
1

Maelstrom: Transparent Error Correction for
Communication Between Data Centers

Mahesh Balakrishnan, Tudor Marian, Ken Birman, Hakim Weatherspoon, Lakshmi Ganesh
{mahesh, tudorm, ken, hweather, lakshmi}@cs.cornell.edu

Cornell University, Ithaca, NY-14853

Abstract—The global network of data centers is emerging
as an important distributed systems paradigm — commodity
clusters running high-performance applications, connected by
high-speed ‘lambda’ networks across hundreds of milliseconds of
network latency. Packet loss on long-haul networks can cripple
the performance of applications and protocols — a loss rate
as low as 0.1% is sufficient to reduce TCP/IP throughput by
an order of magnitude on a 1 Gbps link with 50ms one-way
latency. Maelstrom is an edge appliance that masks packet loss
transparently and quickly from inter-cluster protocols, aggregat-
ing traffic for high-speed encoding and using a new Forward
Error Correction scheme to handle bursty loss.

Index Terms—Data centers, forward error correction, TCP/IP.

I. INTRODUCTION

THE emergence of commodity clusters and data centers
has enabled a new class of globally distributed high-

performance applications that coordinate over vast geograph-
ical distances. For example, a financial firm’s New York
City data center may receive real-time updates from a stock
exchange in Switzerland, conduct financial transactions with
banks in Asia, cache data in London for locality and mirror it
to Kansas for disaster-tolerance.

To interconnect these bandwidth-hungry data centers across
the globe, organizations are increasingly deploying private
‘lambda’ networks. Raw bandwidth is ubiquitous and cheaply
available in the form of existing ‘dark fiber’; however, run-
ning and maintaining high-quality loss-free networks over
this fiber is difficult and expensive. Though high-capacity
optical links are almost never congested, they drop packets
for numerous reasons – dirty/degraded fiber [1], misconfig-
ured/malfunctioning hardware [2], [3] and switching con-
tention [4], for example – and in different patterns, rang-
ing from singleton drops to extended bursts [5], [6]. Non-
congestion loss has been observed on long-haul networks
as well-maintained as Abilene/Internet2 and National Lamb-
daRail [2], [3], [6], [7].

The inadequacy of commodity TCP/IP in high bandwidth-
delay product networks is extensively documented [8], [9],
[10]. TCP/IP has three major problems when used over such
networks. First, TCP/IP suffers throughput collapse if the
network is even slightly prone to packet loss. Conservative
flow control mechanisms designed to deal with the systematic
congestion of the commodity Internet react too sharply to

A conference version of this paper appeared in NSDI 2008: Fifth Usenix
Symposium on Networked Systems Design and Implementation.

N

S
EW

100 ms

RTT: 110 ms

210 ms

220 ms

110 ms

100 ms 200 ms

Fig. 1: Example Lambda Network

ephemeral loss on over-provisioned links — a single packet
in ten thousand is enough to reduce TCP/IP throughput to a
third over a 50 ms gigabit link, and one in a thousand drops
it by an order of magnitude.

Second, real-time or interactive applications are impacted
by the reliance of reliability mechanisms on acknowledgments
and retransmissions, limiting the latency of packet recovery to
at least the Round Trip Time (RTT) of the link. If delivery
is sequenced, as in TCP/IP, each lost packet acts as a virtual
‘road-block’ in the FIFO channel until it is recovered. Third,
TCP/IP requires massive buffers at the communicating end-
hosts to fully exploit the bandwidth of a long-distance high-
speed link, even in the absence of packet loss.

Deploying new loss-resistant alternatives to TCP/IP is not
feasible in corporate data centers, where standardization is
the key to low and predictable maintenance costs; neither
is eliminating loss events on a network that could span
thousands of miles. Accordingly, there is a need to mask
loss on the link from the commodity protocols running at
end-hosts, and to do so rapidly and transparently. Rapidly,
because recovery delays for lost packets translate into dramatic
reductions in application-level throughput; and transparently,
because applications and OS networking stacks in commodity
data centers cannot be rewritten from scratch.

2

Link Loss:
FEC

Receiver Buffer
Overflow:
Local Recovery

Sending End-hosts

Send-side
Appliance

Receive-side
Appliance Receiving End-hosts

Locations of
Packet Loss

Fig. 2: Maelstrom Communication Path

Forward Error Correction (FEC) is a promising solution for
reliability over long-haul links [11] — packet recovery latency
is independent of the RTT of the link. While FEC codes have
been used for decades within link-level hardware solutions,
faster commodity processors have enabled packet-level FEC
at end-hosts [12], [13]. End-to-end FEC is very attractive for
communication between data centers: it’s inexpensive, easy to
deploy and customize, and does not require specialized equip-
ment in the network linking the data centers. However, end-
host FEC has two major issues — First, it’s not transparent,
requiring modification of the end-host application/OS. Second,
it’s not necessarily rapid; FEC works best over high, stable
traffic rates and performs poorly if the data rate in the channel
is low and sporadic [14], as in a single end-to-end channel.

In this paper, we present the Maelstrom Error Correction
appliance — a rack of proxies residing between a data center
and its WAN link (see Figure 2). Maelstrom encodes FEC
packets over traffic flowing through it and routes them to a
corresponding appliance at the destination data center, which
decodes them and recovers lost data. Maelstrom is completely
transparent — it does not require modification of end-host
software and is agnostic to the network connecting the data
centers. Also, it eliminates the dependence of FEC recovery
latency on the data rate in any single node-to-node channel by
encoding over the aggregated traffic leaving the data center.
Additionally, Maelstrom uses a new encoding scheme called
layered interleaving, designed especially for time-sensitive
packet recovery in the presence of bursty loss.

Maelstrom’s positioning as a network appliance reflects the
physical infrastructure of modern data centers — clean inser-
tion points for proxy devices exist on the high-speed lambda
links that interconnect individual data centers to each other.
Maelstrom can operate as either a passive or active device on
these links. Of the three problems of TCP/IP mentioned above,
Maelstrom solves the first two – throughput collapse and real-
time recovery delays – while operating as a passive device that
does not intervene in the critical communication path. In active
mode, Maelstrom handles the additional problem of massive
buffering requirements as well, at the cost of adding a point

of failure in the network path.
The contributions of this paper are as follows:
• We explore end-to-end FEC for long-distance commu-

nication between data centers, and argue that the rate
sensitivity of FEC codes and the opacity of their imple-
mentations present major obstacles to their usage.

• We propose Maelstrom, a gateway appliance that trans-
parently aggregates traffic and encodes over the resulting
high-rate stream.

• We describe layered interleaving, a new FEC scheme
used by Maelstrom where for constant encoding overhead
the latency of packet recovery degrades gracefully as
losses get burstier.

• We discuss implementation considerations. We built two
versions of Maelstrom; one runs in user mode, while the
other runs within the Linux kernel.

• We evaluate Maelstrom on Emulab [15] and show that
it provides near lossless TCP/IP throughput and latency
over lossy links, and recovers packets with latency inde-
pendent of the RTT of the link and the rate in any single
channel.

II. MODEL

Loss Model: Packet loss typically occurs at two points in an
end-to-end communication path between two data centers, as
shown in Figure 2 — in the wide-area network connecting
them and at the receiving end-hosts. Loss in the lambda link
can occur for many reasons, as stated previously: transient
congestion, dirty or degraded fiber, malfunctioning or miscon-
figured equipment, low receiver power and burst switching
contention are some reasons [16], [1], [2], [3], [4]. Loss can
also occur at receiving end-hosts within the destination data
center; these are usually cheap commodity machines prone to
temporary overloads that cause packets to be dropped by the
kernel in bursts [14] — this loss mode occurs with UDP-based
traffic but not with TCP/IP, which advertises receiver windows
to prevent end-host buffer overflows.

What are typical loss rates on long-distance optical net-
works? The answer to this question is surprisingly hard to

3

24

14

0

5

10

15

20

25

30

0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

% of Lost Packets

%
 o

f M
ea

su
re

m
en

ts

Fig. 3: Loss Rates on TeraGrid

determine, perhaps because such links are a relatively recent
addition to the networking landscape and their ownership
is still mostly restricted to commercial organizations disin-
clined to reveal such information. One source of information
is TeraGrid [17], an optical network interconnecting major
supercomputing sites in the US. TeraGrid has a monitoring
framework within which ten sites periodically send each other
1 Gbps streams of UDP packets and measure the resulting
loss rate [18]. Each site measures the loss rate to every
other site once an hour, resulting in a total of 90 loss rate
measurements collected across the network every hour. Figure
3 shows that between Nov 1, 2007 and Jan 25, 2008, 24%
of all such measurements were over 0.01% and a surprising
14% of them were over 0.1%. After eliminating a single site
(Indiana University) that dropped incoming packets steadily at
a rate of 0.44%, 14% of the remainder were over 0.01% and
3% were over 0.1%.

These numbers may look small in absolute terms, but they
are sufficient to bring TCP/IP throughput crashing down on
high-speed long-distance links. Conventional wisdom states
that optical links do not drop packets; most carrier-grade
optical equipment is configured to shut down beyond bit error
rates of 10−12 — one out of a trillion bits. However, the
reliability of the lambda network is clearly not equal to the
sum of its optical parts; in fact, it’s less reliable by orders of
magnitude. As a result, applications and protocols – such as
TCP/IP – which expect extreme reliability from the high-speed
network are instead subjected to unexpectedly high loss rates.

Of course, these numbers reflect the loss rate specifically
experienced by UDP traffic on an end-to-end path and may not
generalize to TCP packets. Also, we do not know if packets
were dropped within the optical network or at intermediate
devices within either data center, though it’s unlikely that they
were dropped at the end-hosts; many of the measurements
lost just one or two packets whereas kernel/NIC losses are
known to be bursty [14]. Further, loss occurred on paths where

levels of optical link utilization (determined by 20-second
moving averages) were consistently lower than 20%, ruling
out congestion as a possible cause, a conclusion supported by
dialogue with the network administrators [19].

What are some possible causes for such high loss rates on
TeraGrid? A likely hypothesis is device clutter — the critical
communication path between nodes in different data centers
is littered with multiple electronic devices, each of which
represents a potential point of failure. Another possibility is
that such loss rates may be typical for any large-scale network
where the cost of immediately detecting and fixing failures is
prohibitively high. For example, we found through dialogue
with the administrators that the steady loss rate experienced
by the Indiana University site was due to a faulty line card,
and the measurements showed that the error persisting over at
least a three month period.

Other data-points for loss rates on high-speed long-haul
networks are provided by the back-bone networks of Tier-
1 ISPs. Global Crossing reports average loss rates between
0.01% and 0.03% on four of its six inter-regional long-haul
links for the month of December 2007 [20]. Qwest reports loss
rates of 0.01% and 0.02% in either direction on its trans-pacific
link for the same month [21]. We expect privately managed
lambdas to exhibit higher loss rates due to the inherent trade-
off between fiber/equipment quality and cost [22], as well
as the difficulty of performing routine maintenance on long-
distance links. Consequently, we model end-to-end paths as
dropping packets at rates of 0.01% to 1%, to capture a wide
range of deployed networks.

III. EXISTING RELIABILITY OPTIONS

TCP/IP is the default reliable communication option for
contemporary networked applications, with deep, exclusive
embeddings in commodity operating systems and networking
APIs. Consequently, most applications requiring reliable com-
munication over any form of network use TCP/IP.

As noted earlier, TCP/IP has three major problems when
used over high-speed long-distance networks:
1. Throughput Collapse in Lossy Networks: TCP/IP is
unable to distinguish between ephemeral loss modes — due
to transient congestion, switching errors, or bad fiber —
and persistent congestion. The loss of one packet out of ten
thousand is sufficient to reduce TCP/IP throughput to a third of
its lossless maximum; if one packet is lost out of a thousand,
throughput collapses to a thirtieth of the maximum.

The root cause of throughput collapse is TCP/IP’s fun-
damental reliance on loss as a signal of congestion. While
recent approaches have sought to replace loss with delay as a
congestion signal [23], or to specifically identify loss caused
by non-congestion causes [24], older variants — prominently
Reno — remain ubiquitously deployed.
2. Recovery Delays for Real-Time Applications: Conven-
tional TCP/IP uses positive acknowledgments and retransmis-
sions to ensure reliability — the sender buffers packets until
their receipt is acknowledged by the receiver, and resends if
an acknowledgment is not received within some time period.
Hence, a lost packet is received in the form of a retransmis-
sion that arrives no earlier than 1.5 RTTs after the original

4

send event. The sender has to buffer each packet until it’s
acknowledged, which takes 1 RTT in lossless operation, and
it has to perform additional work to retransmit the packet if it
does not receive the acknowledgment. Also, any packets that
arrive with higher sequence numbers than that of a lost packet
must be queued while the receiver waits for the lost packet to
arrive.

Consider a high-throughput financial banking application
running in a data center in New York City, sending updates
to a sister site in Switzerland. The RTT value between these
two centers is typically 100 milliseconds; i.e., in the case of
a lost packet, all packets received within the 150 milliseconds
or more between the original packet send and the receipt of its
retransmission have to be buffered at the receiver. As a result,
the loss of a single packet stops all traffic in the channel to
the application for a seventh of a second; a sequence of such
blocks can have devastating effect on a high-throughput system
where every spare cycle counts. Further, in applications with
many fine-grained components, a lost packet can potentially
trigger a butterfly effect of missed deadlines along a distributed
workflow. During high-activity periods, overloaded networks
and end-hosts can exhibit continuous packet loss, with each
lost packet driving the system further and further out of sync
with respect to its real-world deadlines.
3. Massive Buffering Needs for High Throughput Appli-
cations: TCP/IP uses fixed size buffers at receivers to prevent
overflows; the sender never pushes more unacknowledged data
into the network than the receiver is capable of holding.
In other words, the size of the fluctuating window at the
sender is bounded by the size of the buffer at the receiver.
In high-speed long-distance networks, the quantity of in-
flight unacknowledged data has to be extremely high for the
flow to saturate the network. Since the size of the receiver
window limits the sending envelope, it plays a major role in
determining TCP/IP’s throughput.

The default receiver buffer sizes in many standard TCP/IP
implementations are in the range of tens of kilobytes, and
consequently inadequate receiver buffering is the first hurdle
faced by most practical deployments. A natural solution is
to increase the size of the receiver buffers; however, in
many cases the receiving end-host may not have the spare
memory capacity to buffer the entire bandwidth-delay product
of the long-distance network. The need for larger buffers is
orthogonal to the flow control mechanisms used within TCP/IP
and impacts all variants equally.

A. The Case For (and Against) FEC

FEC encoders are typically parameterized with an (r, c)
tuple — for each outgoing sequence of r data packets, a
total of r + c data and error correction packets are sent
over the channel. Significantly, redundancy information cannot
be generated and sent until all r data packets are available
for sending. Consequently, the latency of packet recovery is
determined by the rate at which the sender transmits data.
Generating error correction packets from less than r data
packets at the sender is not a viable option — even though the
data rate in this channel is low, the receiver and/or network

A B C D E F G HX X X X

A C E G X X
B D F H X X

A,B,C,D E,F,G,H

A,C,E,G

B,D,F,H

Fig. 4: Interleaving with index 2: separate encoding for odd
and even packets

could be operating at near full capacity with data from other
senders.

FEC is also very susceptible to bursty losses [25]. Inter-
leaving [26] is a standard encoding technique used to combat
bursty loss, where error correction packets are generated
from alternate disjoint sub-streams of data rather than from
consecutive packets. For example, with an interleave index of
3, the encoder would create correction packets separately from
three disjoint sub-streams: the first containing data packets
numbered (0, 3, 6...(r − 1) ∗ 3), the second with data packets
numbered (1, 4, 7...(r − 1) ∗ 3 + 1), and the third with data
packets numbered (2, 5, 8, ...(r−1)∗3+2). Interleaving adds
burst tolerance to FEC but exacerbates its sensitivity to sending
rate — with an interleave index of i and an encoding rate of
(r, c), the sender would have to wait for i∗ (r−1)+1 packets
before sending any redundancy information.

These two obstacles to using FEC in time-sensitive settings
— rate sensitivity and burst susceptibility — are interlinked
through the tuning knobs: an interleave of i and a rate of
(r, c) provides tolerance to a burst of up to c ∗ i consecutive
packets. Consequently, the burst tolerance of an FEC code can
be changed by modulating either the c or the i parameters.
Increasing c enhances burst tolerance at the cost of network
and encoding overhead, potentially worsening the packet loss
experienced and reducing throughput. In contrast, increasing
i trades off recovery latency for better burst tolerance without
adding overhead — as mentioned, for higher values of i, the
encoder has to wait for more data packets to be transmitted
before it can send error correction packets.

Importantly, once the FEC encoding is parameterized with
a rate and an interleave to tolerate a certain burst length B
(for example, r = 5, c = 2 and i = 10 to tolerate a burst of
length 2 ∗ 10 = 20), all losses occurring in bursts of size less
than or equal to B are recovered with the same latency — and
this latency depends on the i parameter. Ideally, we’d like to
parameterize the encoding to tolerate a maximum burst length
and then have recovery latency depend on the actual burstiness
of the loss. At the same time, we would like the encoding to
have a constant rate for network provisioning and stability.
Accordingly, an FEC scheme is required where latency of
recovery degrades gracefully as losses get burstier, even as
the encoding overhead stays constant.

5

25 26 27 28 29

25
26

27
28

29

X

LOSSXOR

‘Recipe List’:
25,26,27,28,29

25 26 28 29

Lam
bda Jum

bo M
TU

LAN
 M

TU

Recovered
Packet

Appliance

Appliance

27

Fig. 5: Basic Maelstrom mechanism: repair packets are in-
jected into stream transparently

IV. MAELSTROM DESIGN AND IMPLEMENTATION

We describe the Maelstrom appliance as a single machine
— later, we will show how more machines can be added to
the appliance to balance encoding load and scale to multiple
gigabits per second of traffic.

A. Basic Mechanism

The basic operation of Maelstrom is shown in Figure 5 —
at the send-side data center, it intercepts outgoing data packets
and routes them to the destination data center, generating and
injecting FEC repair packets into the stream in their wake. A
repair packet consists of a ‘recipe’ list of data packet identifiers
and FEC information generated from these packets; in the
example in Figure 5, this information is a simple XOR. The
size of the XOR is equal to the MTU of the data center
network, and to avoid fragmentation of repair packets we
require that the MTU of the long-haul network be set to a
slightly larger value. This requirement is easily satisfied in
practice, since gigabit links very often use ‘Jumbo’ frames
of up to 9000 bytes [27] while LAN networks have standard
MTUs of 1500 bytes.

At the receiving data center, the appliance examines incom-
ing repair packets and uses them to recover missing data pack-
ets. On recovery, the data packet is injected transparently into
the stream to the receiving end-host. Recovered data packets
will typically arrive out-of-order at the end-host, and hence it
is vital that packets be recovered by the appliance extremely

A) End-to-End Flow Control

End-Host End-HostAppliance Appliance

B) Split Flow Control

End-Host End-HostAppliance Appliance

Fig. 6: Flow Control Options in Maelstrom

quickly to avoid triggering mechanisms in commodity stacks
that interpret out-of-order arrival as congestion in the network.

B. Flow Control

While relaying TCP/IP data, Maelstrom has two flow con-
trol modes: end-to-end and split. Figure 6 illustrates these two
modes.
End-to-end Mode: With end-to-end flow control, the
appliance treats TCP/IP packets as conventional IP pack-
ets and routes them through without modification, allowing
flow-control to proceed between the end-hosts. Importantly,
TCP/IP’s semantics are not modified; when the sending end-
host receives an acknowledgment, it can assume that the re-
ceiving end-host successfully received the message. In end-to-
end mode, Maelstrom functions as a passive device, snooping
outgoing and incoming traffic at the data center’s edge — its
failure does not disrupt the flow of packets between the two
data centers.
Split Mode: In split mode, the send-side appliance acts
as a TCP/IP endpoint, terminating connections and sending
back ACKs immediately before relaying data on appliance-to-
appliance flows. Split mode is extremely useful when end-
hosts have limited buffering capacity, since it allows the
receive-side appliance to buffer incoming data over the high-
speed long-distance link. It also mitigates TCP/IP’s slow-start
effects for short-lived flows. In split mode, Maelstrom has to
operate as an active device, inserted into the critical communi-
cation path — its failure disconnects the communication path
between the two data centers.
Is Maelstrom TCP-Friendly? While Maelstrom respects end-
to-end flow control connections (or splits them and implements
its own proxy-to-proxy flow control as described above), it is
not designed for routinely congested networks; the addition of
FEC under TCP/IP flow control allows it to steal bandwidth
from other competing flows running without FEC in the link,
though maintaining fairness versus similarly FEC-enhanced
flows [28]. However, friendliness with conventional TCP/IP
flows is not a primary protocol design goal on over-provisioned
multi-gigabit links, which are often dedicated to specific high-
value applications. We see evidence for this assertion in the
routine use of parallel flows [29] and UDP ‘blast’ protocols

6

[30], [31] both in commercial deployments and by researchers
seeking to transfer large amounts of data over high-capacity
academic networks.

C. Layered Interleaving

In layered interleaving, an FEC protocol with rate (r, c)
is produced by running c multiple instances of an (r, 1) FEC
protocol simultaneously with increasing interleave indices I =
(i0, i1, i2...ic−1). For example, if r = 8, c = 3 and I = (i0 =
1, i1 = 10, i2 = 100), three instances of an (8, 1) protocol
are executed: the first instance with interleave i0 = 1, the
second with interleave i1 = 10 and the third with interleave
i2 = 100. An (r, 1) FEC encoding is simply an XOR of the r
data packets — hence, in layered interleaving each data packet
is included in c XORs, each of which is generated at different
interleaves from the original data stream. Choosing interleaves
appropriately (as we shall describe shortly) ensures that the c
XORs containing a data packet do not have any other data
packet in common. The resulting protocol effectively has a
rate of (r, c), with each XOR generated from r data packets
and each data packet included in c XORs. Figure 7 illustrates
layered interleaving for a (r = 3, c = 3) encoding with I =
(1, 10, 100).

As mentioned previously, standard FEC schemes can be
made resistant to a certain loss burst length at the cost of in-
creased recovery latency for all lost packets, including smaller
bursts and singleton drops. In contrast, layered interleaving
provides graceful degradation in the face of bursty loss for
constant encoding overhead — singleton random losses are
recovered as quickly as possible, by XORs generated with an
interleave of 1, and each successive layer of XORs generated at
a higher interleave catches larger bursts missed by the previous
layer.

The implementation of this algorithm is simple and shown
in Figure 8 — at the send-side proxy, a set of repair bins
is maintained for each layer, with i bins for a layer with
interleave i. A repair bin consists of a partially constructed
repair packet: an XOR and the ‘recipe’ list of identifiers of
data packets that compose the XOR. Each intercepted data
packet is added to each layer — where adding to a layer simply
means choosing a repair bin from the layer’s set, incrementally
updating the XOR with the new data packet, and adding the
data packet’s header to the recipe list. A counter is incremented
as each data packet arrives at the appliance, and choosing the
repair bin from the layer’s set is done by taking the modulo
of the counter with the number of bins in each layer: for a
layer with interleave 10, the xth intercepted packet is added
to the (x mod 10)th bin. When a repair bin fills up — its
recipe list contains r data packets — it ‘fires’: a repair packet
is generated consisting of the XOR and the recipe list and
is scheduled for sending, while the repair bin is re-initialized
with an empty recipe list and blank XOR.

At the receive-side proxy, incoming repair packets are
processed as follows: if all the data packets contained in
the repair’s recipe list have been received successfully, the
repair packet is discarded. If the repair’s recipe list contains a
single missing data packet, recovery can occur immediately by

25 26 27 28 29

20 24 28

21 25 29

22 26

23 27

Layer 1: Interleave 1

Layer 2: Interleave 4

20 28

21 29

22

23

Layer 3: Interleave 8

X X

24

25

26

27

29
Layer with
interleave
of 4 has 4
repair bins

Incoming
Data
Packet

Fig. 8: Layered Interleaving Implementation: (r = 5, c = 3),
I = (1, 4, 8)

combining the XOR in the repair with the other successfully
received data packets. If the repair contains multiple missing
data packets, it cannot be used immediately for recovery — it
is instead stored in a table that maps missing data packets
to repair packets. Whenever a data packet is subsequently
received or recovered, this table is checked to see if any XORs
now have singleton losses due to the presence of the new
packet and can be used for recovering other missing packets.

Importantly, XORs received from different layers interact
to recover missing data packets, since an XOR received at a
higher interleave can recover a packet that makes an earlier
XOR at a lower interleave usable — hence, though layered
interleaving is equivalent to c different (r, 1) instances in terms
of overhead and design, its recovery power is much higher and
comes close to standard (r, c) algorithms.

D. Optimizations

Staggered Start for Rate-Limiting In the naive implementa-
tion of the layered interleaving algorithm, repair packets are
transmitted as soon as repair bins fill and allow them to be
constructed. Also, all the repair bins in a layer fill in quick
succession; in Figure 8, the arrival of packets 36, 37, 38
and 39 will successively fill the four repair bins in layer 2.
This behavior leads to a large number of repair packets being
generated and sent within a short period of time, which results
in undesirable overhead and traffic spikes; ideally, we would
like to rate-limit transmissions of repair packets to one for
every r data packets.

This problem is fixed by ‘staggering’ the starting sizes of the
bins, analogous to the starting positions of runners in a sprint;
the very first time bin number x in a layer of interleave i fires,
it does so at size x mod r. For example, in Figure 8, the first
repair bin in the second layer with interleave 4 would fire at
size 1, the second would fire at size 2, and so on. Hence, for the

7

3 2 1

X1

1121

X2

101201

X3

Data Stream

XORs:

Fig. 7: Layered Interleaving: (r = 3, c = 3), I = (1, 10, 100)

41 49 57

50 58

59

Layer Interleave 8

45 53 61

54 62

63

65

(1)

(2,10)

(3,11,19)

(4,12,20,28)

(5)

(6,14)

(7,15,23)

(8,16,24,32)

Repair Bins

Staggered Start
XORs

(9,17,25,33)

(18,26,34,42)

(27,35,43,51)

(36,44,52,60)

(13,21,29,37)

(22,30,38,46)

(31,39,47,55)

(40,48,56,64)

Second Set of r-
sized XORs

r = 4

Fig. 9: Staggered Start

first i data packets added to a layer with interleave i, exactly
i/r fire immediately with just one packet in them; for the next
i data packets added, exactly i/r fire immediately with two
data packets in them, and so on until r ∗ i data packets have
been added to the layer and all bins have fired exactly once.
Subsequently, all bins fire at size r; however, now that they
have been staggered at the start, only i/r fire for any i data
packets. The outlined scheme works when i is greater than or
equal to r, as is usually the case. If i is smaller than r, the bin
with index x fires at ((x mod r) ∗ r/i) — hence, for r = 4
and i = 2, the initial firing sizes would be 2 for the first bin
and 4 for the second bin. If r and i are not integral multiples
of each other, the rate-limiting still works but is slightly less
effective due to rounding errors.
Delaying XORs In the straightforward implementation, repair
packets are transmitted as soon as they are generated. This
results in the repair packet leaving immediately after the last
data packet that was added to it, which lowers burst tolerance
— if the repair packet was generated at interleave i, the
resulting protocol can tolerate a burst of i lost data packets
excluding the repair, but the burst could swallow both the
repair and the last data packet in it as they are not separated by
the requisite interleave. The solution to this is simple — delay
sending the repair packet generated by a repair bin until the
next time a data packet is added to the now empty bin, which
happens i packets later and introduces the required interleave

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Loss probability

R
e

c
o

v
e

ry
 p

ro
b

a
b

ili
ty

Reed!Solomon

Maelstrom

Fig. 10: Comparison of Packet Recovery Probability: r=7, c=2

between the repair packet and the last data packet included in
it.

Notice that although transmitting the XOR immediately
results in faster recovery, doing so also reduces the probability
of a lost packet being recovered. This trade-off results in a
minor control knob permitting us to balance speed against
burst tolerance; our default configuration is to transmit the
XOR immediately.

E. Back-of-the-Envelope Analysis

To start with, we note that no two repair packets generated
at different interleaves i1 and i2 (such that i1 < i2) will
have more than one data packet in common as long as the
Least Common Multiple (LCM) of the interleaves is greater
than r ∗ i1; pairings of repair bins in two different layers with
interleaves i1 and i2 occur every LCM(i1, i2) packets. Thus,
a good rule of thumb is to select interleaves that are relatively
prime to maximize their LCM , and also ensure that the larger
interleave is greater than r.

Let us assume that packets are dropped with uniform,
independent probability p. Given a lost data packet, what is
the probability that we can recover it? We can recover a data
packet if at least one of the c XORs containing it is received
correctly and ‘usable’, i.e, all the other data packets in it have
also been received correctly, the probability of which is simply
(1−p)r−1. The probability of a received XOR being unusable
is the complement: (1− (1− p)r−1).

8

Consequently, the probability x of a sent XOR being
dropped or unusable is the sum of the probability that it was
dropped and the probability that it was received and unusable:
x = p + (1− p)(1− (1− p)r−1) = (1− (1− p)r).

Since it is easy to ensure that no two XORs share more than
one data packet, the usability probabilities of different XORs
are independent. The probability of all the c XORs being
dropped or unusable is xc; hence, the probability of correctly
receiving at least one usable XOR is 1−xc. Consequently, the
probability of recovering the lost data packet is 1−xc, which
expands to 1− (1− (1− p)r)c.

This closed-form formula only gives us a lower bound on
the recovery probability, since the XOR usability formula does
not factor in the probability of the other data packets in the
XOR being dropped and recovered.

Now, we extend the analysis to bursty losses. If the lost
data packet was part of a loss burst of size b, repair packets
generated at interleaves less than b are dropped or useless with
high probability, and we can discount them. The probability
of recovering the data packet is then 1− xc′

, where c′ is the
number of XORs generated at interleaves greater than b. The
formulae derived for XOR usability still hold, since packet
losses with more than b intervening packets between them
have independent probability; there is only correlation within
the bursts, not between bursts.

How does this compare to traditional (r, c) codes such as
Reed-Solomon [32]? In Reed-Solomon, c repair packets are
generated and sent for every r data packets, and the correct
delivery of any r of the r + c packets transmitted is sufficient
to reconstruct the original r data packets. Hence, given a
lost data packet, we can recover it if at least r packets are
received correctly in the encoding set of r + c data and repair
packets that the lost packet belongs to. Thus, the probability
of recovering a lost packet is equivalent to the probability of
losing c−1 or less packets from the total r + c packets. Since
the number of other lost packets in the XOR is a random
variable Y and has a binomial distribution with parameters
(r+c−1) and p, the probability P (Y ≤ c−1) is the summation∑

z≤c−1 P (Y = z). In Figure 10, we plot the recovery
probability curves for Layered Interleaving and Reed-Solomon
against uniformly random loss rate, for (r = 7, c = 2) — note
that the curves are very close to each other, especially in the
loss range of interest between 0% and 10%.

F. Local Recovery for Receiver Loss

In the absence of intelligent flow control mechanisms like
TCP/IP’s receiver-window advertisements, inexpensive data
center end-hosts can be easily overwhelmed and drop packets
during traffic spikes or CPU-intensive maintenance tasks like
garbage collection. Reliable application-level protocols layered
over UDP — for reliable multicast [14] or high speed data
transfer [31], for example — would ordinarily go back to the
sender to retrieve the lost packet, even though it was dropped
at the receiver after covering the entire geographical distance.

The Maelstrom proxy acts as a local packet cache, storing
incoming packets for a short period of time and providing
hooks that allow protocols to first query the cache to locate

missing packets before sending retransmission requests back
to the sender. Future versions of Maelstrom could potentially
use knowledge of protocol internals to transparently intervene;
for example, by intercepting and satisfying retransmission
requests sent by the receiver in a NAK-based protocol, or by
resending packets when acknowledgments are not observed
within a certain time period in an ACK-based protocol.

G. Implementation Details

We initially implemented and evaluated Maelstrom as a
user-space proxy. Performance turned out to be limited by
copying and context-switching overheads, and we subse-
quently reimplemented the system as a module that runs within
the Linux 2.6.20 kernel. At an encoding rate of (8, 3), the
experimental prototype of the kernel version reaches output
speeds close to 1 gigabit per second of combined data and FEC
traffic, limited only by the capacity of the outbound network
card.

Of course, lambda networks are already reaching speeds of
40-100 gigabits, and higher speeds are a certainty down the
road. To handle multi-gigabit loads, we envision Maelstrom
as a small rack-style cluster of servers, each acting as an
individual proxy. Traffic would be distributed over such a rack
by partitioning the address space of the remote data center
and routing different segments of the space through distinct
Maelstrom appliance pairs. In future work, we plan to experi-
ment with such configurations, which would also permit us to
explore fault-tolerance issues (if a Maelstrom blade fails, for
example), and to support load-balancing schemes that might
vary the IP address space partitioning dynamically to spread
the encoding load over multiple machines. For this paper,
however, we present the implementation and performance of
a single-machine appliance.

The kernel implementation is a module for Linux 2.6.20
with hooks into the kernel packet filter [33]. Maelstrom proxies
work in pairs, one on each side of the long haul link. Each
proxy acts both as an ingress and egress router at the same
time since they handle duplex traffic in the following manner:
• The egress router captures IP packets and creates redun-

dant FEC packets. The original IP packets are routed
through unaltered as they would have been originally;
the redundant packets are then forwarded to the remote
ingress router via a UDP channel.

• The ingress router captures and stores IP packets coming
from the direction of the egress router. Upon receipt of
a redundant packet, an IP packet is recovered if there is
an opportunity to do so. Redundant packets that can be
used at a later time are stored. If the redundant packet
is useless it is immediately discarded. Upon recovery the
IP packet is sent through a raw socket to its intended
destination.

Using FEC requires that each data packet have a unique
identifier that the receiver can use to keep track of received
data packets and to identify missing data packets in a repair
packet. If we had access to end-host stacks, we could have
added a header to each packet with a unique sequence number
[12]; however, we intercept traffic transparently and need to

9

route it without modification or addition, for performance
reasons. Consequently, we identify IP packets by a tuple
consisting of the source and destination IP address, IP identi-
fication field, size of the IP header plus data, and a checksum
over the IP data payload. The checksum over the payload
is necessary since the IP identification field is only 16 bits
long and a single pair of end-hosts communicating at high
speeds will use the same identifier for different data packets
within a fairly short interval unless the checksum is added to
differentiate between them. Note that non-unique identifiers
result in garbled recovery by Maelstrom, an event which will
be caught by higher level checksums designed to deal with
tranmission errors on commodity networks and hence does
not have significant consequences unless it occurs frequently.

The kernel version of Maelstrom can generate up to a
Gigabit per second of data and FEC traffic, with the input
data rate depending on the encoding rate. In our experiments,
we were able to saturate the outgoing card at rates as high
as (8, 4), with CPU overload occurring at (8, 5) where each
incoming data packet had to be XORed 5 times.

H. Buffering Requirements

At the receive-side proxy, incoming data packets are
buffered so that they can be used in conjunction with XORs
to recover missing data packets. Also, any received XOR that
is missing more than one data packet is stored temporarily,
in case all but one of the missing packets are received later
or recovered through other XORs, allowing the recovery of
the remaining missing packet from this XOR. In practice we
stored data and XOR packets in double buffered red black
trees — for 1500 byte packets and 1024 entries this occupies
around 3 MB of memory.

At the send-side, the repair bins in the layered interleaving
scheme store incrementally computed XORs and lists of data
packet headers, without the data packet payloads, resulting in
low storage overheads for each layer that rise linearly with
the value of the interleave. The memory footprint for a long-
running proxy was around 10 MB in our experiments.

I. Other Performance Enhancing Roles

Maelstrom appliances can optionally aggregate small sub-
kilobyte packets from different flows into larger ones for
better communication efficiency over the long-distance link.
Additionally, in split flow control mode they can perform
send-side buffering of in-flight data for multi-gigabyte flows
that exceed the sending end-host’s buffering capacity. Also,
Maelstrom appliances can act as multicast forwarding nodes:
appliances send multicast packets to each other across the
long-distance link, and use IP Multicast [34] to spread them
within their data centers. Lastly, appliances can take on other
existing roles in the data center, acting as security and VPN
gateways and as conventional performance enhancing proxies
(PEPs) [35].

V. EVALUATION

We evaluated Maelstrom on the Emulab testbed at Utah
[15]. For all the experiments, we used a ‘dumbbell’ topology

of two clusters of nodes connected via routing nodes with a
high-latency link in between them, designed to emulate the
setup in Figure 2, and ran the proxy code on the routers.
Figures 12 and 13 show the performance of the kernel version
at Gigabit speeds; the remainder of the graphs show the
performance of the user-space version at slower speeds. To
emulate the MTU difference between the long-haul link and
the data center network (see Section IV-A) we set an MTU
of 1200 bytes on the network connecting the end-hosts to
the proxy and an MTU of 1500 bytes on the long-haul link
between proxies; the only exception is Figure 12, where we
maintained equal MTUs of 1500 bytes on both links. Further,
all the experiments are done with Maelstrom using end-to-end
flow control (see Figure 6), except for 13, which illustrates
the performance of split mode flow control.

A. Throughput Metrics
Figures 11 and 12 show that commodity TCP/IP throughput

collapses in the presence of non-congestion loss, and that
Maelstrom successfully masks loss and prevents this collapse
from occurring. Figure 11 shows the performance of the user-
space version on a 100 Mbps link and Figure 12 shows the
kernel version on a 1 Gbps link. The experiment in each case
involves running iperf [36] flows from one node to another
across the long-distance link with and without intermediary
Maelstrom proxies and measuring obtained throughput while
varying loss rate (left graph on each figure) and one-way link
latency (right graph). The error bars on the graphs to the left
are standard errors of the throughput over ten runs; between
each run, we flush TCP/IP’s cache of tuning parameters to
allow for repeatable results. The clients in the experiment
are running TCP/IP Reno on a Linux 2.6.20 that performs
autotuning. The Maelstrom parameters used are r = 8,c = 3,
I = (1, 20, 40).

The user-space version involved running a single 10 sec-
ond iperf flow from one node to another with and without
Maelstrom running on the routers and measuring throughput
while varying the random loss rate on the link and the one-
way latency. To test the kernel version at gigabit speeds, we
ran eight parallel iperf flows from one node to another for
120 seconds. The curves obtained from the two versions are
almost identical; we present both to show that the kernel
version successfully scales up the performance of the user-
space version to hundreds of megabits of traffic per second.

In Figures 11 (Left) and 12 (Left), we show how TCP/IP
performance degrades on a 50ms link as the loss rate is
increased from 0.01% to 10%. Maelstrom masks loss up to
2% without significant throughput degradation, with the kernel
version achieving two orders of magnitude higher throughput
that conventional TCP/IP at 1% loss.

The graphs on the right side of Figures 11 and 12 show
TCP/IP throughput declining on a link of increasing length
when subjected to uniform loss rates of 0.1% and 1%. The top
line in the graphs is the performance of TCP/IP without loss
and provides an upper bound for performance on the link. In
both user-space and kernel versions, Maelstrom masks packet
loss and tracks the lossless line closely, lagging only when the
link latency is low and TCP/IP’s throughput is very high.

10

 0

 5

 10

 15

 20

 25

 0.1 1 10

Th
ro

ug
hp

ut
 (M

bp
s)

Loss Rate %

Maelstrom
TCP/IP

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (M

bp
s)

One-Way Link Latency (ms)

TCP/IP No Loss
Maelstrom No Loss

Maelstrom (0.1%)
Maelstrom (1.0%)

TCP/IP (0.1%)
TCP/IP (1.0%)

Fig. 11: User-Space Throughput against (a) Loss Rate and (b) One-Way Latency

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0.1 1 10

Th
ro

ug
hp

ut
 (M

bp
s)

Packet Loss Rate %

Maelstrom
TCP

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (M

bp
s)

One Way Link Latency (ms)

TCP No Loss
Maelstrom No Loss

Maelstrom (0.1%)
Maelstrom (1.0%)

TCP/IP (0.1%)
TCP (1% loss)

Fig. 12: Kernel Throughput against (a) Loss Rate and (b) One-Way Latency

To allow TCP/IP to attain very high speeds on the gigabit
link, we had to set the MTU of the entire path to be the
maximum 1500 bytes, which meant that the long-haul link had
the same MTU as the inter-cluster link. This resulted in the
fragmentation of repair packets sent over UDP on the long-
haul link into two IP packet fragments. Since the loss of a
single fragment resulted in the loss of the repair, we observed a
higher loss rate for repairs than for data packets. Consequently,
we expect performance to be better on a network where the
MTU of the long-haul link is truly larger than the MTU within
each cluster.

Even with zero loss, TCP/IP throughput in Figure 12 (Right)
declines with link latency; this is due to the cap on throughput
placed by the buffering available at the receiving end-hosts.
The preceding experiments were done with Maelstrom in end-
to-end flow control mode, where it is oblivious to TCP/IP and
does not split connections, and is consequently sensitive to
the size of the receiver buffer. Figure 13 shows the perfor-
mance of split mode flow control, where Maelstrom breaks a
single TCP/IP connection into three hops (see Figure 6) and
buffers data. As expected, split mode flow control eliminates
the requirement for large buffers at the receiving end-hosts.
Throughput is essentially insensitive to one-way link latency,
with a slight drop due to buffering overhead on the Maelstrom
boxes.

Figure 14 compares split mode to end-to-end mode; the

 0

 100

 200

 300

 400

 500

 600

 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

M
bp

s)

One-way link latency (ms)

Throughput as a function of latency

loss-rate=0.001

Fig. 13: Throughput of Split-Mode Buffering Flow Control
against One-Way Link Latency

left-most bar represents Maelstrom in end-to-end mode with
manually configured large buffers at end-hosts, and the second
and third bar from left are split mode and end-to-end mode,
respectively, with standard buffers at end-hosts. Split mode
performs as well with default sized buffers as end-to-end mode
performs with large end-host buffers, and much better than
end-to-end mode with default sized buffers.

11

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 0.01 0.1 1 10

D
el

iv
er

y
La

te
nc

y
(m

s)

Loss Rate %

TCP/IP
Maelstrom

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 50 100 150 200 250

D
el

iv
er

y
La

te
nc

y
(m

s)

One-Way Link Latency (ms)

TCP/IP
Maelstrom

Fig. 15: Per-Packet One-Way Delivery Latency against Loss Rate (Left) and Link Latency (Right)

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000

D
el

iv
er

y
La

te
nc

y
(m

s)

Packet #

TCP/IP: 0.1% Loss

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000

D
el

iv
er

y
La

te
nc

y
(m

s)

Packet #

Maelstrom: 0.1% Loss

Fig. 16: Packet delivery latencies

 0

 100

 200

 300

 400

 500

 600

E2E-Buf Split E2E TCP/IP

T
hr

ou
gh

pu
t (

M
bp

s)

One Way Link Latency 50ms

0.1% Loss

Fig. 14: Split vs. End-to-End Flow Control: Split with regular
buffers (Split) approximates End-to-End with large buffers
(E2E-Buf) and outperforms it with regular buffers (E2E)

B. Latency Metrics

To measure the latency effects of TCP/IP and Maelstrom,
we ran a 0.1 Mbps stream between two nodes over a 100
Mbps link with 50 ms one-way latency, and simultaneously

ran a 10 Mbps flow alongside on the same link to simulate
a real-time stream combined with other inter-cluster traffic.
Figure 15 (Left) shows the average delivery latency of 1KB
application-level packets in the 0.1 Mbps stream, as loss rates
go up.

Figure 15 (Right) shows the same scenario with a constant
uniformly random loss rate of 0.1% and varying one-way
latency. Maelstrom’s delivery latency is almost exactly equal
to the one-way latency on the link, whereas TCP/IP takes more
than twice as long once one-way latencies go past 100 ms.

Figure 16 plots delivery latency against message identifier.
A key point is that we are plotting the delivery latency of all
packets, not just lost ones. The spikes in latency are triggered
by losses that lead to packets piling up both at the receiver
and the sender. TCP/IP delays correctly received packets at the
receiver while waiting for missing packets sequenced earlier
by the sender. It also delays packets at the sender when it
cuts down on the sending window size in response to the
loss events. The delays caused by these two mechanisms
are illustrated in Figure 16, where single packet losses cause
spikes in delivery latency that last for hundreds of packets. The
Maelstrom configuration used is r = 7, c = 2, I = (1, 10).

12

 60
 65
 70
 75
 80
 85
 90
 95

 100

 0.1 1 10

Pe
rc

en
ta

ge
 o

f P
ac

ke
ts

Re
co

ve
re

d

Loss Rate %

(1,11,19) - Burst Size 1
(1,10,20) - Burst Size 1

(1,11,19) - Burst Size 10
(1,10,20) - Burst Size 10

Fig. 17: Relatively prime interleaves offer better performance

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

Pe
rc

en
ta

ge
 o

f P
ac

ke
ts

Re
co

ve
re

d

Burst Length

(1,19,41)
(1,11,19)

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25 30 35 40

Re
co

ve
ry

 L
at

en
cy

 (M
ill

ise
co

nd
s)

Burst Length

(1,19,41)
(1,11,19)

Fig. 18: Layered Interleaving Recovery Percentage and La-
tency

C. Layered Interleaving and Bursty Loss

Thus far we have shown how Maelstrom effectively hides
loss from TCP/IP for packets dropped with uniform random-
ness. Now, we examine the performance of the layered in-
terleaving algorithm, showing how different parameterizations
handle bursty loss patterns. We use a loss model where packets
are dropped in bursts of fixed length, allowing us to study the
impact of burst length on performance. The link has a one-way

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

Re
co

ve
ry

 L
at

en
cy

 (M
ill

ise
co

nd
s)

Recovered Packet #

Reed Solomon
Layered Interleaving

Fig. 21: Reed-Solomon versus Layered Interleaving

latency of 50 ms and a loss rate of 0.1% (except in Figure 17,
where it is varied), and a 10 Mbps flow of udp packets is sent
over it.

In Figure 17 we show that our observation in Section IV-E
is correct for high loss rates — if the interleaves are relatively
prime, performance improves substantially when loss rates are
high and losses are bursty. The graph plots the percentage of
lost packets successfully recovered on the y-axis against an x-
axis of loss rates on a log scale. The Maelstrom configuration
used is r = 8, c = 3 with interleaves of (1, 10, 20) and
(1, 11, 19).

In Figure 18, we show the ability of layered interleaving
to provide gracefully degrading performance in the face of
bursty loss. On the top, we plot the percentage of lost packets
successfully recovered against the length of loss bursts for
two different sets of interleaves, and in the bottom graph we
plot the average latency at which the packets were recovered.
Recovery latency is defined as the difference between the
eventual delivery time of the recovered packet and the one-
way latency of the link (we confirmed that the Emulab link
had almost no jitter on correctly delivered packets, making
the one-way latency an accurate estimate of expected lossless
delivery time). As expected, increasing the interleaves results
in much higher recovery percentages at large burst sizes, but
comes at the cost of higher recovery latency. For example,
a (1, 19, 41) set of interleaves catches almost all packets in
an extended burst of 25 packets at an average latency of
around 45 milliseconds, while repairing all random singleton
losses within 2-3 milliseconds. The graphs also show recovery
latency rising gracefully with the increase in loss burst length:
the longer the burst, the longer it takes to recover the lost
packets. The Maelstrom configuration used is r = 8, c = 3
with interleaves of (1, 11, 19) and (1, 19, 41).

In Figures 19 and 20 we show histograms of recovery
latencies for the two interleave configurations under different
burst lengths. The histograms confirm the trends described
above: packet recoveries take longer from left to right as
we increase loss burst length, and from top to bottom as we
increase the interleave values.

Figure 21 illustrates the difference between a traditional
FEC code and layered interleaving by plotting a 50-element

13

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

Fig. 19: Latency Histograms for I=(1,11,19) — Burst Sizes 1 (Left), 20 (Middle) and 40 (Right)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

 0
 20
 40
 60
 80

 100

 0 50 100 150 200

%
 R

ec
ov

er
ed

Recovery Latency (ms)

Fig. 20: Latency Histograms for I=(1,19,41) — Burst Sizes 1 (Left), 20 (Middle) and 40 (Right)

moving average of recovery latencies for both codes. The
channel is configured to lose singleton packets randomly at
a loss rate of 0.1% and additionally lose long bursts of 30
packets at occasional intervals. Both codes are configured
with r = 8, c = 2 and recover all lost packets — Reed-
Solomon uses an interleave of 20 and layered interleaving
uses interleaves of (1, 40) and consequently both have a
maximum tolerable burst length of 40 packets. We use a
publicly available implementation of a Reed-Solomon code
based on Vandermonde matrices, described in [11]; the code
is plugged into Maelstrom instead of layered interleaving,
showing that we can use new encodings within the same
framework seamlessly. The Reed-Solomon code recovers all
lost packets with roughly the same latency whereas layered
interleaving recovers singleton losses almost immediately and
exhibits latency spikes whenever the longer loss burst occurs.

VI. RELATED WORK

Maelstrom lies in the intersection of two research areas that
have seen major innovations in the last decade — high-speed
long-haul communication and forward error correction.

TCP/IP variants such as Compound TCP [37] and CUBIC
[38] use transmission delay to detect backed up routers,
replacing or supplementing packet loss as a signal of con-
gestion. While such protocols solve the congestion collapse
experienced by conventional TCP/IP on high-speed long-haul
networks, they cannot mitigate the longer packet delivery
latencies caused by packet loss, and they do not eliminate
the need for larger buffers at end-hosts.

FEC has seen major innovations in the last fifteen years.
Packet-level FEC was first described for high-speed WAN
networks as early as 1990 [39]. Subsequently, it was applied
by researchers in the context of ATM networks [40]. Interest
in packet-level FEC for IP networks was revived in 1996 [13]
in the context of both reliable multicast and long-distance

communication. Rizzo subsequently provided a working im-
plementation of a software packet-level FEC engine [11]. As
a packet-level FEC proxy, Maelstrom represents a natural
evolution of these ideas.

The emphasis on applying error correcting codes at higher
levels of the software stack has been accompanied by advances
in the codes themselves. Prior to the mid-90s, the standard
encoding used was Reed-Solomon, an erasure code that per-
forms excellently at small scale but does not scale to large sets
of data and error correcting symbols. This scalability barrier
resulted in the development of new variants of Low Density
Parity Check (LPDC) codes [41] such as Tornado [42], LT [43]
and Raptor [44] codes, which are orders of magnitude faster
than Reed-Solomon and much more scalable in input size, but
require slightly more data to be received at the decoder.

While the layered interleaving code used by Maelstrom is
similar to the Tornado, LT and Raptor codes in its use of
simple XOR operations, it differs from them in one very
important aspect — it seeks to minimize the latency between
the arrival of a packet at the send-side proxy and its successful
reception at the receive-side proxy. In contrast, codes such as
Tornado encode over a fixed set of input symbols, without
treating symbols differently based on their sequence in the
data stream. In addition, as mentioned in Section IV-C, layered
interleaving is unique in allowing the recovery latency of lost
packets to depend on the actual burst size experienced, as
opposed to the maximum tolerable burst size as with other
encoding schemes.

VII. CONCLUSION

Modern distributed systems are compelled by real-world
imperatives to coordinate across data centers separated by
thousands of miles. Packet loss cripples the performance of
such systems, and reliability and flow-control protocols de-
signed for LANs and/or the commodity Internet fail to achieve

14

optimal performance on the high-speed long-haul ‘lambda’
networks linking data centers. Deploying new protocols is
not an option for commodity clusters where standardization is
critical for cost mitigation. Maelstrom is an edge appliance that
uses Forward Error Correction to mask packet loss from end-
to-end protocols, improving TCP/IP throughput and latency
by orders of magnitude when loss occurs. Maelstrom is
easy to install and deploy, and is completely transparent to
applications and protocols — literally providing reliability in
an inexpensive box.

REFERENCES

[1] R. Habel, K. Roberts, A. Solheim, and J. Harley, “Optical Domain Per-
formance Monitoring,” in OFC 2000: The Optical Fiber Communication
Conference, Baltimore, MD, 2000.

[2] Internet2, “End-to-end performance initiative: When 99% isn’t
quite enough - educause bad connection,” http://e2epi.internet2.edu/
case-studies/EDUCAUSE/index.html.

[3] ——, “End-to-end performance initiative: Hey! where did my perfor-
mance go? - rate limiting rears its ugly head,” http://e2epi.internet2.edu/
case-studies/UMich/index.html.

[4] A. Kimsas, H. Øverby, S. Bjornstad, and V. L. Tuft, “A Cross Layer
Study of Packet Loss in All-Optical Networks,” in AICT/ICIW, Guade-
lope, French Caribbean, 2006.

[5] D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Os-
tar, M. Preiss, and A. E. Willner, “Optical Performance Monitoring,”
Journal of Lightwave Technology, vol. 22, no. 1, pp. 294–304, 2004.

[6] T. J. Hacker, B. D. Noble, and B. D. Athey, “The Effects of Sys-
temic Packet Loss on Aggregate TCP Flows,” in Supercomputing ’02:
ACM/IEEE Conference on Supercomputing, Baltimore, MD, 2002.

[7] T. J. Hacker, B. D. Athey, and B. D. Noble, “The End-to-End Perfor-
mance Effects of Parallel TCP Sockets on a Lossy Wide-Area Network,”
in IPDPS 2002: International Parallel and Distributed Processing
Symposium, Fort Lauderdale, FL, 2002.

[8] T. Lakshman and U. Madhow, “The Performance of TCP/IP for
Networks with High Bandwidth-Delay Products and Random Loss,”
IEEE/ACM Transactions on Networking (TON), vol. 5, no. 3, pp. 336–
350, 1997.

[9] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation,” ACM
SIGCOMM Computer Communication Review, vol. 28, no. 4, pp. 303–
314, 1998.

[10] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for High
Bandwidth-Delay Product Networks,” in ACM SIGCOMM, Pittsburgh,
PA, 2002.

[11] L. Rizzo, “Effective Erasure Codes for Reliable Computer Communi-
cation Protocols,” ACM SIGCOMM Computer Communication Review,
vol. 27, no. 2, pp. 24–36, 1997.

[12] ——, “On the Feasibility of Software FEC,” Università di Pisa DEIT
Technical Report LR-970116, January 1997.

[13] C. Huitema, “The Case for Packet Level FEC,” in Fifth International
Workshop on Protocols for High-Speed Networks, Sophia Antipolis,
France, 1997.

[14] M. Balakrishnan, K. Birman, A. Phanishayee, and S. Pleisch, “Ricochet:
Lateral Error Correction for Time-Critical Multicast,” in NSDI 2007:
Fourth Usenix Symposium on Networked Systems Design and Imple-
mentation, Boston, MA, 2007.

[15] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental En-
vironment for Distributed Systems and Networks,” in OSDI 2002: Fifth
Usenix Symposium on Operating Systems Design and Implementation,
Boston, MA, 2002.

[16] L. James, A. Moore, M. Glick, and J. Bulpin, “Physical Layer Impact
upon Packet Errors,” in PAM 2006: Passive and Active Measurement
Workshop, Adelaide, Australia, 2006.

[17] “Teragrid,” www.teragrid.org, 2008.
[18] “Teragrid UDP Performance,” network.teragrid.org/tgperf/udp/, 2008.
[19] P. Wefel, Network Engineer, “The University of Illinois’ National Center

for Supercomputing Applications (NCSA). Private Communication,”
Feb 2008.

[20] “Global Crossing Current Network Performance,” http:
//www.globalcrossing.com/network/network performance current.aspx,
2008.

[21] “Qwest IP Network Statistics,” http://stat.qwest.net/statqwest/statistics
tp.jsp, 2008.

[22] D. Comer, Vice President of Research and T. Boures, Senior Engineer,
“Cisco Systems, Inc. Private Communication.” October 2007.

[23] D. Wei, C. Jin, S. Low, and S. Hegde, “FAST TCP: motivation, architec-
ture, algorithms, performance,” IEEE/ACM Transactions on Networking
(TON), vol. 14, no. 6, pp. 1246–1259, 2006.

[24] C. Parsa and J. J. Garcia-Luna-Aceves, “Differentiating Congestion vs.
Random Loss: A Method for Improving TCP Performance over Wireless
Links,” in WCNC 2000: The 2nd IEEE Wireless Communications and
Networking Conference, Chicago, IL, 2000.

[25] K. Park and W. Wang, “AFEC: An Adaptive Forward Error Correction
Protocol for End-to-End Transport of Real-Time Traffic,” in ICCCN
1998: The 7th International Conference on Computer Communications
and Networks, Lafayette, LA, 1998.

[26] J. Nonnenmacher, E. Biersack, and D. Towsley, “Parity-Based Loss
Recovery for Reliable Multicast Transmission,” in ACM SIGCOMM,
Cannes, France, 1997.

[27] J. Hurwitz and W. Feng, “Initial end-to-end performance evaluation of
10-Gigabit Ethernet,” in Hot Interconnects 2003: 11th Symposium on
High Performance Interconnects, Stanford, CA, 2003.

[28] H. Lundqvist and G. Karlsson, “TCP with End-to-End Forward Error
Correction,” in IZS 2004: International Zurich Seminar on Communica-
tions, Zurich, Switzerland, 2004.

[29] H. Sivakumar, S. Bailey, and R. L. Grossman, “PSockets: The Case
for Application-level Network Striping for Data Intensive Applications
using High Speed Wide Area Networks,” in Supercomputing ’00:
ACM/IEEE Conference on Supercomputing, Dallas, TX, 2000.

[30] S. Wallace, “Tsunami File Transfer Protocol,” in PFLDNet 2003: First
International Workshop on Protocols for Fast Long-Distance Networks,
Geneva, Switzerland, 2003.

[31] E. He, J. Leigh, O. Yu, and T. A. DeFanti, “Reliable Blast UDP:
Predictable High Performance Bulk Data Transfer,” in Cluster 2002:
IEEE International Conference on Cluster Computing, Chicago, IL,
2002.

[32] S. Wicker and V. Bhargava, Reed-Solomon Codes and Their Applica-
tions. John Wiley & Sons, Inc. New York, NY, USA, 1999.

[33] “Netfilter: Firewalling, NAT and Packet Mangling for Linux,” http://
www.netfilter.org/, 2008.

[34] S. E. Deering and D. R. Cheriton, “Multicast Routing in Datagram
Internetworks and Extended LANs,” ACM Transactions on Computers
Systems (TOCS), vol. 8, no. 2, pp. 85–110, 1990.

[35] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Perfor-
mance Enhancing Proxies Intended to Mitigate Link-Related Degrada-
tions,” Internet RFC3135, June 2001.

[36] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs, “Iperf-
The TCP/UDP Bandwidth Measurement Tool,” http://dast.nlanr.net/
Projects/ Iperf , 2004.

[37] K. Song, Q. Zhang, and M. Sridharan, “Compound TCP: A scalable
and TCP-friendly congestion control for high-speed networks,” PFLDnet
2006, 2006.

[38] I. Rhee and L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant,” in PFLDNet 2005: Third International Workshop on Protocols
for Fast Long-Distance Networks, Lyon, France, 2005.

[39] N. Shacham and P. McKenney, “Packet Recovery in High-Speed Net-
works using Coding and Buffer Management,” in IEEE INFOCOM, San
Francisco, CA, 1990.

[40] E. Biersack, “Performance Evaluation of Forward Error Correction in
ATM Networks,” in ACM SIGCOMM, Baltimore, Maryland, 1992.

[41] R. Gallager and L. Codes, “Cambridge,” 1963.
[42] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,

“Efficient Erasure Correcting Codes,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 569–584, 2001.

[43] M. Luby, “LT codes,” in FOCS 2002: The 43rd Annual IEEE Symposium
on Foundations of Computer Science, Vancouver, BC, 2002.

[44] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551–2567, 2006.

