MayBMS - A System for Managing Large Amounts of Probabilistic Data

Lyublena Antova

Cornell University

February 18, 2009, A-Exam

Motivation: census data

Enter the information from **census** forms like these into a database:

Smith's SSN? Brown's marital status? How to make sure SSN is unique?

R	SSN	N	М
t_1	null	Smith	null
t_2	null	Brown	null

Motivation: web information extraction

Automatic extraction of structured data from the web:

Volkswagen Cars For Sale \$10,750 Volkswagen: Rabbit Volkswagen 2008 VW Rabbit 2008 Volkswagen Rabbit, 184 miles, Red Location: Carmel IN Source: visint on eBay, 1 week ago Details | Share | Report \$10,750 2008 Volkswagen Rabbit 2008 Volkswagen Rabbit, 183 miles Location: Carmel, IN Source: Auction Piranha, 1 week ago Details Share Report \$10,999 2005 Volkswagen Passat 2005 Volkswagen Passat, 8,075 miles Location: Pittsford, NY Source: Auction Piranha, 4 days ago SUTHERLAND AUTO

Motivation: uncertain data

Data integration:

DB1:

DDI.	
John	\$1200

DB2:

DBZ.	
John	\$4000

John \$1200 John \$4000

mutually exclusive

Sensor networks:

ID	Time	Temp
s1	7:00	25
s1	8:00	27
s2	7:00	25

Scientific data:

Decision support queries:

Given sales and competitors data and a number of possible solutions which is the one that maximizes the expected profit

Managing uncertain data: motivation

- Uncertainty present in many real-world applications: information extraction, data integration, scientific data,...
- Limited support for managing uncertain data in traditional database management systems (DBMS)
- Other solutions typically not expressive or not scalable enough
- Goal of the MayBMS project: create a scalable probabilistic database management system
 - Representation system
 - Query language
 - Updates and transactions
 - ...

Outline

- Motivation
- 2 Representing uncertain information.
- Querying uncertain data.
- 4 Implementation and experimental evaluation.
- 5 APIs for Probabilistic Databases

Representing Uncertain Information

Representing uncertain data

Definition

Representation system is a tuple (T, rep) of a a set of structures T and a function $rep : T \rightarrow sets$ of worlds.

Desiderata for a representation system:

- Space-efficient storage.
- Efficient query processing.
- Expressiveness: represent the result of any query.

Representing uncertain data: U-relational databases

$U_{R[SSN]}$	$V \mapsto D$	TID	SSN
	$x \mapsto 1$	t_1	185
	$x \mapsto 2$	t_1	785
	$y\mapsto 1$	t_2	185
	$y \mapsto 2$	t_2	186

$U_{R[Name]}$	TID	N
	t_1	Smith
	t_2	Brown

$U_{R[MS]}$	$V \mapsto D$	TID	М
	<i>v</i> → 1	t_1	1
	$v \mapsto 2$	t_1	2
	$w\mapsto 1$	t_2	1
	$w \mapsto 2$	t_2	2
	$w \mapsto 3$	t_2	3
	$w \mapsto 4$	t_2	4

U-relational databases

$U_{R[SSN]}$	V⊢→D	TID	SSN
	$x \mapsto 1$	t_1	185
	$x \mapsto 2$	t_1	785
	$y\mapsto 1$	t_2	185
	$y \mapsto 2$	t_2	186

$\overline{U_{R[N]}}$	TID	N
	t_1	Smith
	t_2	Brown

$U_{R[MS]}$	V⊢D	TID	М
	$v\mapsto 1$	t_1	1
	$v\mapsto 2$	t_1	2
	$w\mapsto 1$	t_2	1
	$w \mapsto 2$	t_2	2
	$w \mapsto 3$	t_2	3
	$w \mapsto 4$	t_2	4

N	V⊢→D	Р
	$x \mapsto 1$ $x \mapsto 2$.4 .6
	$y \mapsto 1$ $y \mapsto 2$.7 .3
	$v \mapsto 1$ $v \mapsto 2$.8 .2
	$w \mapsto 1$ $w \mapsto 2$ $w \mapsto 3$ $w \mapsto 4$.25 .25 .25 .25

- Table W: discrete independent (random) variables
- U-relations: the schema of each U-relation consists of
 - a tuple id column,
 - a set of column pairs (Vi , Di) representing variable assignments, and
 - a set of value columns.

• Pick a valuation θ that assigns a value to each variable.

$U_{R[SSN]}$	$V \mapsto D$	TID	SSN
	$x \mapsto 1$	t_1	185
	$x \mapsto 2$	t_1	785
	$y\mapsto 1$	t_2	185
	<i>y</i> → 2	t_2	186
$\overline{U_{R[MS]}}$	V⊷D	TID	М
	$v\mapsto 1$	t_1	1
	$v\mapsto 2$	t_1	2
	$w\mapsto 1$	t_2	1
	$w\mapsto 2$	t_2	2
	<i>w</i> → 3	t_2	3
	<i>w</i> → 4	t_2	4
	•	•	•

$U_{R[N]}$	TID	N
	t_1	Smith
	t_2	Brown
W	V⊷D	Р
	$x\mapsto 1$.4
	$x \mapsto 2$.6
	$y\mapsto 1$.7
	$y \mapsto 2$.3
	$v\mapsto 1$.8
	$v\mapsto 2$.2
	$w\mapsto 1$.25
	$w \mapsto 2$.25
	$w \mapsto 3$.25
	$w \mapsto 4$.25

• Select the tuples consistent with θ .

$U_{R[SSN]}$	$V \mapsto D$	TID	SSN
	$x \mapsto 1$	t_1	185
	$x \mapsto 2$	t_1	785
	$y\mapsto 1$	t_2	185
	$y \mapsto 2$	t_2	186
$U_{R[MS]}$	V⊢→D	TID	М
	$v\mapsto 1$	t_1	1
	$v\mapsto 2$	t_1	2
	$w\mapsto 1$	t_2	1
	$w \mapsto 2$	t_2	2
	<i>w</i> → 3	t_2	3
	<i>w</i> → 4	t_2	4

$\overline{U_{R[N]}}$	TID	N
	t_1	Smith
	t_2	Brown
W	V⊢→D	Р
	$x\mapsto 1$.4
	$x \mapsto 2$.6
	$y\mapsto 1$.7

$x \mapsto 1$.4
$x \mapsto 2$.6
$y\mapsto 1$.7
$y \mapsto 2$.3
$v\mapsto 1$.8
$v\mapsto 2$.2
$w\mapsto 1$.25
$w\mapsto 2$.25
$w\mapsto 3$.25
$w\mapsto 4$.25

• Select the tuples consistent with θ .

$U_{R[SSN]}$	V⊷D	TID	SSN
	$x \mapsto 1$	t_1	185
	$y \mapsto 2$	t_2	186
11	I V D	TID	N 4
$U_{R[MS]}$	V⊷D	TID	М
	$v\mapsto 2$	t_1	2
	$w \mapsto 3$	t_2	3

$\overline{U_{R[N]}}$	TID	N
	t_1	Smith
	t_2	Brown

W	V⊷D	Р
	$x \mapsto 1$.4
	$x \mapsto 2$.6
	$y\mapsto 1$.7
	$y \mapsto 2$.3
	$v\mapsto 1$.8
	$v\mapsto 2$.2
	$w\mapsto 1$.25
	$w \mapsto 2$.25
	$w \mapsto 3$.25
	$w \mapsto 4$.25

- Undo the vertical decompositioning by rejoining the partitions.
- Possible world:

R	TID	SSN	N	MS
	t_1	185	Smith	2
	t_2	186	Brown	3

W	V⊢D	Р
	$x \mapsto 1$.4
	$x \mapsto 2$.6
	$y\mapsto 1$.7
	$y \mapsto 2$.3
	$v\mapsto 1$.8
	$v \mapsto 2$.2
	$w\mapsto 1$.25
	$w\mapsto 2$.25
	$w \mapsto 3$.25
	$w\mapsto 4$.25

• Probability of the world: $0.4 \cdot 0.3 \cdot 0.2 \cdot 0.25 = 0.006$

Representing correlations in U-relational databases

• SSN is unique:

$U_{R[SSN]}$	V⊢→D	TID	SSN
	$x \mapsto 1$	t_1	185
	$x \mapsto 2$	t_1	785
	$x \mapsto 3$	t_1	785
	$x\mapsto 1$	t_2	186
	$x \mapsto 2$	t_2	185
	$x \mapsto 3$	t_2	186

• No valuation exists that results in both t_1 and t_2 having 185 for SSN.

Properties of U-relational databases

Desiderata for a representation system:

- Space-efficient storage.
 - U-relations can represent compactly an exponential number of possible worlds
 - Purely relational
- Efficient query processing.
 - (next)
- Expressiveness: represent the result of any query.
 - U-relations are complete for finite sets of possible worlds

Querying Uncertain Data

Possible worlds semantics

- T: probabilistic database.
- Conceptually, evaluate Q on each world
- \bullet Find a query \overline{Q} on the representation that produces the representation of the result.

Names of possibly married persons: possible $(\pi_N(\sigma_{MS=2}(R)))$

$\overline{U_{R[N]}}$	V⊷D	TID	N
	$x\mapsto 1$	t_1	Smith
	$y \mapsto 1$	t_2	Brown

$\overline{U_{R[MS]}}$	V⊢→D	TID	MS
	$x\mapsto 1$	t_1	1
	$x \mapsto 2$	t_1	2
	$z\mapsto 1$	t_2	1
	$z\mapsto 2$	t_2	2

Evaluation steps:

Names of possibly married persons: $possible(\pi_N(\sigma_{MS=2}(R)))$

$U_{R[N]}$	V⊷D	TID	N
	$x\mapsto 1$	t_1	Smith
	$y\mapsto 1$	t_2	Brown

$U_{R[MS]}$	V⊢→D	TID	MS
	$x \mapsto 1$	t_1	1
	$x \mapsto 2$	t_1	2
	$z\mapsto 1$	t_2	1
	$z\mapsto 2$	t_2	2

Evaluation steps:

• Merge the U-relations storing the necessary columns $Q = \operatorname{possible}(\pi_N(\sigma_{MS=2}(\operatorname{merge}(\pi_N R, \pi_{MS} R))))$

Names of possibly married persons: possible($\pi_N(\sigma_{MS=2}(R))$)

$\overline{U_{R[N]}}$	V⊷D	TID	N
	$x\mapsto 1$	t_1	Smith
	$y\mapsto 1$	t_2	Brown

$\overline{U_{R[MS]}}$	V⊢→D	TID	MS
	$x \mapsto 1$	t_1	1
	$x \mapsto 2$	t_1	2
	$z\mapsto 1$	t_2	1
	$z\mapsto 2$	t_2	2

Evaluation steps:

- Merge the U-relations storing the necessary columns $Q = \text{possible}(\pi_N(\sigma_{MS=2}(\text{merge }(\pi_N R, \pi_{MS} R))))$
- Rewrite Q on column-stores: $merge (\pi_N R, \pi_{MS} R)) = U_{R[N]} \bowtie_{\psi \land \phi} U_{R[MS]}$
 - ψ : do not create inconsistent conditions: $\psi := (U_{R[M]}.V = U_{R[MS]}.V \Rightarrow U_{R[M]}.D = U_{R[MS]}.D),$
 - ϕ : tuple reconstruction: $\phi := (U_{R[M]}.TID = UR_{[MS]}.TID)$

Names of possibly married persons: possible($\pi_N(\sigma_{MS=2}(R))$)

$\overline{U_{R[N]}}$	V⊷D	TID	N
	$x\mapsto 1$	t_1	Smith
	$y \mapsto 1$	t_2	Brown

$U_{R[MS]}$	V⊷D	TID	MS
	$x \mapsto 2$	t_1	2
	$z\mapsto 2$	t_2	2

Evaluation steps:

- Merge the U-relations storing the necessary columns $Q = \text{possible}(\pi_N(\sigma_{MS=2}(\text{ merge }(\pi_N R, \pi_{MS} R))))$
- Rewrite Q on column-stores: $merge (\pi_N R, \pi_{MS} R)) = U_{R[N]} \bowtie_{\psi \land \phi} U_{R[MS]}$
 - ψ : do not create inconsistent conditions: $\psi := (U_{R[M]}.V = U_{R[MS]}.V \Rightarrow U_{R[M]}.D = U_{R[MS]}.D),$
 - ϕ : tuple reconstruction: $\phi := (U_{R[M]}.TID = UR_{[MS]}.TID)$

Names of possibly married persons: $possible(\pi_N(\sigma_{MS=2}(R)))$

$U_{R[N]}$	$V_1 \mapsto D_1$	$V_2 \mapsto \!$	TID	N
<u></u>	$x \mapsto 1$	$x \mapsto 2$	t_1	Smith
	$y\mapsto 1$	$z\mapsto 2$	t_2	Brown

Result:

Q	N
	Brown

Evaluating positive relation algebra queries on U-relations

- Simple translation, essentially preserves number of joins
- Can be fed to any relational query optimizer

Query language of MayBMS

- Relational algebra operations
- Confidence computation: conf(Q) for computing tuple confidence values.
 - For each tuple that occurs in Q in at least one world, sum up the probabilities
 of the worlds where it occurs.
- repair-key
 - operation for introducing uncertainty.
 - turns a possible world into the set of worlds consisting of all possible maximal repairs.

- Random graphs as probabilistic databases
- Consider table Edge(A,B,bit,P):

Edge	Α	В	bit	Р
<i>e</i> ₁₀	1	2	0	0.5
e_{11}	1	2	1	0.5
e_{20}	1	3	0	0.5
e_{21}	1	3	0	0.5

• Pick edges non-deterministically:

```
create table T as (repair key A,B in Edge weight by P); create table E1 as (select A,B from T where bit = 1); create table E0 as (select A,B from T where bit = 0);
```

- Random graphs as probabilistic databases
- Consider table Edge(A,B,bit,P):

Edge	Α	В	bit	Р
<i>e</i> ₁₀	1	2	0	0.5
e_{11}	1	2	1	0.5
<i>e</i> ₂₀	1	3	0	0.5
e_{21}	1	3	0	0.5

E1	V⊢D, P	Α	В
	$x_1 \mapsto 1,0.5$	1	2
	$x_1 \mapsto 1, 0.5$ $x_2 \mapsto 1, 0.5$	1	3

• Pick edges non-deterministically:

```
create table T as (repair key A,B in Edge weight by P);
create table E1 as (select A,B from T where bit = 1);
create table E0 as (select A,B from T where bit = 0);
```

• U-relational representation of the random graph:

E0	V⊢D, P	Α	В	E1	V⊢D, P	Α	В
	$x_1 \mapsto 0, 0.5$	1	2		$x_1 \mapsto 1,0.5$	1	2
	$x_2 \mapsto 0, 0.5$	1	3		$x_2 \mapsto 1,0.5$	1	3
	$x_3 \mapsto 0, 0.5$	1	4		$x_3 \mapsto 1,0.5$	1	4
	$x_4 \mapsto 0, 0.5$	2	3		$x_4 \mapsto 1,0.5$	2	3

. . .

- Queries:
 - Probability for a triangle in the random graph:

. . .

```
select conf() from E1 R, E1 S, E1 T where R.A = S.B and S.A = T.A and T.B=R.B and R.A! = S.A and R.A! = T.A;
```

• U-relational representation of the random graph:

E0	V⊢D, P	Α	В	E1	V⊢D, P	Α	В
	$x_1 \mapsto 0, 0.5$	1	2		$x_1 \mapsto 1,0.5$	1	2
	$x_2 \mapsto 0, 0.5$	1	3		$x_2 \mapsto 1, 0.5$	1	3
	$x_3 \mapsto 0, 0.5$	1	4		$x_3 \mapsto 1,0.5$	1	4
	$x_4 \mapsto 0, 0.5$	2	3		$x_4 \mapsto 1,0.5$	2	3

- Queries:
 - Probability for a triangle in the random graph:

. . .

```
select conf() from E1 R, E1 S, E1 T where R.A = S.B and S.A = T.A and T.B=R.B and R.A ! = S.A and R.A ! = T.A;
```

- Probability of a 4-clique
- Probability of a path of length 5
- ...

. . .

Experimental Evaluation

Experimental evaluation

- Uncertain data generator
 - extend TPC-H generator 2.6 to generate U-relational databases
 - parameters: scale (s), uncertainty ratio (x), correlation ratio (z), max alternatives per field (8), drop after correlation (0.25)
- Evaluate modified TPC-H queries (without aggregation) on the generated data

Experimental results: storage

		TPC-H									
s	Z	dbsize	#worlds	Rng	dbsize	#worlds		dbsize	#worlds	Rng	dbsize
0.01	0.1	17	10857.076	21	82	$10^{7955.30}$		85	10 ^{79354.1}	57	114
0.01	0.5	17	10 ^{523.031}	71	82	104724.56		88	10 ^{46675.6}	662	139
0.05	0.1	85	10 ^{4287.23}	22	389	10 ^{39913.8}		403	10 ³⁹⁶¹³⁷	65	547
0.05	0.5	85	10 ^{2549.14}	178	390	10 ^{23515.5}	449	416	10 ²³²⁶⁵⁰	1155	672
0.10	0.1	170	108606.77	27	773	$10^{79889.9}$	49	802	10 ⁷⁹³⁶¹¹	53	1090
0.10	0.5	170	10 ^{5044.65}	181	776	10 ^{46901.8}	773	826	10 ⁴⁶⁶⁰³⁸	924	1339
0.50	0.1	853	10 ^{43368.0}	49	3843	10^{400185}	71	3987	$10^{3.97e+06}$		5427
0.50	0.5	853	10 ^{25528.9}	214	3856	10^{234840}	1832	4012	-	2586	6682
1.00	0.1	1706	1087203.0	57	7683	10^{800997}	99	7971	$10^{7.94e+06}$		11264
1.00	0.5	1706	$10^{51290.9}$	993	7712	10 ⁴⁷⁰⁴⁰¹	1675	8228	10 ^{4.66e+06}	3392	13312
		x = 0.0	x = 0.001		x = 0.01			x = 0.1			

Figure: Total number of worlds, max. number of domain values for a variable (Rng), and size in MB of the U-relational database for each of our settings.

- exponentially more succinct than representing worlds individually
- $10^{8\cdot 10^6}$ worlds need 13 GBs \approx 8 times the size of one world (1.4 GBs)
- case x = 0 is the DB generated by the original TPC-H (without uncertainty)

Experimental results: evaluation of positive relational algebra queries.

Q1:

possible (select o.orderkey, o.orderdate, o.shippriority from customer c, orders o, lineitem I where c.mktsegment = 'BUILDING' and c.custkey = o.custkey and o.orderkey = I.orderkey and o.orderdate > '1995-03-15' and I.shipdate < '1995-03-17')

Figure: Performance of query evaluation for various scale, uncertainty, and correlation.

Experimental results: effect of vertical partitioning.

SPJ query on six relations represented by equivalent

- attribute-level U-relational databases
- tuple-level U-relational databases
- Trios ULDBs (are tuple-level only)

- Experiment only possible for small scenarios: 1% uncertainty, lowest correlation factor 0.1, and scale up to 0.1.
- an increase in any of our parameters would create prohibitively large (exponential in the arity of relations) tuple-level representations.

MayBMS

- Built inside Postgres.
- Representation system: U-relations.
- Query language: an extension of SQL with uncertainty-aware constructs.
- Supports updates.
- Exact and approximate confidence computation.
- Prototype available at http://maybms.sourceforge.net
- Project website: http://www.cs.cornell.edu/bigreddata/maybms/

APIs for Probabilistic Databases

Database APIs for RDBMS

Write programs that involve:

- queries
- updates
- user interaction (input/output)
- ANSI 3-layer model: abstract away from physical representation details.
- What about APIs for uncertain DBMS?

Levels of Abstraction in DBMS

(a) Traditional DBMS

(b) DBMS for uncertain data

Data Independence

Clean reference model for uncertain DBMS:

- Sets of possible worlds.
- Any representation system can be modeled by possible worlds.

- Challenges:
 - How to find \overline{P} ?
 - What if there is user interaction?

Programs on uncertain databases

```
read("Enter license plate:", $x);
if (exists select * from cars where num=$x){ // modify existing entry
   for($t in select * from cars where num=$x){
      write("Current entry: $t");
      read("New location and color:", $loc,$color);
      if (exists select * from cars where num=$x and loc=$loc and color=$color)
         update cars set wit=wit+1 where num=$x and loc=$loc and color=$color;
      else
         insert into cars values($x,$loc,$color,1);
else { // entry does not exist
   write("No entry found for $x");
   read("Enter location and color:", $loc, $color);
   insert into cars values($x,$loc,$color,1);
```

Programs on uncertain databases

Cars ¹ 1 2	num S87 M34	color red blue	loc MN PA	wit 1 1	Current entry: S87 red MN New location and color: _	Cars ¹ 1 2	num S87 M34	color red blue	loc MN PA	wit 2 1	
Cars ² 1 2	num S87 M34	color red blue	loc TX MD	wit 1 1	Current entry: S87 red TX New location and color: _	Cars ² 1 2 3	num S87 M34 S87	color red blue red	TX MD MN	wit 1 1 1 1	
Cars ³ 1 2	num B87 M34	color red blue	loc TX PA	wit 1 1	No entry found for \$87 Enter location and color:	Cars ³ 1 2 3	num B87 M34 S87	color red blue red	TX PA MN	wit 1 1 1 1	
Cars ⁴ 1 2	num B87 M34	color red blue	loc TX MD	wit 1 1	No entry found for \$87 Enter location and color:	Cars ⁴ 1 2 3	B87 M34 S87	color red blue red	TX MD MN	wit 1 1 1 1	
(a) Possible worlds					(b) Output of the program		(c) Result of the program				

Running possible worlds in "parallel"

- Control flow can be different in each possible world.
- User interaction that is different in each world unintuitive/infeasible
- Our approach:
 - Exclude "unsafe" programs (next)
 - All other programs: rewrite into bulk queries and updates (set-at-a-time processing for world-sets).

Observational determinism

Definition

A program is called **observationally deterministic** (o.d.) if its user interaction is identical in all possible worlds.

- User interaction: input and output of the program.
- We consider programs that do not satisfy this property unsound.

Checking observational determinism

- Model relations R as two disjoint sets of tuples, the certain and the uncertain ones, R^c , R^u .
- Propagate pairs (R^c, R^u) conservatively through program operations.
- A program is o.d. if we never output or condition on an uncertain tuple.

Propagation of uncertainty during querying

```
Let R – relation name, \phi – boolean condition
     Q, Q_1, Q_2 – queries in RA^+ \cup \{\text{conf}\}\
                  [\![R]\!] := (R^c, R^u)
       [\![\pi_U(Q)]\!] := (\pi_U([\![Q]\!]^c), \pi_U([\![Q]\!]^u))
       \llbracket \sigma_{\phi}(Q) \rrbracket := (\sigma_{\phi}(\llbracket Q \rrbracket^c), \sigma_{\phi}(\llbracket Q \rrbracket^u))
[\![Q_1 \bowtie_{\phi} Q_2]\!] := ([\![Q_1]\!]^c \bowtie_{\phi} [\![Q_2]\!]^c,
                          [\![Q_1]\!]^u \bowtie_{\phi} [\![Q_2]\!]^u \cup [\![Q_1]\!]^c \bowtie_{\phi} [\![Q_2]\!]^u \cup [\![Q_1]\!]^c \bowtie_{\phi} [\![Q_2]\!]^u)
    [\![Q_1 \cup Q_2]\!] := ([\![Q_1]\!]^c \cup [\![Q_2]\!]^c, [\![Q_1]\!]^u \cup [\![Q_2]\!]^u)
   \llbracket \operatorname{conf}(Q) \rrbracket := (\llbracket Q \rrbracket^c \cup \operatorname{possible}(\llbracket Q \rrbracket^u), \emptyset)
```

Checking observational determinism

• Example: let $R = (Rc, \sigma_{A!=1}(R_u))$.

for (\$t in select * from R where A=1)
 write(\$t);

• $Q = (\sigma_{A=1}(Rc), \sigma_{A=1}(\sigma_{A!=1}(R_u))).$

This program is observationally deterministic.

Results

- MayBMS: open-source system for managing probabilistic data
- U-relational databases
 - Compact representation of large sets of possible worlds
 - Expressive
 - Efficient query evaluation
- Query language and API for probabilistic databases.
- Ongoing and future work
 - Approximate confidence computation
 - Official release of the system

Bibliography

- Representation system and query processing
 - L. Antova, T. Jansen. C. Koch, and D. Olteanu. Fast and Simple Relational Processing of Uncertain Data. ICDE 2008
- Query language and API for probabilistic databases.
 - L. Antova, C. Koch, and D. Olteanu. From Complete to Incomplete Information and Back. SIGMOD 2007
 - L. Antova, C. Koch. On APIs for probabilistic databases. *MUD 2008*
- Demonstrations
 - L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing Incomplete Information with Probabilistic World-Set Decompositions ICDE'07
 - L. Antova, C. Koch, and D. Olteanu. Query Language Support for Incomplete Information in the MayBMS System. VLDB 2007
 - http://maybms.sourceforge.net

Acknowledgments:

Christoph Koch, Dan Olteanu, Thomas Jansen and Jiewen Huang.

Thanks!