SoNIC: Precise Realtime Software Access and Control of Wired Networks

Ki Suh Lee, Han Wang, Hakim Weatherspoon
Computer Science, Cornell University

Access to the physical layer

- Valuable Information: Idle Characters
 - Each bit is ~97ps wide
- Allows Control / Capture of Interpacket Gaps
- Enlightens network research

SoNIC

- Software-defined Network Interface Card
- Goal: Control every bit in software in realtime
- Implements the PHY in software
 - Enabling control / access to every bit in realtime
 - With commodity components
 - Thus, enabling novel network research

Network Measurements

- Basics for network research
 - Generation: SoNIC controls IPGs in # of I/s
 - Capture: SoNIC captures IPGs in # of bits
- Generating/capturing 1518B packets at 9Gbps
 - With uniform IPDs = 1357 ns

Network Research Applications

- Combining Packet generation / capture
 - Characterizing network components
- Cut-through vs. store-and-forward switches

Network Characterization

- Embedding signals into IPGs.
 - Large gap: ‘1’
 - Small gap: ‘0’
- Overt data rate: 3 Gbps, Covert data rate: 250kbps
- Modulating IPGs at 100 ns scale: < 1% BER

Network Steganography

- Unprecedented access to the PHY
- Cross-network-layer research
- Precise control of IPGs
- Design and implementation of the PHY in software
- Novel scalable hardware design
- Optimizations / Parallelism

Contributions

- Measurements in large scale
 - Mini DCN with 16 boards
 - GENI testbeds
 - 40 GbE SoNIC

Status

- Measurements in large scale
 - Mini DCN with 16 boards
 - GENI testbeds
 - 40 GbE SoNIC

http://sonic.cs.cornell.edu