc,$color,1);
}
```


Programs on uncertain databases

Cars 1	num	color	loc	wit
1	S87	red	MN	1
2	M34	blue	PA	1

Cars 1	num	color	loc	wit
1	S87	red	MN	2
2	M34	blue	PA	1

Cars 2	num	color	loc	wit
1	S87	red	TX	1
2	M34	blue	MD	1

Current entry: S87 red TX
New location and color: -

Cars 2	num	color	loc	wit
1	S87	red	TX	1
2	M34	blue	MD	1
3	S87	red	MN	1

Cars 3	num	color	loc	wit		
1	B87	red	TX	1		
2	M34	blue	PA	1	\quad	No entry found for S87
:---						

Cars 4	num	color	loc	wit
1	B87	red	TX	1
2	M34	blue	MD	1

(a) Possible worlds

No entry found for S87
Enter location and color: -

(b) Output of the program

(c) Result of the program

Running possible worlds in "parallel"

- Control flow can be different in each possible world.
- User interaction that is different in each world unintuitive/infeasible
- Our approach:
- Exclude "unsafe" programs (next)
- All other programs: rewrite into bulk queries and updates (set-at-a-time processing for world-sets).

Observational determinism

Definition

A program is called observationally deterministic (o.d.) if its user interaction is identical in all possible worlds.

- User interaction: input and output of the program.
- We consider programs that do not satisfy this property unsound.

Checking observational determinism

- Model relations R as two disjoint sets of tuples, the certain and the uncertain ones, R^{c}, R^{u}.
- Propagate pairs $\left(R^{c}, R^{u}\right)$ conservatively through program operations.
- A program is o.d. if we never output or condition on an uncertain tuple.

Propagation of uncertainty during querying

Let R - relation name, ϕ - boolean condition
Q, Q_{1}, Q_{2} - queries in $R A^{+} \cup\{$ conf $\}$
$\llbracket R \rrbracket:=\left(R^{c}, R^{u}\right)$
$\llbracket \pi u(Q) \rrbracket:=\left(\pi u\left(\llbracket Q \rrbracket^{c}\right), \pi u\left(\llbracket Q \rrbracket^{u}\right)\right)$
$\llbracket \sigma_{\phi}(Q) \rrbracket:=\left(\sigma_{\phi}\left(\llbracket Q \rrbracket^{c}\right), \sigma_{\phi}\left(\llbracket Q \rrbracket^{u}\right)\right)$
$\llbracket Q_{1} \bowtie_{\phi} Q_{2} \rrbracket:=\left(\llbracket Q_{1} \rrbracket^{c} \bowtie_{\phi} \llbracket Q_{2} \rrbracket^{c}\right.$,
$\left.\llbracket Q_{1} \rrbracket^{u} \bowtie_{\phi} \llbracket Q_{2} \rrbracket^{u} \cup \llbracket Q_{1} \rrbracket^{c} \bowtie_{\phi} \llbracket Q_{2} \rrbracket^{u} \cup \llbracket Q_{1} \rrbracket^{c} \bowtie_{\phi} \llbracket Q_{2} \rrbracket^{u}\right)$
$\llbracket Q_{1} \cup Q_{2} \rrbracket:=\left(\llbracket Q_{1} \rrbracket^{c} \cup \llbracket Q_{2} \rrbracket^{c}, \llbracket Q_{1} \rrbracket^{u} \cup \llbracket Q_{2} \rrbracket^{u}\right)$
$\llbracket \operatorname{conf}(Q) \rrbracket:=\left(\llbracket Q \rrbracket^{c} \cup \operatorname{possible}\left(\llbracket Q \rrbracket^{u}\right), \emptyset\right)$

Checking observational determinism

- Example: let $R=\left(R c, \sigma_{A!=1}\left(R_{u}\right)\right)$.
for ($\$ \mathrm{t}$ in select * from R where $\mathrm{A}=1$) write(\$t);
- $Q=\left(\sigma_{A=1}(R c), \sigma_{A=1}\left(\sigma_{A!=1}\left(R_{u}\right)\right)\right)$.

This program is observationally deterministic.

Results

- MayBMS: open-source system for managing probabilistic data
- U-relational databases
- Compact representation of large sets of possible worlds
- Expressive
- Efficient query evaluation
- Query language and API for probabilistic databases.
- Ongoing and future work
- Approximate confidence computation
- Official release of the system

Bibliography

- Representation system and query processing
- L. Antova, T. Jansen. C. Koch, and D. Olteanu. Fast and Simple Relational Processing of Uncertain Data. ICDE 2008
- Query language and API for probabilistic databases.
- L. Antova, C. Koch, and D. Olteanu. From Complete to Incomplete Information and Back. SIGMOD 2007
- L. Antova, C. Koch. On APIs for probabilistic databases. MUD 2008
- Demonstrations
- L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing Incomplete Information with Probabilistic World-Set Decompositions ICDE'07
- L. Antova, C. Koch, and D. Olteanu. Query Language Support for Incomplete Information in the MayBMS System. VLDB 2007
- http://maybms.sourceforge.net

Acknowledgments:

Christoph Koch, Dan Olteanu, Thomas Jansen and Jiewen Huang.

Thanks!

