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ABSTRACT We give an equational proof, using Kleene algebra with tests 
and commutativity conditions, of the following classical result: every while 
program can be simulated by a while program with at most one while 
loop. The proof illustrates the use of Kleene algebra with extra conditions 
in program equivalence proofs. We also show, using a construction of Co- 
hen, that the universal Horn theory of *-continuous Kleene algebras is not 
finitely axiomatizable. 

1 Introduction 

Kleene algebras are algebraic structures with operators +,  -, *, 0, and 1 
satisfying certain axioms. They arise in various guises in many contexts: 
relational algebra [28, 34], semantics and logics of programs [19, 29], au- 
tomata  and formal language theory [25, 26], and the design and analysis of 
algorithms [1, 17, 21]. Many authors have contributed to the development 
of Kleene algebra [2, 3, 4, 5, 6, 9, 12, 18, 19, 20, 22, 24, 26, 30, 31, 32, 33]. 

In semantics and logics of programs, Kleene algebra forms an essential 
component of Propositional Dynamic Logic (PDL) [13], in which it is mixed 
with Boolean algebra and modal logic to give a theoretically appealing and 
practical system for reasoning about computation at the propositional level. 

Syntactically, PDL is a two-sorted logic consisting of programs and propo- 
sitions, defined by mutual  induction. A test ~? can be formed from any 
proposition ~; intuitively, ~? acts as a guard that  succeeds with no side 
effects in states satisfying ~ and fails or aborts in states not satisfying ~. 
Semantically, programs are modeled as binary relations on a set of states, 
and ~? is interpreted as the subset of the identity relation consisting of all 
pairs (s, s) such that  ~ is true in state s. 

From a practical point of view, many simple program manipulations, 
such as loop unwinding and basic safety analysis, do not require the full 
power of PDL, but can be carried out in a purely equational subsystem 
using the axioms of Kleene algebra. However, tests are an essential ingredi- 
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ent, since they are needed to model conventional programming constructs 
such as conditionals and wh i l e  loops. We define in w a variant of Kleene 
algebra, called Kieene algebra with tests, for reasoning equationally with 
these constructs. 

Cohen has studied Kleene algebra in the presence of extra Boolean and 
commutat ivi ty  conditions. He has given several practical examples of the 
use of Kleene algebra in program verification, such as lazy caching [10] and 
concurrency control [11]. He has also shown that  Kleene algebra with extra 
conditions of the form p = 0 remains decidable [9], but that  *-continuous 
Kleene algebra in the presence of extra commutativity conditions of the 
form pq = qp, even for atomic p and q, is undecidable [8]. 

In this paper we give two results, one of a more practical nature and 
the other theoretical. In w we give a complete equational proof of a clas- 
sical folk theorem [14, 27] which states that  every wh i l e  program can be 
simulated by another wh i l e  program with at most one wh i l e  loop, pro- 
vided extra Boolean variables are allowed. The approach we take is that  
of Mirkowska [27], who gives a set of local transformations that  allow ev- 
ery wh i l e  program to be transformed systematically to one with at most 
one w h i l e  loop. For each such transformation, we give a purely equational 
proof of correctness. This result illustrates the use of Kleene algebra with 
tests and commutat ivi ty conditions in program equivalence proofs. 

In w we observe that  Cohen's construction establishing the undecidabil- 
ity of *-continuous Kleene algebra with added commutativity conditions 
actually shows that  the universal Horn theory of the *-continuous Kleene 
algebras is not recursively enumerable, therefore not finitely axiomatizable. 
This resolves an open question of [22]. 

2 K l e e n e  A l g e b r a  

A Kieene algebra [22] is an algebraic structure 

(g, + , . ,  *, 0, 1) 

satisfying (1)-(15) below. As usual, we omit t h e .  from expressions, writing 
pq for p �9 q. The order of precedence of the operators is * > - > +;  thus 
p + qr* should be parsed as p + (q(r*)). The unary operator + is defined 
by q+ = qq*. 

p + ( q - l - r )  =- ( p + q ) + r  (1) 
p- t -q  = q + p  (2) 
p + O  = p (3) 

p + p  -= p (4) 
p(qr) = (pq)r (5) 
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iv  = p (6) 

pl = p (7) 

. ( q + r )  = p q + p r  (8) 

( p + q ) r  = p r + q r  (9) 

Op = 0 (10) 

pO = 0 (11) 

l + pp* = p* (12) 

l + p * p  = p* (13) 

q + pr  <_ r ---* p*~ S r (14) 

q + r p <  r --* qp* < r (15) 

where < refers to the natural partial order on K: 

p < q  ~ p + q = q .  

Instead of (14) and (15), we might take the equivalent axioms 

p r  < r ---* p * r  < r (16) 

rp <_ r ---* rp* _< r . (17) 

Axioms (12)-(17) say essentially that  * behaves like the Kleene star oper- 
ator of formal language theory or the reflexive transitive closure operator 
of relational algebra. See [23] for an introduction. 

A Kleene algebra is said to be *-cont inuous  if it satisfies the infinitary 
condition 

where 

pq*r = s u p p q n r  (18) 
n>_o 

qO = 1 
qn+l = qqn 

and the supremum is with respect to the natural order <. We can think of 
(18) as a conjunction of the infinitely many a x i o m s p q n r  < pq*r, n > 0, 
and the infinitary Horn formula 

A/\ pqnr  <_ s ---* pq* r < s . 

n>_O 

In the presence of the other axioms, the *-continuity condition (18) im- 
plies (14)-(17), and is strictly stronger in the sense that  there exist Kleene 
algebras that  are not *-continuous [20]. 
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All true identities between regular expressions, interpreted as regular 
sets of strings, are derivable from the axioms of Kleene algebra [22]. In the 
author 's  experience, two of the most useful such identities are 

p*(qp*)* -- ( p + q ) *  (19) 

p(qp)* = (pq)*p. (20) 

For example, to derive the more complicated identity (p 'q)* = lq-(p.-kq)*q, 
we could reason equationally as follows: 

(p 'q)* = l q-p*q(p*q)* by(12 )  

= 1 +p*(qp*)*q by (20) 

= 1 § ( p + q ) * q  by (19). 

2.1 K l e e n e  A lgebra  wi th  Tes t s  

To accommodate tests, we introduce the following variant of Kleene alge- 
bra. A Kleene algebra with tests is a two-sorted algebra 

(g ,  B, +,  . , * ,  0, 1 , - )  

where B C K and - is a unary operator defined only on B, such that  

(K, + , - ,  *, 0, 1) 

is a Kleene algebra and 

(B, + , . , - ,  0, 1) 

is a Boolean algebra. The elements of B are called tests. We reserve the 
letters p, q, r, s, t, u, v for arbitrary elements of K and a, b, c, d, e for tests. In 
PDL, a test would be written b?, but  since we are using different symbols 
for tests we can omit the ?. 

The sequential composition operator �9 acts as conjunction when applied 
to tests, and the choice operator + acts as disjunction. Intuitively, a test 
bc succeeds iff both b and c succeed, and b + c succeeds iff either b or c 
succeeds. 

It follows immediately from the definition that  b < 1 for all b E B. It 
is tempting to define tests in an arbitrary Kleene algebra to be the set 
{b E K [ b < 1}. This is the approach taken by Cohen [9]. This makes sense 
in algebras of binary relations [28, 34], but  in general the set {b E K I b ~ 1} 
may not extend to a Boolean algebra. For example, in the (min,+) Kleene 
algebra of the theory of algorithms (see [21]), b < 1 for all b, but  the 
idempotence law bb = b fails. Thus care must be taken with this approach. 

We deliberately forgo this approach in favor of the explicit Boolean sub- 
algebra in order to avoid these difficulties. Even over algebras of binary re- 
lations, we would like to admit models with programs whose inpu t /ou tpu t  
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relations are subsets of the identity (i.e,, have no side effects) but whose 
complements are nevertheless uncomputable. We intend tests b to be viewed 
as simple predicates that  are easily recognizable as such, and that  are im- 
mediately decidable in a given state (and whose complements are therefore 
also immediately decidable). 

2.2  While Programs  

For the results of w we work with a PASCAL-like programming language 
with sequential composition p;  q, a conditional test i f  b t h e n  p else  q, and 
a looping construct wh i l e  b do  p. Programs built inductively from atomic 
programs and tests using these constructs are called while programs. We 
take the sequential composition operator to be of lower precedence than 
the conditional test or wh i l e  loop, parenthesizing with b e g i n . . ,  e n d  where 
necessary; thus 

w h i l e  b do  p ; q 

should be parsed as 

b e g i n  w h i l e  b do  p e n d  ; q 

and not 

w h i l e  b do  b e g i n  p ; q e n d  

We occasionally omit the e lse  clause of a conditional test. This can be 
considered an abbreviation for a conditional test with the dummy else  
clause 1 (true). 

These constructs are modeled in Kleene algebra with tests as follows: 

p ;q  = pq 

i f b t h e n p e l s e q  = bp+bq 
i f b t h e n p  = bp +-b 

w h i l e  b d o p  = (bp)*-b. 

See [23] for further discussion. 

2 .3  C o m m u t a t i v i t y  Condi t ions  

We will also be reasoning in the presence of commutativity conditions of 
the form bp = pb, where p is an arbitrary element of the Kleene algebra 
and b is a test. T h e  practical significance of these conditions will become 
apparent in w Intuitively, the execution of program p does not affect the 
value orb. It stands to reason that  f fp  does not affect b, then neither should 
it affect b. This is indeed the case: 
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L e m m a  1 In any Kleene algebra with tests, the following are equivalent: 

(i) . b  = b. 

50 pb = bp 

5ii)  bpb + bpb = O. 

Proof. By symmetry,  it suffices to show the equivalence of (i) and (iii). 
Assuming (i), 

bpb + bpb = pbb + bbp = pO + Op = O . 

Conversely, assuming (iii), we have bpb = bpb = O, thus 

pb = ( b + ~ ) p b  = bpb+~pb = @ b + O  = bpb 
bp = bp(b + b) = bpb + bpb = bpb + O = bpb . 

[] 

Of course, any pair of tests commute, i.e., bc = cb; this is an axiom of 
Boolean algebra. 

We conclude this section with a pair of useful results that are fairly 
evident from an intuitive point of view, but nevertheless require formal 
justification. 

L e m m a  2 In any Kleene algebra with tests, if bq ~ qb, then 

bq* = (bq)*b = q*b -= b(qb)*. 

R e m a r k  Note that  i t  is not the case that bq* = (bq)*: when b = 0, the 
left hand side is 0 and the right hand side is 1. 

Proof. We prove the three inequalities 

bq* < (bq)*b < q*b < bq*; 

the equivalence of b(qb)* with these expressions follows from (20). For the 
first inequality, it suffices by axiom (15) to show that b + (bq)*bq < (bq)*b. 
By Boolean algebra and the commutat ivi ty assumption, we have bq = bbq -- 
bqb, therefore 

b+ (bq)*bq -=- b+ (bq)*bqb = ( 1 +  (bq)*bq)b = (bq)*b. 

The second inequality follows from b < 1 and the monotonicity of the 
Kleene algebra operators. 

For the last inequality, it suffices by (14) to show b + qbq* < bq*: 

b+qbq* = b+bqq* = b ( l + q q * )  = bq*.  

Note that  in this last argument, we did not use the fact that  b was a test. 
[] 



20 

T h e o r e m  3 In any Kleene algebra, i f  p is generated by a set of  elements 
all of which commute with q, then p commutes with q. 

Proof. Let p be an expression in the language of Kleene algebra, and 
assume that  all atomic subexpressions of p commute with q. The proof is 
by induction on the structure of p. The basis and all inductive cases except 
for programs of the form r* are straightforward. For the inductive case 
p = r*, we have by the induction hypothesis that  qr = rq, and we need 
to argue that  qr* = r*q. The inequality in one direction is given by the 
argument in the last paragraph in the proof of Lemma 2, which uses (14), 
and in the other direction by a symmetric argument using (15). [] 

3 A Folk Theorem 

In this section we give an equational proof, using Kleene algebra with tests 
and commutat ivi ty  conditions, of a classical result: every w h i l e  program 
can be simulated by a w h i l e  program with at most one w h i l e  loop, pro- 
vided eztra Boolean variables are allowed. This theorem is the subject of a 
treatise on folk theorems by Harel [14], who notes that  it is commonly but  
erroneously at tr ibuted to BShm and Jacopini [7], and argues with some 
justification that  it was known to Kleene. The version as stated here is 
originally due to Mirkowska [27], who gives a set of local transformations 
that  allow every wh i l e  program to be transformed systematically to one 
with at most one wh i l e  loop. We consider a similar set of local transfor- 
matious and give a purely equational proof of correctness for each. This 
result illustrates the use of Kleene algebra with tests and commutat ivi ty 
conditions in program equivalence proofs. 

It seems to be a commonly held belief that  this result has no purely 
schematic (i. e., propositional, uninterpreted) proof [14]. The proofs of [15, 
27], as reported in [14], use extra variables to remember certain values at 
certain points in the program, either program counter values or the values of 
tests. Since having to remember these values seems unavoidable, one might 
infer tha t  the only recourse is to introduce extra variables , along with an 
explicit assignment mechanism for assigning values to them. Thus, as the 
argument goes, proofs of this theorem cannot be purely propositional. 

We do not agree completely with this conclusion. The only purpose of 
these extra variables is to preserve values across computations. In our treat- 
ment,  we only need to preserve the values of certain tests b over certain 
computations p. We can handle this equationally by introducing a new test 
c, which we can assume is set to the value of b in some precomputation,  
and postulating a commutat ivi ty condition of the form ep = pc, which says 
intuitively that  the value of c is not affected by the execution of p. No 
explicit assignment mechanism is necessary; we just  assume that  e already 
has the correct value. 
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3.1 A n  E x a m p l e  

To illustrate this technique, consider the simple program 

i f  b t h e n  b e g i n  p ; q e n d  (21) 
e l se  b e g i n  p ; r e n d  

If  the value of b were preserved by p, then we could rewrite this program 
more s imply as 

p ; i f  b t h e n  q e lse  r (22) 

Formally, the assumption that  the value of b is preserved by p takes the 
form of the commuta t iv i ty  condition bp = pb. By Lemma  1, we also have 
bp = pb. Expressed in the language of Kleene algebra, the equivalence of 
(21) and (22) becomes the equation 

bpq + = p(bq + 

This identi ty can be established by simple equational reasoning: 

p(bq+br)  = pbq+pbr by (8) 

= bpq + bpr by the commutat iv i ty  assumptions.  

But what  if b is not preserved by p? This situation seems to call for a 
Boolean variable to remember  the value of b across p, and an assignment 
mechanism to set the value of the variable. However, we do not need to 
take such a drastic step. We can stay within the realm of uninterpreted 
equational logic by introducing a new atomic test c and commuta t iv i ty  
condition pc = cp, intuitively modeling the idea that  c tests a variable tha t  
is not modified by p. We make the program (22) test c instead of b. We then 
preface bo th  programs with the guard bc + b-5 (in the language of w h i l e  
programs,  i f  b t h e n  c e lse  ~) which asserts that  initially b and c have 
the same value. Intuitively, we are assuming that c has already been set to 
the value of b in some (omitted) precomputation. We can even include an 
a tomic program s and pretend that  s performs this precomputat ion if we 
like, al though this is not really necessary: if the two programs are already 
equivalent without the s in front, then they are certainly equivalent with 
it. 

We can now give a purely equational proof of the equivalence of the two 
programs 

bc + b-~; 
i f  b t h e n  b e g i n  p ; q e n d  (23) 

e lse  b e g i n  p ; r e n d  

and 

bc + ~-~; 
p ; i f  c t h e n  q e lse  r (24) 
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using the axioms of Kleene algebra with tests and the commutativi ty con- 
ditions pc = cp and p'~ = cp. Expressed in the language of Kleene algebra, 
the equivalence of (23) and (24) becomes 

(be + b-d)(bpq + bpr) = (bc + b-d)p(cq + -dr) . (25) 

Using the distributive laws (8) and (9) and the laws of Boolean algebra, we 
can simplify the left hand side of (25) as follows: 

(be +  e)(bpq +  pr) = bcbpq +  -dbpq + bc pr +  -db-p  
= bcpq + b-dpr . 

The right hand side of (25) simplifies in a similar fashion to the same 
expression: 

(be + b-d)p(cq + -dr) = bcpcq + bep~q + b~p-dr + b-dp-dr 

= bccpq + b-dcpq -I- bc-dpr + b~-~pr 

= bcpq + b'~pr . 

Here the commutativi ty assumptions are used in the second step. 
We can even do away with the guard bc + b~ in this argument by the 

following consideration. If we assume that  c is assigned the value of b in 
the precomputation in both programs, then we might as well test c instead 
of b in (23) as well as (24). But then we don't  need the guard at all, since 
the two programs are already equivalent without it by the original two-line 
proof given at the beginning of this section with b replaced by c. 

3 . 2  N o r m a l  F o r m  

A program is in normal  f o rm  if it is of the form 

p ; wh i l e  b do  q (26) 

where p and q are while-free. The subprogram p is called the precomputa- 
tion of the normal form. 

We show that  every program can be transformed to a program in nor- 
mal form. This is done inductively on the structure of the program. Each 
programming construct accounts for one case in the inductive proof, and 
we consider each case separately. For each case, we give a transformation 
that  moves an inner wh i l e  loop to the outside and an equational proof of 
its correctness. 

3 . 3  C o n d i t i o n a l  

We first show how to move two programs in normal form in the t h e n  and 
e lse  clauses of a conditional, respectively, outside the conditional. Consider 
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the program 

i f  b t h e n  b e g i n  Pl ; wh i l e  C 1 do  ql e n d  
else  b e g i n  p~ ; wh i l e  c2 do  q2 e n d  (27) 

We can assume without loss of generality that  b commutes with Pl, P2, ql, 
and q2. If not, we could introduce a new test whose value would be set 
to the value of b in the preeomputation, then use it in place of b in the 
conditional test, as described in w 

Under these assumptions, we show that  (27) is equivalent to 

i f  b t h e n  Pl else P2 ; 
wh i l e  bcl + -be2 do  

i f  b t h e n  ql e lse  q2 
(28) 

Note that  if the two programs in the t h e n  and else  clauses of (27) are in 
normal form, then (28) is in normal form. 

Written in the language of Kleene algebra, (27) becomes 

(29) 

and (28) becomes 

(bpl+bp2)((bcl +bc2)(bql+bq2))*bcl+bc2. (30) 

The subexpression bcl + bc2 of (30) is equivalent by propositional reasoning 
to b~l + b~2- Here we have used the familiar propositional equivalence 

= 

and a De Morgan law. The starred expression in (30) can be simplified 
using distributivity and Boolean algebra: 

(bcl + -bc2)(bq~ + bq2) = bclbql + bcl-bq2 + -bc2bql + bc2bq2 
= bclql +bc2q2 . 

Substituting these simplified expressions in the original expression (30), we 
obtain 

(@1 + bp2)(bClql .4- -bc2q2)* (b-dl .4- be2) �9 (31) 

Using distributivity, this can be broken up into the sum of four terms: 

bpl ( bcl ql -4" "bc2 q2 ) * b-dl 
+ bpl(bclql +bc2q2)*b~2 
+ bp2(bclql + -bc2q2)*b-51 
+  p2(bclal + 

(32) 

(33) 

(34) 
(35) 
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Under the commutativity assumptions, Lemma 2 implies that (33) and (34) 
reduce to 0; and for the remaining two terms (32) and (35), 

bpl(bclqlA-bc2q2)*b~l = 

bp~(bClql+bc2q2)*bc2 = 

The sum ofthese two terms is (29). 

bpl(bbclql "4- bbc2q2)* cl 
bpl(Clql)*~l 

bp2(bbclql'4-b-bc2q2)*E2 

2.4 Nested Loops 

We next consider the case that is perhaps the most interesting: denesting 
two nested while  loops. This construction is particularly remarkable in 
that no commutativity conditions (thus no extra variables) are needed; 
compare the corresponding transformations of [15, 27], as reported in [14], 
which do use extra variables. 

We show that the program 

while b do beg in  

P; (36) 
while e do q 

end  

is equivalent to the program 

i f  b then begin 
P; 
while b + e do (37) 

i f  c t hen  q else p 
end 

This construction transforms a pair of nested while loops to a single while 
loop inside a conditional test. No commutativity conditions are assumed in 
the proof. 

After this transformation, the while loop can be taken outside the con- 
ditional using the transformation of w (this part does require a commu- 
tativity condition). A dummy normal form such as 1; while  0 do  1 can be 
supplied for the missing else clause. Note that if the program inside the 
b e g i n . . ,  end  block of (36) is in normal form, then the resulting program 
will be in normal form. 

Not surprisingly, the key property used in the proof is the denesting prop- 
erty (19), which equates a regular expression of *-depth two with another 
of *-depth one. 

Translating to the language of Kleene algebra, (36) becomes 

(bp(cq)*~)*b (38) 
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and (37) becomes 

bp((b + c)(cq + -dp))*b + c + b . (39) 

The b in (39) is for the nonexistent else clause of the outermost conditional 
of (37). Unwinding the outer loop in (38) using (12) and distributing b over 
the resulting sum, we obtain 

+ bp(cq)*'~(bp(cq)*-d)*-b. 

Removing b and bp from this expression and (39), it suffices to show 

(cq)*-5(bp(cq)*-f)*b ..= ((b + e)(cq -4- -bp))*b + c .  

Using (20) on the left hand side and propositional reasoning on the right, 
this simplifies to 

(cq)*(-~bp(cq)*)*'f6 = ((b + c)(cq + -@))*-~ . 

Removing the ~b on both sides, this further simplifies to 

(cq)*(-dbp(cq)*)* = ((b + c)(cq + @))* . (40) 

Now here is the key step at which the loop is denested. Applying (19) to 
the left hand side of (40), we obtain 

(eq +-e@)* = ((b + c)(cq + @))*, 

so it suffices to show the equivalence of the subexpressions 

cq -4" -~bp -=- (b + c)(cq + -~p) . 

The right hand side is easily transformed to the left using the basic laws of 
Kleene and Boolean algebra: 

(b + e)(eq + -dp) =- bcq -4- b-bp + ccq -4- e'bp 

= bcq + cq +-6bp 

= (b+ 1)cq+-6bp 

= cq + -~bp . 

3 .5  E l i m i n a t i n g  P o s t c o m p u t a t i o n s  

We wish to show that  a program occurring after a whi le  loop can be 
absorbed into the whi l e  loop. Consider a program of the form 

wh i l e  b do p;  q (41) 
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By introducing a new test if necessary, we can assume without loss of 
generality that  b commutes with q. (Intuitively, the value of the new test 
will have to be set implicitly both in the precomputation and at the end of 
p. Formally, we would establish the equivalence of the two programs 

(bc + b~) ; whi le  b do beg in  p ; (bc + -b'd) e n d  

(bc + bE) ; whi le  c do  b e g i n  p ; (bc + b'6) e n d  

We leave this as an exercise.) Under this assumption, we show that  the 
program (41) is equivalent to the program 

i f  b t h e n  q 
e lse  w h i l e  b do  b e g i n  

p; (42) 
i f  b t h e n  q 

e n d  

Note that  if p and q are while-free, then (42) consists of a program in 
normal form inside a conditional, which can be transformed to normal 
form using the construction of w 

Written in the language of Kleene algebra, (41) becomes 

and (42) becomes 

(bp)*bq (43) 

+ b(bp($q + (44) 

Unwinding one iteration of (43) using (12) and distributing bq over the 
resulting sum, we obtain 

+ bp(bp)* q . 

By distributivity, (44) is equivalent to 

-bq + b(bp'bq + bpb)*b . 

Eliminating the term bq from both sides, it suffices to  prove 

bp(bp)*bq -- b(bpbq + bpb)*b . (45) 

At this point we seem to have reached an impasse, since b does not nec- 
essarily commute with p, so Lemma 2 does not apply. The trick here is to 
use the denesting rule (19) in the wrong direction. Starting with the right 
hand side, 

b(bpbq + bpb)*-b 
= b(bpb)*(bpbq(bpb)*)*b by (19) 



27 

= (b@)*b(b~q(1 + @b(@b)*))*~ 
= (@)*b(b~q + bp~q@b(@b)*)*~ 

= (bp)*b(bp-bq)*-6 

: (bp)*b(1 + bp-bq(1 + bpbq(bp-bq)*))b 
= (bp)*(b-b + bp-bq-6 + bpbqbpbq(bp-bq)*-b) 
-: (bp)*bp-bq-b 
= @(@)*~q 

by (20) and (12) 

since bqb = "bbq = 0 

by (12) 

since bb = bqb = 0 

by (20). 

3. 6 Composition 
The composition of two programs in normal  form 

Pl ; 
w h i l e  bl do  ql ; 

P2 ; 
w h i l e  b2 do  q2 

(46) 

can be t ransformed to a single program in normal form. We have actually 
already done all the work needed to handle this case. First, we use the result 
of w to absorb the while-free program p~ into the first w h i l e  loop. We 
can also ignore Pl, since it can be absorbed into the precomputat ion of the 
resulting normal  form when we are done. It  therefore suffices to show how 
to t ransform a program 

w h i l e  b d o  p ; (47) 
w h i l e  c d o  q 

to normal  form, where p and q are while-free.  
As argued previously, we can assume without loss of generality tha t  the 

test b commutes  with the program q by introducing a new test if necessary 
and assuming tha t  its value is set in the precomputat ion and at the end 
of p. Since b also commutes with c by Boolean algebra, by Theorem 3 we 
have tha t  b commutes  with the entire second wh i l e  loop. This allows us to 
use the t ransformat ion of w absorbing the second wh i l e  loop into the 
first. The resulting program looks like 

i f  b t h e n  w h i l e  c d o  q 
e l se  w h i l e  b d o  b e g i n  

P;  
i f  b t h e n  w h i l e  c do  q 

e n d  

(48) 

At this point we can apply the t ransformation of w to the subprogram 

i f  b t h e n  w h i l e  c d o  q 
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using a dummy normal form for the omitted else clause, giving two nested 
loops in the else clause of (48); then the transformation of w to the else 
clause of (48); finally, the transformation of w to the entire resulting 
program, yielding a program in normal form. 

The transformations of w167 give a systematic method for moving 
while loops outside of any other programming construct. By applying 
these transformations inductively from the innermost loops outward, we 
can transform any program into a program in normal form. 

None of these arguments needed explicit Boolean variables or any as- 
signment mechanism. Where did they go? Of course they would be there 
in a real implementation, but they do not play a role in the proofs because 
they are hidden in "without loss of generality..." assumptions. The point 
is that it is not significant exactly how a Boolean value is preserved across 
a computation, but rather that it can be preserved; and for the purposes 
of formal verification, this fact is completely captured by a commutativity 
assumption. Thus we are justified in our claim that we have given a purely 
equational proof of this result. 

4 Undecidability 

Cohen [8] has shown that *-continuous Kleene algebra with extra commu- 
tativity conditions of the form pq = qp is undecidable. We reproduce his 
construction below. 

Theo rem 4 (Cohen)  It is undecidable whether a given identity holds in 
all *-continuous Kleene algebras satisfying a given finite se~ of identities of 
the form pq = qp. 

Proof. We encode Post's Correspondence Problem (PCP) (see [16]). Let 
I be an instance of PCP consisting of k pairs of strings xi ,yi  E {p,q}+, 
1 < / < k, where p and q are atomic symbols. For c~ E {1, . , . ,  k}*, define 
xq inductively by 

and define ya similarly. A solution to the instance I of PCP is a string 
E {1, . . . ,k}  + such that x~ = y~. 
Let {p', q'} be a disjoint copy of {p, q}, and let z' e {p~, q'}* denote the 

image of the string z E {p, q}* under the homomorphism p ~-. p~, q ~-. q'. 
Consider the commutativity conditions 

uv' = v 'u ,   ,ve {p ,q} .  (49) 
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Let s and  t be  the  expressions 

X t 

t = iPP' + qq ' )* i (P+ q)+ + (P' + q')+ + (Pq' + qP') iP+ q +P '  + q')*) �9 

Intui t ively,  m o d u l o  the  c o m m u t a t i v i t y  condit ions (49), the  regular  expres- 
sion s represents  the set of  all ' z~y~,  and the regular  expression t denotes 
the  set of  all non-solut ions  to I .  

We c la im t h a t  the  inequal i ty  s < t is a logical consequence of the iden- 
t i t ies (49) and  the  ax ioms  of *-continuous Kleene a lgebra  if and only if 
the  ins tance  I of  P C P  has no solution. In other  words, the universal  Horn  
fo rmu la  

ppl = pJp A pql = qt p A qpl = plq A qql = qlq -+ s < t 

holds in all *-cont inuous Kleene algebras  iff I has no solution. 
Suppose  I h a s n o  solution. For a E { 1 , . . . ,  k} +, let ~ = c q a 2 - - -  crn where 

n >_ 1 and  each ~i E { 1 , . . . , k } ,  1 < i < n. Let z be the longest c o m m o n  
prefix of  x~ and y~. By the c o m m u t a t i v i t y  conditions, z~y~ is equivalent  to 
a s t r ing of the  fo rm zz~pqJw or zz~qp~w for w an a rb i t r a ry  string, or zz~w 
for w a nonnul l  s t r ing of all p r imed  or all unpr imed  symbols .  There  are 
no o ther  possibili t ies,  since ~ is not  a solut ion to I .  By the c o m m u t a t i v i t y  
condi t ions and Kleene algebra,  all such strings can be shown to be less t han  
or equal  to  t. By  [21, pp.  221,246],  s is the s u p r e m u m  of all these elements,  
therefore  s < t. 

Conversely,  if  I has a solut ion a = c~lc~2-..c~n E { 1 , . . . , k }  ~, n > 1, 
say ~ = y~ = z, we c la im t h a t  s < t is not  a logical consequence of (49) 
and the  ax ioms  of *-continuous Kleene algebra.  I t  suffices to construct  a 
�9 -cont inuous  Kleene a lgebra  sat isfying i49) in which s ~ t. Consider the 
Kleene a lgebra  of b inary  relat ions on the set of strings {p, q}* U {p', q'}*, 
where the  opera to r s  have their  s t andard  re la t ion- theoret ic  in terpre ta t ions .  
We in terpre t  the  symbols  p, q, p ' ,  q~ as follows: 

u = {i x , x u )  l x E { p , q } * } U { i u ' x  ' , x ' )  I x E { p , q } * } ,  u E { p , q }  

u '  = {i x ' , x ' u ' ) l x E { p , q } * } w { ( u x , x ) i x E { p , q } * }  , u E { p , q } .  

Let e = {i r e)}. I t  is s t ra ight forward  to verify t ha t  the equat ions  i49) hold 
in this model ,  and t ha t  epp' = eqq' = e. I t  follows tha t  eiP p' + qq~)* = e 
and ezzle = e. Since zz  I = x~y~ < s, we have e < ese, therefore ese # 0. 

Now it also follows tha t  epq' = eqp' --- 0 and eip+q)+ e = eiP' +q')+ e = O, 
therefore  

ete = e(i p + q ) +  + i p '  +q ' )+  +(pq '  + q p ' ) i p + q + p '  + q ' ) * ) e  

-= eiP + q)+e -4- eiP' -4- q')+e A- eipq' -4- qP')iP -t- q + p' -t- q')* e 

O. 

Since ese # 0 and ete = O, we cannot  have s < t. [] 
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Let H(KA) (respectively, H(KA*)) denote the universal Horn theory 
of the Kleene algebras (respectively, the *-continuous Kleene algebras). 
Cohen's proof establishes more than just the undecidability of H(KA*): it 
actually shows that H(KA*) is not recursively enumerable, therefore not 
finitely axiomatizable. This is because his proof gives a many-one reduction 
of PCP to the complement of H(KA*); i.e., the given instance of PCP is 
satisfiable iff the resulting Horn formula is no~ valid. Since PCP is r.e.- 
complete, its complement is not r.e., therefore neither is H(KA*). This 
answers an open question of [22], which asked whether the axioms of Kleene 
algebra were complete for H(KA*); in other words, do H(KA) and H(KA*) 
coincide? The answer is no: the former is recursively enumerable (it is a 
universal Horn theory), whereas the latter is not. 

5 Related Results and Open Problems 

Using [21, pp. 221,246], it can be shown that the equational theory of *- 
continuous Kleene algebras with tests is complete for relational models, and 
also admits a free language-theoretic model consisting of sets of "guarded 
strings". Using this result and a technique based on [22], it can be shown 
that the equational theories of Kleene algebras with tests and *-continuous 
Kleene algebras with tests coincide. This result is the analog of [22] for the 
case of Kleene algebras with tests. 

Although Theorem 4 shows that *-continuous Kleene algebra with gen- 
eral commutativity conditions is undecidable, the only commutativity con- 
ditions needed in the proof of w are of the form bq = qb, where b is a test. 
Lemma 1 shows that these conditions are equivalent to conditions of the 
form p = 0. Cohen [9] shows that Kleene algebra with conditions p = 0 
reduces efficiently to Kleene algebra without conditions. A construction 
similar to Cohen's can be used to show that Kleene algebra with tests and 
conditions p = 0 reduces efficiently to Kleene algebra with tests alone, and 
similarly for *-continuous Kleene algebra with tests. 

The following interesting questions present themselves: 

1. The equational theory of Kleene algebras with tests can be shown 
decidable by a simple reduction to PDL. What is its complexity? It 
is at most deterministic exponential time (since PDL is) and at least 
PSPACE-hard (since the equational theory of Kleene algebras is). 
We conjecture that it is PSPACE-complete. 

2. What is the complexity of H(KA*)? It is not r.e., but how high does 
it go? 

3. By the results of w there must exist a universal Horn sentence that is 
true in all *-continuous Kleene algebras but violated in some Kleene 
algebra. Is there a natural example of such a sentence? 
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