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NATURAL TRANSFORMATIONS AS REWRITE RULES

AND MONAD COMPOSITION

DEXTER KOZEN

Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA
e-mail address: kozen@cs.cornell.edu

Abstract. Eklund et al. (2002) present a graphical technique aimed at simplifying the
verification of various category-theoretic constructions, notably the composition of monads.
In this note we take a different approach involving string rewriting. We show that a given
tuple (T,µ, η) is a monad if and only if T is a terminal object in a certain category of
strings and rewrite rules, and that this fact can be established by proving confluence of
the rewrite system. We illustrate the technique on the monad composition problem. We
also give a characterization of adjunctions in terms of rewrite categories.

In honor of Jiř́ı Adámek on the Occasion of his Seventieth Birthday

1. Introduction

As common constructions in the theory of data types and programming language semantics
become better understood, there is a natural tendency toward generality. One desires to
isolate common underlying principles, to unify related notions in a common framework, and
to provide powerful abstract tools for reasoning and understanding.

A good example of one successful such enterprise is the use of monads in functional
and logic programming [3, 7, 11, 17]. Monads provide a clean way to combine modules or
extend functionality of programming languages or data structures with new features such
as continuations, state, and concurrency [6, 8, 11, 17]. They have been applied to parsing
and type checking [16], semantics of nondeterministic and probabilistic computation [11–13],
and unification in logic programming [14].

Unfortunately, greater abstraction is often accompanied by reduced accessibility. Many
abstract constructions, although well motivated by applications, may at times be difficult
to navigate when presented in more abstract form. In particular, reasoning about the basic
properties of monads—such as monad composition, the construction that underlies many of
the applications above—relies on the combinatorial manipulation of functors and natural
transformations. Verification often requires a complicated process of arrow chasing in large
diagrams. Specialized verification tasks such as the following example from [4] are not
uncommon.
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There are several general accounts of monad composition in the literature [3, 7, 10]. In
particular, Eklund et al. [7] make note of the difficulty of monad composition proofs and
present a graphical technique aimed at simplifying the process. Their technique provides a
pictorial representation of various constructions.

In this note we take a different approach involving string rewriting. We show that a
given tuple (T,µ, η) is a monad if and only if T is a terminal object in a certain category
whose objects are strings and whose morphisms are rewrite rules, and the fact that T
is terminal can be established by proving confluence of the string rewriting system. We
illustrate the technique on the monad composition problem studied by Eklund et al. We
also give a characterization of adjoint functors in terms of rewrite categories.

2. Preliminaries

Let C,D be categories. Recall that a natural transformation ϕ ∶ F → G between functors
F,G ∶ C → D is a collection of morphisms ϕA ∶ FA → GA of D, one for each object A of C,
such that for any morphism h ∶ A → B of C, the following diagram commutes:

FA FB

GA GB

Fh

ϕA

Gh

ϕB (2.1)

Categories, functors, and natural transformations form a 2-category Cat in which the 0-
cells (objects) are the categories, the 1-cells (morphisms) are the functors, and the 2-cells
(morphisms of morphisms) are the natural transformations.

In a general 2-category, composition of 1-cells and composition of 2-cells are called hor-

izontal and vertical composition, respectively, and are often denoted ○0 and ○1, respectively;
but we will usually write ○ for ○1 and omit the ○0 altogether. Horizontal composition also
acts on 2-cells and satisfies the property: If F1, F2, F3 ∶ C → D and G1,G2,G3 ∶ D → E are
1-cells and ϕ ∶ F1 → F2, ϕ

′ ∶ F2 → F3, ψ ∶ G1 → G2, and ψ
′ ∶ G2 → G3 are 2-cells, then

(ψ′ ○ψ)(ϕ′ ○ϕ) = (ψ′ϕ′) ○ (ψϕ). (2.2)

A special case of the action of horizontal composition on 2-cells is the following. If
S ∶ D→ E, F,G ∶ C → D, and T ∶ B→ C are 1-cells and ϕ ∶ F → G is a 2-cell, there is a 2-cell
SϕT ∶ SFT → SGT obtained from the horizontal composition of ϕ with the identities idS

on the left and idT on the right. It is helpful to think of this operation as a kind of scalar
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multiplication. It satisfies the following properties:

Iϕ = ϕ = ϕI

(SS′)ϕ = S(S′ϕ) ϕ(TT ′) = (ϕT )T ′

S(ϕ ○ ψ) = Sϕ ○ Sψ (ϕ ○ ψ)T = ϕT ○ψT. (2.3)

Thus we can write SS′ϕ and ϕTT ′ without ambiguity.

Example 2.1. In the 2-category Cat, if S and T are functors and ϕ is a natural trans-
formation with components ϕA, then SϕT is the natural transformation with components
(SϕT )A = S(ϕTA).

It follows from (2.3) that the commutativity of diagrams is preserved under scalar
multiplication; that is, if the left-hand diagram in (2.4) commutes, then so does the right:

F G

X Y

ϕ

ψ

σ

τ

SFT SGT

SXT SY T

SϕT

SψT

SσT

SτT (2.4)

From these observations, one can begin to see the motivation for viewing natural trans-
formations as rewrite rules: a rewrite rule ϕ ∶ F → G can be applied in the context of a string
SϕT ∶ SFT → SGT . For this to make sense, though, it had better be the case that the
diamond property holds for non-overlapping redexes; that is, it must be possible to apply
two rewrite rules with non-overlapping redexes in either order. We will see later (Lemma
3.5) that this is indeed the case, and in fact holds in all 2-categories as a consequence of
(2.2).

3. Rewrite Categories

A rewrite category is like a string rewrite system, except the semantics of the derivations
are taken into account in the definitions of confluence and local confluence.

Formally, a rewrite category is defined in terms of a finitely presented 2-category
(O,F ,R,E), where O, F , and R are finite sets of 0-cells, 1-cells, and 2-cells, respectively,
and E is a finite set of well-typed equations between 2-cell-valued expressions over F and R
generating an equational theory on 2-cells. The 1-cells do not satisfy any equations except
those imposed by the axioms of category theory, thus form the free category (free typed
monoid) freely generated by F . Each 1-cell corresponds to a well-typed string F1⋯Fn, where
well-typed means domFi = codFi+1, 1 ≤ i ≤ n − 1. We denote by F∗ the set of all well-typed
strings over F . The elements of R are called rewrite rules and generate the set of all 2-cells
under horizontal (○0) and vertical (○1) composition.

The rewrite category itself is a substructure of the category of 1- and 2-cells of this
finitely presented 2-category. It is specified by a tuple (A;R′), where R′ ⊆R and A is any
subset of F∗ closed under the action of R′.

Rewrite categories provide a syntax that can be interpreted in the 2-category Cat of
categories, functors, and natural transformations. A well-typed string F1⋯Fn is interpreted
as a functor domFn → codF1, where concatenation of strings is interpreted as composition of
functors. The rewrite rules describe the action of natural transformations on these strings.
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The equations E generating the equational theory of the 2-category typically represent
an equational axiomatization of the construct under study. However, from the perspective of
string rewriting, they serve a different purpose: they represent local confluence conditions
that can be used to establish global confluence in the rewrite category, leading to the
existence of terminal objects.

Example 3.1. Recall that a monad on a category C is a triple (T,µ, η), where T is an
endofunctor on C and µ ∶ T 2 → T and η ∶ I → T are natural transformations such that
µ ○ µT = µ ○ Tµ and µ ○ ηT = µ ○ Tη = id; that is, the diagrams

T 3 T 2

T 2 T

Tµ

µT

µ

µ

T T 2

T 2 T

Tη

ηT
id

µ

µ (3.1)

commute. A typical example is the powerset monad (P,µP , ηP ) on Set, where PA is the
powerset of A, ηPA(x) = {x}, and µ

P
A(C) = ⋃C.

Monads are characterized by a rewrite category (T ∗;η,µ), where T ∗ is the free monoid
on one generator T with rewrite rules η ∶ I → T and µ ∶ T 2 → T . The underlying 2-category
has one 0-cell. The equational theory on 2-cells is given by the defining equations for monads
(3.1).

The properties (3.1) completely axiomatize the equational theory of monads, but more
importantly from the from the point of view of rewriting, they specify local confluence
properties in the case of overlapping redexes. For example, the string T 3 contains two
overlapping redexes for the rule µ. The left-hand diagram of (3.1) specifies that this con-
figuration satisfies the diamond property.

We will show later (Theorem 4.2) that T is a terminal object in the rewrite category,
and that this fact is equivalent to the axiomatization (3.1).

Example 3.2. The composition of monads is characterized by a rewrite category

({P,T}∗;ηP , µP , ηT , µT , θ),

where {P,T}∗ is the free monoid on two generators P,T . As in Example 3.1, the under-
lying 2-category has one 0-cell. The equational theory is given by the axiomatization of
two monads on endofunctors P and T , respectively, and a distributive law θ ∶ TP → PT

connecting them. We will give more details in §4.2. Again, the axioms can be viewed as
local confluence properties for overlapping redexes in the rewrite category.

Example 3.3. Adjunctions are characterized by a rewrite category (F (GF )∗∪G(FG)∗;η, ε).
In this example, the underlying 2-category has two 0-cells C,D representing two categories,
1-cells F ∶ C → D and G ∶ D → C representing left and right adjoint functors, respectively,
and 2-cells η ∶ I → GF and ε ∶ FG → I representing the unit and counit of the adjunction,
respectively.

3.1. Local Confluence and Normal Forms. Given a 1-cell SXT and a rule ϕ ∶ X → Y

of a rewrite category, the scalar multiple SϕT ∶ SXT → SY T can be viewed as rewriting the
indicated occurrence of X to Y in the context of the string SXT . This is called a reduction.
The redex of the reduction SϕT is the substring X of SXT . A sequence of reductions from
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Y to Z is called a derivation. We write π ∶ Y
∗

→ Z if π is such a derivation. A string is in
normal form if no rules apply.

The rules R of the rewrite category each have a type X → Y for various X,Y ∈ F∗,
where domX = domY and codX = codY . Applying these rules to strings in F∗, one can
generate diagrams in the rewrite category. We say that the system R

● is confluent if for any two derivations X
∗

→ U and X
∗

→ V , there is a word W and

derivations U
∗

→W and V
∗

→W such that the resulting diagram commutes;
● is locally confluent if for any two single reductions X → U and X → V , there is a word

W and derivations U
∗

→W and V
∗

→W such that the resulting diagram commutes; and
● has the diamond property if for any two reductions X → U and X → V , there is a word
W and reductions U →W and V →W such that the resulting diagram commutes. This
might be a pushout in the rewrite category, but not necessarily.

Local confluence does not imply confluence, but the diamond property does. See [2] for a
thorough treatment of these concepts.

Note, however, that our reductions have semantic content as well as syntactic. In our
definitions of confluence, local confluence, and the diamond property, it is not enough that
two derivations derive the same word; the resulting diagrams must also commute in the

rewrite category. We say that two derivations X
∗

→ Y are equivalent if the composition of
the 2-cells along the two paths are equal.

Example 3.4. One of the defining properties for monads, namely the left-hand diagram of
(3.1), says that µ as a reduction rule can be applied to the string T 3 in two ways to obtain
T 2: one way as µT to the leftmost two occurrences of T (the left arrow of the diagram) and
the other as Tµ to the rightmost (the top arrow), in both cases giving T 2. By applying µ
again to the two occurrences of T 2, we obtain a commutative diamond.

By (2.4), we can compose on the left and right with any strings in T ∗:

Tm+n+3 Tm+n+2

Tm+n+2 Tm+n+1

Tm+1µTn

TmµTn+1

TmµTn

TmµTn (3.2)

This says that any two reductions involving the rewrite rule µ with overlapping redexes,
applied anywhere in a string of length at least three, can be completed to a commutative
diamond.

For nonoverlapping redexes, the diamond property always holds. This is a consequence
of property (2.2) of 2-categories.

Lemma 3.5. Any two applications of rewrite rules with disjoint redexes can be applied in

either order, and the resulting diagram commutes. That is, any well-typed diamond of the

form

PQRST PQRY T

PXRST PXRY T

PQRτT

PσRST

PXRτT

PσRY T (3.3)

commutes, where P,Q,R,S,T,X,Y are 1-cells and σ ∶ Q →X and τ ∶ S → Y are 2-cells.
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Proof. It follows from property (2.2) of 2-categories that if ϕ ∶ F → G and ψ ∶M → N are
2-cells and the following diagram is well-typed, then it commutes.

FM FN

GM GN

Fψ

ϕM

Gψ

ϕN
ϕψ

(3.4)

(In fact, (2.2) is equivalent to (2.3) and (3.4).) The diagram (3.3) is a special case of (3.4)
with the following substitutions: PQ for F , RST for M , PX for G, RY T for N , Pσ for ϕ,
and RτT for ψ.

The property (2.1) of natural transformations is a stronger form of (3.4).

4. Applications

In this section we demonstrate the use rewrite categories in the verification of monad com-
position as presented by Eklund et al. [7]. We also give a characterization of monads and
adjunctions in terms of rewrite categories.

The following lemma and its proof introduce our approach at a basic level.

Lemma 4.1. Let T + denotes the set of nonnull strings of T ’s and µ the rewrite rule T 2 → T .

The following are equivalent:

(1) µ satisfies the left-hand diagram of (3.1);
(2) T is a terminal object in the rewrite category (T +;µ).

Proof. (1) ⇒ (2): Combining Lemma 3.5 with the observation (3.2), we have that the
rewrite system consisting of the single rule µ on strings T n for n ≥ 1 satisfies the diamond
property and is therefore confluent. It follows that any diagram starting from T n, n ≥ 1,
and ending with the normal form T commutes. Moreover, there exists a reduction sequence
from any such T n to T . Thus there is a unique morphism T n → T for n ≥ 1, so T is a
terminal object.

(2) ⇒ (1): Conversely, if T is a terminal object, then the left-hand diagram of (3.1)
must commute, since there is a unique morphism T 3 → T .

4.1. Monads. Now we add the rewrite rule η to the mix. This rule can be used to introduce
a new occurrence of T anywhere in the string. In the presence of η, T is no longer a
normal form, and in fact normal forms in the strict sense of string rewriting no longer exist.
Nevertheless, T is still a terminal object. Moreover, T 0

= I can now be included, since there
is an arrow I → T .

Theorem 4.2. Consider a rewrite category on 1-cells T ∗ and rules µ ∶ T 2 → T and η ∶ I → T .

The following are equivalent:

(1) µ and η satisfy (3.1);
(2) T is a terminal object in the rewrite category (T ∗;µ, η).

Proof. (1) ⇒ (2): Suppose we have a rewrite system in which the rules can be classified as
either bad rules or good rules (in our application, a rule is bad if it increases the length of
the string, e.g. η). Call a derivation good if it uses only good rules. Suppose further that
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1. every pair of good reductions X → U and X → V can be completed to a diamond using
only good reductions U →W and V →W ; and

2. every pair of reductions X → U and X → V , good or bad, are confluent using only good

derivations U
∗

→W and V
∗

→W .

These conditions hold for (T ∗;µ, η) under the assumption (1). We have already argued
condition 1 for µ in Lemma 4.1. The right-hand diagram in (3.1) implies condition 2 by
immediately inverting any application of η whenever it is applied to a nonnull string. For
example, consider applications of η and µ to a substring T 2, where η is applied between the
two occurrences of T . The two redexes thus overlap.

T 2 T

T 3

µ

TηT

The top arrow is good, but the left arrow is bad. However, using the right-hand diagram
of (3.1), the diagram can be completed using only good arrows:

T 2 T

T 3 T 2 T

µ

TηT
id

Tµ µ

id

Now we argue that any system satisfying 1 and 2 is confluent. Let X
∗

→ U and X
∗

→ V

be any two derivations involving good or bad rules. Starting from the apex X, move down
the two derivations, adding good diamonds to the diagram in the case 1 and good confluent
derivations in case 2. All new transitions added to the diagram are good. When done, there
are no more exposed bad rules, and the diagram can be completed by filling in with good
diamonds.

Thus any two derivations T n
∗

→ T are confluent via good derivations, which must be of

the form T
∗

→ T . But the only good derivation T
∗

→ T is the identity. It follows that any

two derivations T n
∗

→ T are equivalent; in other words, T is a terminal object.
(2)⇒ (1): Conversely, if T is a terminal object of the rewrite category, then all diagrams

starting with any T n and ending with T must commute, in particular those of (3.1), the
defining conditions for monads.

Corollary 4.3. Let σ be a 2-functor from the free 2-category on one 0-cell, one 1-cell T , and

two 2-cells µ, η to Cat, the 2-category of categories, functors, and natural transformations.

Let E be the equational theory on 2-cells induced by σ−1. The following are equivalent:

● The equations (3.1) are a logical consequence of E.
● T is terminal in the rewrite category (T ∗;µ, ν) modulo E.
● The image (σ(T ), σ(µ), σ(η)) is a monad.

4.2. Monad Composition. Let (P,µP , ηP ) and (T,µT , ηT ) be monads on a category C

connected by a distributive law (or swapper in the terminology of [7]), which is a natural
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transformation θ ∶ TP → PT satisfying the following properties:

TP 2 PTP P 2T

TP PT

θP

TµP

θ

Pθ

µP T

T 2P TPT PT 2

Tθ

µTP

θT

PµT

TP

T PT

θ
TηP

ηP T

P
ηT P

PηT (4.1)

Distributive laws are discussed in depth in [4, §9.2]. A typical application is the con-
struction of the complex algebra of an algebra, whose elements are sets of elements of the
original algebra. Here P would be the powerset monad and T the term monad of some
variety of algebras, and θ takes a term of sets t(A1, . . . ,An) and turns it into a set of terms
{t(a1, . . . , an) ∣ ai ∈ Ai, 1 ≤ i ≤ n}. These constructions are discussed in [5, 9]. Another
example would be the combination of the additive and multiplicative monoid structures in
semirings. Here P would be the finite powerset monad and T the free monoid construction.

In light of the theme of this note, it should be clear that the conditions in (4.1) are
nothing more than a way to establish local confluence in the case of overlapping redexes
between θ and the monad operations. For example, the top rectangle of the left-hand
diagram of (4.1) handles overlapping redexes involving θ and µP .

The two monads P and T can be combined as follows. Define

µPT = µPT ○P 2µT ○PθT ∶ (PT )2 → PT ηPT = ηPT ○ ηT ∶ I → PT. (4.2)

Then (PT,µPT , ηPT ) is again a monad [4, 7, 10]. We will verify this using Theorem 4.2.
Most of the work is contained in the following lemma.

Lemma 4.4. Consider a rewrite category on 1-cells {P,T}∗ in a 2-category with a single 0-

cell and rules µP ∶ P 2 → P , ηP ∶ I → P , µT ∶ T 2 → T , ηT ∶ I → T , and θ ∶ TP → PT , such that

(µP , ηP ) and (µT , ηT ) both satisfy the monad axioms (3.1) (with appropriate substitutions).
The following statements are equivalent:

(1) µP , ηP , µT , ηT , and θ satisfy the distributive laws (4.1).
(2) PT is a terminal object in the rewrite category ({P,T}∗;µP , µT , ηP , ηT , θ).

Proof. (1) ⇒ (2): First we show that the rewrite system is confluent. Recall that a rule is
bad if it increases length, good otherwise. The good rules are µP , µT , and θ, and the bad
rules are ηP and ηT .

Every pair of good reductions can be completed to a good confluent diagram. If the
redexes do not overlap, this follows from Lemma 3.5. For redexes that overlap, all cases are
covered by the left-hand diagram of (3.1) and the left-hand diagram of (4.1).

Given any derivation π ∶ X
∗

→ Y , possibly containing bad reductions, produce a new
derivation π′ as follows:

1. Extend the derivation to derive PT .
2. Rearrange the resulting derivation X

∗

→ Y
∗

→ PT to obtain an equivalent derivation

π′ ∶X
∗

→ PT in which all the bad rules are applied after all the good rules.

Step 1 can be accomplished by first introducing an occurrence of P and/or T using ηP

and ηT if necessary, then moving all occurrences of P to the left of all occurrences of T
using θ, then collapsing the P ’s using µP and the T ’s using µT .
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Step 2 can be done without increasing the length of the derivation. For any bad
reduction followed immediately by a good reduction, if the symbol introduced by the bad
reduction is not part of the redex of the good reduction, then the two reductions can be
switched by Lemma 3.5.

Otherwise, the symbol introduced by the bad reduction is part of the redex of the good
reduction. There are only six ways this can happen:

T
TηT

Ð→ T 2 µT

Ð→ T T
ηT T
Ð→ T 2 µT

Ð→ T T
TηP

Ð→ TP
θ
Ð→ PT

and symmetrically for P . The first two are equivalent to the identity by the right-hand

diagram of (3.1) and can be deleted. The last is equivalent to T
ηP T
Ð→ PT by the right-hand

diagram of (4.1). We can continue this process until there are no more bad reductions
occurring before good reductions in the derivation.

If X contains at least one occurrence each of P and T , then this must also be true of
any string derived from X, since all rules preserve this property. But then π′ can contain no
bad reductions at all. If it did, then the last reduction would be bad. But it is impossible
to derive PT from such a reduction, since it would have to come from a string of length
one, and no such string can be derived from X.

By a similar argument, if X ∈ P+, then π′ contains exactly one bad reduction to
introduce T , and it occurs last in the derivation. This last reduction must be of the form

P
PηT

Ð→ PT . Similarly, if X ∈ T +, the last reduction of π′ is of the form T
ηP T
Ð→ PT , and this

is the only bad reduction in the derivation.
If X = I, a similar argument shows that π′ must be either

I
ηT

Ð→ T
ηP T
Ð→ PT I

ηP

Ð→ P
PηT

Ð→ PT. (4.3)

Now suppose we are given derivations π ∶ X
∗

→ U and ρ ∶ X
∗

→ V , possibly using both

good and bad rules. To show confluence of π and ρ, it suffices to show that π′ ∶ X
∗

→ PT

and ρ′ ∶X
∗

→ PT are confluent.
As argued above, if X contains at least one occurrence each of P and T , then π′ and

ρ′ are good. Thus we can complete them to a good commutative diagram by filling in
with good commutative diamonds and (4.1). This process must terminate, since there is a
fixed upper bound, quadratic in the length of X, on the length of any good derivation from
X, since each good reduction strictly decreases the string in length or lexicographic order
relative to P < T [2, Lemma 2.7.2].

If X ∈ P+, then as argued above, π′ and ρ′ are both of the form X
∗

→ P
PηT

Ð→ PT ,

where the prefixes X
∗

→ P contain no occurrence of T . By Theorem 4.2, P is terminal in

(P ∗;µP , ηP ), therefore the two prefixes X
∗

→ P are equivalent, and consequently so are π′

and ρ′. The argument is similar for X ∈ T +.
When X = I, we need only observe that the two derivations (4.3) form a commutative

diamond by Lemma 3.5.
Finally we show that PT is a terminal object. We have already argued that there

is at least one derivation of PT from every X ∈ {P,T}∗, so there is at least one arrow

X → PT in the rewrite category. To show that there is at most one, let π,ρ ∶ X
∗

→ PT

be any two derivations. By confluence, we can complete to a pair of equivalent derivations

π′, ρ′ ∶ X
∗

→ PT
∗

→ PT . Rearranging the final portions PT
∗

→ PT of these two derivations
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by Step 2 above, we obtain good derivations. But the only good derivation PT
∗

→ PT is
the identity, therefore π and ρ were already equivalent.

(2) ⇒ (1): If PT is a terminal object, then (4.1) holds, as all maximal paths in all
diagrams of (4.1) lead to PT .

Theorem 4.5 ( [4, 7, 10]). Let (T,µT , ηT ) and (P,µP , ηP ) be monads connected by a dis-

tributive law θ ∶ TP → PT satisfying (4.1). Let µPT and ηPT be defined by (4.2). Then

(PT,µPT , ηPT ) is a monad.

Proof. Consider the rewrite category1 ({P,T}∗;µP , µT , ηP , ηT , θ). By Theorem 4.2, it suf-
fices to show that PT is a terminal object in the rewrite category ((PT )∗;µPT , ηPT ). By
Lemma 4.4, we know that it is terminal in the category ({P,T}∗;µP , µT , ηP , ηT , θ), thus for
any n ≥ 0, there is exactly one arrow (PT )n → PT in that category. It follows that there is
at most one arrow (PT )n → PT in the subcategory ((PT )∗;µPT , ηPT ). But there is also
at least one, since we can derive PT from (PT )0 = I by the rule ηPT and from (PT )n for
n ≥ 1 by n − 1 applications of the rule µPT .

4.3. Adjunctions. As a final application, we give a characterization of adjoint functors in
terms of rewrite categories.

Recall that a functor F ∶ C→ D is a left adjoint of another functor G ∶ D→ C if there are
natural transformations η ∶ I → GF and ε ∶ FG → I, the unit and counit of the adjunction,
respectively, satisfying

G

GFG G

id
ηG

Gε

F FGF

F

id

Fη

εF (4.4)

Theorem 4.6. Consider a 2-category on two 0-cells C, D generated by 1-cells F ∶ C → D

and G ∶ D → C and 2-cells η ∶ I → GF and ε ∶ FG → I. The following statements are

equivalent:

(1) η and ε satisfy (4.4).
(2) F is a terminal object in the rewrite category (F (GF )∗;η, ε) and G is a terminal object

in the rewrite category (G(FG)∗;η, ε).

Proof. (1) ⇒ (2): By arguments similar to the proof of Theorem 4.2 and Lemma 4.4, in any

derivation π ∶ X
∗

→ Y , all applications of η (the bad rule) can be moved after all applications
of ε (the good rule), by either Lemma 3.5 in the case of disjoint redexes or (4.4) in the case

of overlapping redexes. The resulting equivalent derivation π′ ∶ X
∗

→ Y is no longer than π.
Now if π′ is of the form F (GF )n → F , there can be no application of η, because the

last η would produce a string of length at least 2. But then all redexes are redexes of ε,
therefore are disjoint and can be done in any order by Lemma 3.5. Thus all derivations of
the form F (GF )n → F are equivalent. Moreover, there exists a derivation F (GF )n → F

consisting of n − 1 applications of ε. Thus F is terminal in (F (GF )∗;η, ε). A symmetric
argument shows that G is terminal in (G(FG)∗;η, ε).

1At the risk of ambiguity, we are overloading the symbols P , µP , etc. to refer to the components of the
rewrite category as well as their images in Cat.
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(2) ⇒ (1): In (4.4), there is a unique morphism to G in the left-hand diagram and a
unique morphism to F in the right-hand diagram, thus the diagrams commute.

Corollary 4.7. Let σ be a 2-functor from the free 2-category on two 0-cells C,D, two 1-cells

F ∶ C → D, G ∶ D→ C, and two 2-cells η ∶ I → GF , ε ∶ FG→ I to Cat. Let E be the equational

theory on 2-cells induced by σ−1. The following are equivalent:

● The equations (4.4) are a logical consequence of E.
● F is terminal in the rewrite category (F (GF )∗;η, ε) modulo E and G is terminal in the

rewrite category (G(FG)∗;η, ε) modulo E.
● σ(F ) and σ(G) are adjoint functors with σ(F ) the left adjoint and σ(G) the right adjoint

with unit σ(η) and counit σ(ε).

5. Conclusion

It is clear that these techniques are related to the notion of free adjunction and free monad

as presented by Schanuel and Street [15]. A free adjunction is a certain 2-category that is
initial among all adjunctions and characterizes their equational theory. For the future, we
would like to explore these connections further and perhaps develop a notion of rewriting
for 2-categories and higher.
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