
This is page xi
Printer� Opaqu

Contents

Preface vii

Lectures �

Introduction

� Course Roadmap and Historical Perspective � � � � � � � � �

� Strings and Sets �

Finite Automata and Regular Sets

� Finite Automata and Regular Sets � � � � � � � � � � � � � ��

� More on Regular Sets ��

	 Nondeterministic Finite Automata � � � � � � � � � � � � � �	

 The Subset Construction ��

� Pattern Matching and Regular Expressions � � � � � � � � ��

� More on Pattern Matching � � � � � � � � � � � � � � � � � � ��

� Regular Expressions and Finite Automata � � � � � � � � � ��

A Kleene Algebra and Regular Expressions � � � � � � � � � � 	�

�� Homomorphisms �
�

�� Limitations of Finite Automata � � � � � � � � � � � � � � �

�� Using the Pumping Lemma � � � � � � � � � � � � � � � � � ��

�� DFA State Minimization �

�� A Minimization Algorithm � � � � � � � � � � � � � � � � � � ��

�	 Myhill
Nerode Relations ��

�
 The Myhill
Nerode Theorem � � � � � � � � � � � � � � � � � ��

B Collapsing Nondeterministic Automata � � � � � � � � � � � ��

C Automata on Terms ��

D The Myhill
Nerode Theorem for Term Automata � � � � � ���

�� Two
way Finite Automata � � � � � � � � � � � � � � � � � � ���

�� �DFAs and Regular Sets ���

Pushdown Automata and Context�Free Languages

�� Context
Free Grammars and Languages � � � � � � � � � � ���

�� Balanced Parentheses ���

�� Normal Forms ���

�� The Pumping Lemma for CFLs � � � � � � � � � � � � � � � ���

�� Pushdown Automata �	�

E Final State vs� Empty Stack � � � � � � � � � � � � � � � � � �
	

�� PDAs and CFGs �
�

�	 Simulating NPDAs by CFGs � � � � � � � � � � � � � � � � ���

F Deterministic Pushdown Automata � � � � � � � � � � � � � ���

�
 Parsing ���

�� The Cocke
Kasami
Younger Algorithm � � � � � � � � � � � ���

G The Chomsky
Sch�utzenberger Theorem � � � � � � � � � � ���

H Parikh�s Theorem ���

Turing Machines and E�ective Computability

�� Turing Machines and E�ective Computability � � � � � � � ���

�� More on Turing Machines � � � � � � � � � � � � � � � � � � ���

�� Equivalent Models ���

xii

�� Universal Machines and Diagonalization � � � � � � � � � � ���

�� Decidable and Undecidable Problems � � � � � � � � � � � � ���

�� Reductions ���

�� Rice�s Theorem ���

�	 Undecidable Problems about CFLs � � � � � � � � � � � � � �	�

�
 Other Formalisms �	�

�� The �
Calculus �
�

I While Programs ���

J Beyond Undecidability ��

�� G�odel�s Incompleteness Theorem � � � � � � � � � � � � � � ��	

�� Proof of the Incompleteness Theorem � � � � � � � � � � � � ���

K G�odel�s Proof ��	

Exercises ���

Homework Sets

Homework ��	

Homework ��

Homework ���

Homework ���

Homework 	 ���

Homework
 ���

Homework ���

Homework ���

Homework ���

Homework �� ��	

Homework �� ��

Homework �� ���

xiii

Miscellaneous Exercises

Finite Automata and Regular Sets � � � � � � � � � � � � � � � � ���

Pushdown Automata and Context
Free Languages � � � � � � � ��	

Turing Machines and E�ective Computability � � � � � � � � � ���

Hints and Solutions

Hints for Selected Miscellaneous Exercises � � � � � � � � � � � � �	�

Solutions to Selected Miscellaneous Exercises � � � � � � � � � � �	�

References ���

Notation and Abbreviations ���

Index ���

xiv

This is page �
Printer� Opaqu

Change

�

Lectures

This is page �
Printer� Opaqu

Lecture �

Course Roadmap and Historical Perspective

The goal of this course is to understand the foundations of computation�
We will ask some very basic questions� such as�

� What does it mean for a function to be computable�

� Are there any noncomputable functions�

� How does computational power depend on programming constructs�

These questions may appear simple� but they are not� They have intrigued
scientists for decades� and the subject is still far from closed�

In the quest for answers to these questions� we will encounter along the
way some fundamental and pervasive concepts� state� transition� nonde�
terminism� reduction� and undecidability� to name a few� Some of the most
important achievements in theoretical computer science have been the crys

tallization of these concepts� They have shown a remarkable persistence�
even as technology changes from day to day� They are crucial for every good
computer scientist to know� so that they can be recognized when they are
encountered� as they surely will be�

Various models of computation have been proposed over the years� all
of which capture some fundamental aspect of computation� We will con

centrate on the following three classes of models� in order of increasing
power�

�

� Lecture �

�i� ��nite memory� �nite automata� regular expressions

�ii� ��nite memory � stack� pushdown automata

�iii� �unrestricted�

� Turing machines �Alan Turing ������

� Post systems �Emil Post ���� �����

� �
recursive functions �Kurt G�odel �	��� Jacques Herbrand�

� �
calculus �Alonzo Church ����� Stephen C� Kleene �

��

� combinatory logic �Moses Sch�on�nkel ���� ������ Haskell B� Curry
�����

These systems were developed long before computers existed� Nowa

days one could add PASCAL� FORTRAN� BASIC� LISP� SCHEME�
C��� JAVA� or any su�ciently powerful programming language to
this list�

In parallel with and independent of the development of these models of
computation� the linguist Noam Chomsky was attempting to formalize the
notion of grammar and language� This e�ort resulted in the de�nition of the
Chomsky Hierarchy� a hierarchy of language classes de�ned by grammars
of increasing complexity�

�i� right
linear grammars and languages

�ii� context
free grammars and languages

�iii� unrestricted grammars and languages

Although grammars and machine models appear quite di�erent on a super

�cial level� the process of parsing a sentence in a language bears a strong
resemblance to computation� Upon closer inspection� it turns out that each
of the grammar types �i�iii� are equivalent in computational power to the
machine models �i�iii� above� respectively� in a certain well
de�ned sense�
There is even a fourth natural class called the context�sensitive grammars
and languages� which �ts in between �ii� and �iii� above and which corre

sponds to a certain natural class of machine models called linear bounded
automata�

It is quite surprising that a naturally de�ned hierarchy in one �eld should
correspond so closely to a naturally de�ned hierarchy in a completely
di�erent �eld� Could this be mere coincidence�

Course Roadmap and Historical Perspective �

Abstraction

The machine models mentioned above were �rst identi�ed in the same
way that theories in physics or any other scienti�c discipline arise� When
studying real
world phenomena� one becomes aware of recurring patterns
and themes that appear in various guises� These guises may di�er sub

stantially on a super�cial level� but may bear enough resemblance to one
another to suggest that there are common underlying principles at work�
When this happens� it makes sense to try to construct an abstract model
that captures these underlying principles in the simplest possible way� de

void of the unimportant details of each particular manifestation� This is
the process of abstraction� Abstraction is the essence of scienti�c progress�
because it focusses attention on the important principles� unencumbered
by irrelevant details�

Perhaps the most striking example of this phenomenon we will see is the
formalization of the concept of e�ective computability� This quest started
around the beginning of the ��th century with the development of the
formalist school of mathematics� championed by the philosopher Bertrand
Russell and the mathematician David Hilbert� They wanted to reduce all
of mathematics to the formal manipulation of symbols�

Of course� the formal manipulation of symbols is a form of computation�
although there were no computers around at the time� However� there cer

tainly existed an awareness of computation and algorithms� Mathemati

cians� logicians� and philosophers knew a constructive method when they
saw it� There followed several attempts to come to grips with the gen

eral notion of e�ective computability� Several de�nitions emerged �Turing
machines� Post systems� etc��� each with its own peculiarities� and di�ering
radically in appearance� However� it turned out that as di�erent as all these
formalisms appeared to be� they could all simulate one another� thus they
were all computationally equivalent�

The formalist program was eventually shattered by Kurt G�odel�s Incom

pleteness Theorem� which states that no matter how strong a deductive
system for number theory you take� it will always be possible to construct
simple statements that are true but unprovable� This theorem is widely
regarded as one of the crowning intellectual achievements of the twentieth
century� It is essentially a statement about computability� and we will be
in a position to give a full account of it by the end of the course�

The process of abstraction is inherently mathematical� It involves build

ing models that capture observed behavior in the simplest possible way�
Although we will consider plenty of concrete examples and applications
of these models� we will work primarily mathematically� in terms of their
properties� We will always be as explicit as possible about these properties�
We will usually start with de�nitions� then subsequently reason purely in

� Lecture �

terms of those de�nitions� For some� this will undoubtedly be a new way
of thinking� but it is a skill that is worth cultivating�

Keep in mind that a large intellectual e�ort often goes into coming up with
just the right de�nition or model that captures the essence of the principle
at hand with the least amount of extraneous baggage� After the fact� the
reader often sees only the �nished product� and is not exposed to all the
misguided false attempts and pitfalls that were encountered along the way�
Remember that it took many years of intellectual struggle to arrive at the
theory as it exists today� This is not to say that the book is closed�far
from it�

Lecture �

Strings and Sets

Decision Problems vs� Functions

A decision problem is a function with a one
bit output� �yes� or �no�� To
specify a decision problem� one must specify

� the set A of possible inputs

� the subset B � A of �yes� instances�

For example� to decide if a given graph is connected� the set of possible
inputs is the set of all �encodings of� graphs� and the �yes� instances are
the connected graphs� To decide if a given number is a prime� the set of
possible inputs is the set of all �binary encodings of� integers� and the �yes�
instances are the primes�

In this course we will mostly consider decision problems as opposed to func

tions with more general outputs� We do this for mathematical simplicity�
and because the behavior we want to study is already present at this level�

�

� Lecture �

Strings

Now to our �rst abstraction� we will always take the set of possible inputs to
a decision problem to be the set of �nite
length strings over some �xed �nite
alphabet �formal de�nitions below�� We do this for uniformity and simplic

ity� Other types of data�graphs� the natural numbers N f�� �� �� � � �g�
trees� even programs�can be encoded naturally as strings� By making
this abstraction� we only have to deal with one data type and a few basic
operations�

De�nition ��� � An alphabet is any �nite set� For example� we might use the alphabet
f�� �� �� � � � � �g if we are talking about decimal numbers! the set of
all ASCII characters if talking about text! f�� �g if talking about bit
strings� The only restriction is that the alphabet be �nite�

When speaking about an arbitrary �nite alphabet abstractly� we usu

ally denote it by the Greek letter "� We call elements of " letters or
symbols and denote them by a� b� c� � � �

Often we do not care at all about the nature of the elements of "� only
that there are �nitely many of them�

� A string over " is any �nite
length sequence of elements of "� Example�
if " fa� bg� then aabab is a string over " of length �ve� We use
x� y� z� � � � to refer to strings�

� The length of a string x is the number of symbols in x� The length of
x is denoted jxj� For example� jaababj 	�

� There is a unique string of length � over " called the null string or
empty string and denoted by � �Greek epsilon� not to be confused with
the symbol for set containment ��� Thus j�j ��

� We write an for a string of a�s of length n� For example� a� aaaaa�
a� a� and a� �� Formally� an is de�ned inductively�

a�
def
 �

an�� def
 ana �

� The set of all strings over alphabet " is denoted "�� For example�

fa� bg� f�� a� b� aa� ab� ba� bb� aaa� aab� � � �g

fag� f�� a� aa� aaa� aaaa� � � �g

 fan j n � �g �

�

Strings and Sets �

By convention� we take

�
� def
 f�g �

where � denotes the empty set� This may seem a bit strange� but there is
good mathematical justi�cation for it� which will become apparent shortly�

If " is nonempty� then "� is an in�nite set of �nite
length strings� Be
careful not to confuse strings and sets� We won�t be seeing any in�nite
strings until much later in the course� Here are some di�erences between
strings and sets�

� fa� bg fb� ag but ab � ba

� fa� a� bg fa� bg but aab � ab�

Note also that �� f�g� and � are three di�erent things� The �rst is a set
with no elements! the second is a set with one element� namely �! and the
last is a string� not a set�

Operations on Strings

The operation of concatenation takes two strings x and y and makes a new
string xy by putting them together end to end� The string xy is called the
concatenation of x and y� Note that xy and yx are di�erent in general�
Some useful properties of concatenation are�

� concatenation is associative� �xy�z x�yz�

� the null string � is an identity for concatenation� �x x� x

� jxyj jxj � jyj

A special case of the last equation is aman am�n for all m�n � ��

A monoid is any algebraic structure consisting of a set with an associative
binary operation and an identity for that operation� By our de�nitions
above� the set "� with string concatenation as the binary operation and �
as the identity is a monoid� We will be seeing some other examples later
on in the course�

De�nition ��� � We write xn for the string obtained by concatenating n copies of x� For
example� �aab�� aabaabaabaabaab� �aab�� aab� and �aab�� ��
Formally� xn is de�ned inductively�

x�
def
 �

xn�� def
 xnx �

�� Lecture �

� If a � " and x � "�� we write #a�x� for the number of a�s in x� For
example� #��������������� � and #�������� ��

�

Operations on Sets

We usually denote sets of strings �subsets of "�� by A�B�C� � � � The car�
dinality �number of elements� of set A is denoted jAj� The empty set � is
the unique set of cardinality ��

Let�s de�ne some useful operations on sets� Some of these you have probably
seen before� some probably not�

� Set union�

A� B
def
 fx j x � A or x � Bg �

In other words� x is in the union of A and B i�� either x is in A or x
is in B� For example� fa� abg � fab� aabg fa� ab� aabg�

� Set intersection�

A� B
def
 fx j x � A and x � Bg �

In other words� x is in the intersection of A and B i� x is in both A
and B� For example� fa� abg � fab� aabg fabg�

� Complement in "��

	A
def
 fx � "� j x �� Ag �

For example�

	fstrings in "� of even lengthg fstrings in "� of odd lengthg �

Unlike � and �� the de�nition of 	 depends on "�� The set 	A is
sometimes denoted "�
A to emphasize this dependence�

� Set concatenation�

AB
def
 fxy j x � A and y � Bg

In other words� z is in AB i� z can be written as a concatena

tion of two strings x and y� where x � A and y � B� For exam

ple� fa� abgfb� bag fab� aba� abb� abbag� When forming a set con

catenation� you include all strings that can be obtained in this way�
Note that AB and BA are di�erent sets in general� For example�
fb� bagfa� abg fba� bab� baa� baabg�

�i� � if and only if

Strings and Sets ��

� The powers An of a set A are de�ned inductively as follows�

A� def
 f�g

An�� def
 AAn �

In other words� An is formed by concatenating n copies of A together�
Taking A� f�g makes the property Am�n AmAn hold� even when
one of m or n is �� For example�

fab� aabg� f�g

fab� aabg� fab� aabg

fab� aabg� fabab� abaab� aabab� aabaabg

fab� aabg� fababab� ababaab� abaabab� aababab�

abaabaab� aababaab� aabaabab� aabaabaabg �

Also�

fa� bgn fx � fa� bg� j jxj ng

 fstrings over fa� bg of length ng �

� The asterate A� of a set A is the union of all �nite powers of A�

A�
def

�
n��

An

 A� �A� �A� �A� � � � �

Another way to say this is

A� fx�x� � � � xn j n � � and xi � A� � � i � ng �

Note n can be �! thus the null string � is in A� for any A�

We previously de�ned "� to be the set of all �nite
length strings
over the alphabet "� This is exactly the asterate of the set "� so our
notation is consistent�

� We de�ne A� to be the union of all nonzero powers of A�

A� def
 AA�

�
n��

An �

Here are some useful properties of these set operations�

� Set union� set intersection� and set concatenation are associative�

�A�B� �C A � �B �C�

�A�B� �C A � �B �C�

�AB�C A�BC� �

�� Lecture �

� Set union and intersection are commutative�

A� B B � A

A� B B � A �

As noted above� set concatenation is not�

� The null set � is an identity for ��

A� � � �A A �

� The set f�g is an identity for set concatenation�

f�gA Af�g A �

� The null set � is an annihilator for set concatenation�

A� �A � �

� Set union and intersection distribute over each other�

A� �B �C� �A �B�� �A�C�

A� �B �C� �A �B�� �A�C� �

� Set concatenation distributes over union�

A�B �C� AB � AC

�A�B�C AC �BC �

In fact� concatenation distributes over the union of any family of sets�
If fBi j i � Ig is any family of sets indexed by another set I� �nite or
in�nite� then

A�
�
i�I

Bi�
�
i�I

ABi

�
�
i�I

Bi�A
�
i�I

BiA �

Here
S
i�I Bi denotes the union of all the sets Bi for i � I� An element

x is in this union i� it is in one of the Bi�

Set concatenation does not distribute over intersection� For example�
take A fa� abg� B fbg� C f�g� and see what you get when you
compute A�B � C� and AB �AC�

� The De Morgan Laws hold�

	�A �B� 	A �	B

	�A �B� 	A �	B �

Strings and Sets �	

� The asterate operation � satis�es the following properties�

A�A� A�

A�� A�

A� f�g � AA� f�g �A�A

�
� f�g �

Lecture �

Finite Automata and Regular Sets

States and Transitions

Intuitively� a state of a system is an instantaneous description of that sys

tem� a snapshot of reality frozen in time� A state gives all relevant infor

mation necessary to determine how the system can evolve from that point
on� Transitions are changes of state! they can happen spontaneously or in
response to external inputs�

We assume that state transitions are instantaneous� This is a mathemat

ical abstraction� In reality� transitions usually take time� Clock cycles in
digital computers enforce this abstraction and allow us to treat computers
as digital instead of analog devices�

There are innumerable examples of state transition systems in the real
world� electronic circuits� digital watches� elevators� Rubik�s cube �	������

states and twelve transitions� not counting peeling the little sticky squares
o��� the game of Life ��k states on a screen with k cells� one transition��

A system that consists of only �nitely many states and transitions among
them is called a �nite�state transition system� We model these abstractly
by a mathematical model called a �nite automaton�

��

Finite Automata and Regular Sets ��

Finite Automata

Formally� a deterministic �nite automaton �DFA� is a structure

M �Q� "� �� s� F �

where�

� Q is a �nite set! elements of Q are called states

� " is a �nite set� the input alphabet

� � � Q
 " � Q is the transition function �recall Q
 " is the set of
ordered pairs f�q� a� j q � Q and a � "g�� Intuitively� � is a function
that tells which state to move to in response to an input� if M is in
state q and sees input a� it moves to state ��q� a��

� s � Q is the start state

� F is a subset of Q! elements of F are called accept or �nal states�

When you specify a �nite automaton� you must give all �ve parts� Au

tomata may be speci�ed in this set theoretic form� or as a transition
diagram or table as in the example below�

Example ��� Here is an example of a simple four
state �nite automaton� We�ll take the
set of states to be f�� �� �� �g� the input alphabet to be fa� bg� the start state
to be �� the set of accept states to be f�g� and the transition function to
be

���� a� �

���� a� �

���� a� ���� a� �

��q� b� q � q � f�� �� �� �g �

All parts of the automaton are completely speci�ed� We can also specify
the automaton by means of a table

a b
� � � �

� � �
� � �
�F � �

or transition diagram

�� Lecture 	

s s s s� � �g����������������j j j j�

b b b a� b

a a a

The �nal states are indicated by an F in the table and by a circle in the
transition diagram� In both� the start state is indicated by�� The states in
the transition diagram from left to right correspond to the states �� �� �� �
in the table� One advantage of transition diagrams is that you don�t have
to name the states� �

Another convenient representation of �nite automata is transition matrices!
see Miscellaneous Exercise ��

Informally� here is how a �nite automaton operates� An input can be any
string x � "�� Put a pebble down on the start state s� Scan the input string
x from left to right� one symbol at a time� moving the pebble according
to �� if the next symbol of x is b and the pebble is on state q� move the
pebble to ��q� b�� When we come to the end of the input string� the pebble
is on some state p� The string x is said to be accepted by the machine M
if p � F � rejected if p �� F � There is no formal mechanism for scanning or
moving the pebble! these are just intuitive devices�

For example� the automaton of Example ���� starting in its start state ��
will be in state � after scanning the input string baabbaab� so that string
is accepted! whereas it will be in state � after scanning the string babbbab�
so that string is rejected� For this automaton� a moment�s thought reveals
that when scanning any input string� the automaton will be in state � if it
has seen no a�s� � if it has seen one a� � if it has seen two a�s� and � if it
has seen three or more a�s�

This is how we do formally what we just described informally above� We
�rst de�ne a function

b� � Q
 "� � Q

from � by induction on the length of x�

b��q� �� def
 q �����

b��q� xa� def ��b��q� x�� a� �����

The function b� maps a state q and a string x to a new state b��q� x�� Intu

itively� b� is the multi
step version of �� The state b��q� x� is the stateM ends
up in when started in state q and fed the input x� moving in response to
each symbol of x according to �� Equation ����� is the basis of the inductive
de�nition! it says that the machine doesn�t move anywhere under the null
input� Equation ����� is the induction step! it says that the state reachable

Finite Automata and Regular Sets �

from q under input string xa is the state reachable from p under input
symbol a� where p is the state reachable from q under input string x�

Note that the second argument to b� can be any string in "�� not just a
string of length one as with �! but b� and � agree on strings of length one�

b��q� a� b��q� �a� since a �a

 ��b��q� ��� a� by ������ taking x �

 ��q� a� by ������

Formally� a string x is said to be accepted by the automatonM if

b��s� x� � F

and rejected by the automatonM if

b��s� x� �� F

where s is the start state and F is the set of accept states� This captures
formally the intuitive notion of acceptance and rejection described above�

The set or language accepted by M is the set of all strings accepted by M �
and is denoted L�M��

L�M�
def
 fx � "� j b��s� x� � Fg �

A subset A � "� is said to be regular if A L�M� for some �nite au

tomatonM � The set of strings accepted by the automaton of Example ���
is the set

fx � fa� bg� j x contains at least three a�sg �

so this is a regular set�

Here is another example of a regular set and a �nite automaton accepting
it�

Example ��� Consider the set

fxaaay j x� y � fa� bg�g

 fx � fa� bg� j x contains a substring of three consecutive a�sg �

For example� baabaaaab is in the set and should be accepted� whereas
babbabab is not in the set and should be rejected �because the three a�s
are not consecutive�� Here is an automaton for this set� speci�ed in both
table and transition diagram form�

a b
� � � �

� � �
� � �
�F � �

�� Lecture 	

s s s s� � �g���� ����j j�

b a� b

a a a

b
b

� �� �KM
�

The idea here is that you use the states to count the number of consecutive
a�s you have seen� If you haven�t seen three a�s in a row and you see a b� you
must go back to the start� Once you have seen three a�s in a row� though�
you stay in the accept state�

Lecture �

More on Regular Sets

Here is another example of a regular set that is a little little harder than
the example given last time� Consider the set

fx � f�� �g� j x represents a multiple of three in binaryg �����

�leading zeros permitted� � represents the number ��� For example� the
following binary strings representmultiples of three and should be accepted�

binary decimal equivalent
� �
�� �
���

���� �
���� ��
���� �	
����� ��

���
���

��

�� Lecture �

Strings not representing multiples of three should be rejected� Here is an
automaton accepting the set ������

� �
� �F � �

� � �

� � �

The states �� �� � are written in boldface to distinguish them from the
input symbols �� ��

s s s�� ���� ��g���� ����K K K
U U U

� �

� �

� �

�

In the diagram� the states are �� �� � from left to right� We prove that this
automaton accepts exactly the set ����� by induction on the length of the
input string� First we associate a meaning to each state��

if the number represented by then the machine
the string scanned so far is will be in state

� mod � �

� mod � �

� mod � �

Let #x denote the number represented by string x in binary� For example�

#� �

#� �

#�� �

#��� � �

etc� Formally� we want to show for any string x in f�� �g��

b���� x� � i� #x � � mod � �����

b���� x� � i� #x � � mod �

b���� x� � i� #x � � mod �

or in short�

b���� x� #x mod � � �����

�Here a mod n denotes the remainder when dividing a by n using ordinary integer division� We
also write a � b mod n �read� a is congruent to b modulo n� to mean that a and b have the same
remainder when divided by n� i�e�	 that n divides b� a�

More on Regular Sets ��

This will be our induction hypothesis� The �nal result we want� namely
������ is a weaker consequence of ������ but we need the more general
statement ����� for the induction hypothesis�

We have by elementary number theory that

#�x�� ��#x� � �

#�x�� ��#x� � �

or in short�

#�xc� ��#x� � c �����

for c � f�� �g� From the machine above� we see that for any state q �
f�����g and input symbol c � f�� �g�

��q� c� ��q � c� mod � � ���	�

This can be veri�ed by checking all six cases corresponding to possible
choices of q and c� �In fact� ���	� would have been a great way to de�ne
the transition function formally�then we wouldn�t have had to prove it��

Now we use the inductive de�nition of b� to show ����� by induction on jxj�
Basis

For jxj �� i�e� x ��

b���� �� � by de�nition of b�
 #� since #� �

 #� mod � �

Induction step

Assuming ����� is true for x � f�� �g�� we show it is true for xc� where
c � f�� �g�

b���� xc� ��b���� x�� c� de�nition of b�
 ��#xmod �� c� induction hypothesis

 ���#xmod �� � c� mod � by ���	�

 ���#x� � c� mod � elementary number theory

 #xc mod � by ������

�� Lecture �

Some Closure Properties of Regular Sets

For A�B � "�� recall the de�nitions

A �B fx j x � A or x � Bg union

A �B fx j x � A and x � Bg intersection

	A fx � "� j x �� Ag complement

AB fxy j x � A and y � Bg concatenation

A� fx�x� � � � xn j n � � and xi � A� � � i � ng

 A� �A� � A� � A� � � � � asterate

Don�t confuse set concatenation with string concatenation� Sometimes 	A
is written "�
A�

We show below that if A and B are regular� then so are A�B� A�B� and
	A� We�ll show later that AB and A� are also regular�

The Product Construction

Assume that A and B are regular� Then there are automata

M� �Q�� "� ��� s�� F��

M� �Q�� "� ��� s�� F��

with L�M�� A and L�M�� B� To show that A � B is regular� we will
build an automatonM� such that L�M�� A� B�

Intuitively� M� will have the states of M� and M� encoded somehow in its
states� On input x � "�� it will simulateM� and M� simultaneously on x�
accepting i� bothM� andM� would accept� Think about putting a pebble
down on the start state ofM� and another on the start state ofM�� As the
input symbols come in� move both pebbles according to the rules of each
machine� Accept if both pebbles occupy accept states in their respective
machines when the end of the input string is reached�

Formally� let

M� �Q�� "� ��� s�� F��

where

Q� Q�
Q� f�p� q� j p � Q� and q � Q�g

F� F�
 F� f�p� q� j p � F� and q � F�g

s� �s�� s��

More on Regular Sets �	

and let

�� � Q�
"� Q�

be the transition function de�ned by

����p� q�� a� ����p� a�� ���q� a�� �

The automaton M� is called the product of M� and M�� A state �p� q� of
M� encodes a con�guration of pebbles on M� and M��

Recall the inductive de�nition ������ ����� of the extended transition func

tion b� from Lecture �� Applied to ��� this gives�
b����p� q�� �� �p� q�

b����p� q�� xa� ���b����p� q�� x�� a� �
Lemma ��� For all x � "��

b����p� q�� x� �b���p� x�� b���q� x�� �
Proof� By induction on jxj�

Basis

For jxj �� i�e� x ��

b����p� q�� �� �p� q� �b���p� ��� b���q� ��� �

Induction step

Assuming the Lemma holds for x � "�� we show it holds for xa� where
a � "�

b����p� q�� xa� ���b����p� q�� x�� a� de�nition of b��
 ����b���p� x�� b���q� x��� a� induction hypothesis

 ����b���p� x�� a�� ���b���q� x��� a�� de�nition of ��

 �b���p� xa�� b���q� xa�� de�nition of b�� and b���
�

Theorem ��� L�M�� L�M�� � L�M�� �

�� Lecture �

Proof� For all x � "��

x � L�M��

�� b���s�� x� � F� de�nition of acceptance

�� b����s�� s��� x� � F�
 F� de�nition of s� and F�

�� �b���s�� x�� b���s�� x�� � F�
 F� Lemma ���

�� b���s�� x� � F� and b���s�� x� � F� de�nition of set product

�� x � L�M�� and x � L�M�� de�nition of acceptance

�� x � L�M��� L�M�� de�nition of intersection�

�

To show that regular sets are closed under complement� take an automaton
accepting A and interchange the set of accept and nonaccept states� The
resulting automaton accepts exactly when the original automaton would
reject� so the set accepted is 	A�

Once we know regular sets are closed under � and 	� it follows that they
are closed under � by one of the De Morgan Laws�

A �B 	 �	A �	B� �

If you use the constructions for � and 	 given above� this gives an automa

ton for A � B which looks exactly like the product automaton for A � B�
except that the accept states are

F� f�p� q� j p � F� or q � F�g �F�
Q�� � �Q�
 F��

instead of F�
 F��

Historical Notes

Finite state transition systems were introduced by McCulloch and Pitts in
���� ����� Deterministic �nite automata in the form presented here were
studied by Kleene ����� Our notation is borrowed from Hopcroft and Ullman
�
���

Lecture �

Nondeterministic Finite Automata

Nondeterminism

Nondeterminism is an important abstraction in computer science� It refers
to situations in which the next state of a computation is not uniquely
determined by the current state� Nondeterminism arises in real life when
there is incomplete information about the state or when there are external
forces at work that can a�ect the course of a computation� For example�
the behavior of a process in a distributed systemmight depend on messages
from other processes that arrive at unpredictable times with unpredictable
contents�

Nondeterminism is also important in the design of e�cient algorithms�
There are many instances of important combinatorial problems with e�

cient nondeterministic solutions� but no known e�cient deterministic so

lution� The famous P NP problem�whether all problems solvable in
nondeterministic polynomial time can be solved in deterministic polyno

mial time�is a major open problem in computer science� and arguably
one of the most important open problems in all of mathematics�

In nondeterministic situations� we may not know how a computation will
evolve� but we may have some idea of the range of possibilities� This is

�	

�� Lecture �

modeled in automata theory by allowing automata to have multiple
valued
transition functions� For decision problems� the dominant paradigm is guess
and verify�on a given input� guess a successful computation or proof that
the input is a �yes� instance of the decision problem� and verify that the
guess is indeed correct�

In this lecture and the next� we will show how nondeterminism is incor

porated naturally in the context of �nite automata� One might think that
adding nondeterminism might increase expressive power� but in fact for
�nite automata it does not� in terms of the sets accepted� nondeterminis

tic �nite automata are no more powerful than deterministic ones� In other
words� for every nondeterministic �nite automaton� there is a deterministic
one accepting the same set� However� nondeterministic machines may be
exponentially more succinct�

Nondeterministic Finite Automata

A nondeterministic �nite automaton �NFA� is one for which the next state
is not necessarily uniquely determined by the current state and input sym

bol� In a deterministic automaton� there is exactly one start state and
exactly one transition out of each state for each symbol in "� given by the
function �� In a nondeterministic automaton� there may be one� more than
one� or zero� The set of possible next states that the automaton may move
to from a particular state q in response to a particular input symbol a is
part of the speci�cation of the automaton� but there is no mechanism for
deciding which one will actually be taken� Formally� we won�t be able to
represent this with a function � � Q
 " � Q anymore! we will have to
use something more general� Also� a nondeterministic automaton does not
have a unique start state� but may have many� and may start in any one
of them�

Informally� a nondeterministic automaton is said to accept its input x if it
is possible to start in some start state and scan x� moving according to the
transition rules �making choices along the way if there are more than one
possible next state� such that when the end of x is reached� the machine is
in an accept state� Because the start state is not determined and because
of the choices along the way� there may be several possible paths through
the automaton in response to the input x! some may lead to accept states
while others may lead to reject states� The automaton is said to accept
x if at least one computation path on input x starting from at least one
start state leads to an accept state� The automaton is said to reject x if no
computation path on input x from any start state leads to an accept state�
Again� there is no mechanism for determining which state to start in or
which of the possible next moves to take in response to an input symbol�

Nondeterministic Finite Automata �

For example� consider the set

A fx � f�� �g� j the �fth symbol from the right is �g �

Thus �������� � A but �������� �� A�

Here is a six
state nondeterministic automaton accepting A�

s s s s s s� � � � �g����j�

�� �

� �� � �� � �� � �� �

There is only one start state� namely the leftmost� and only one accept
state� namely the rightmost� The automaton is not deterministic because
there are two transitions from the leftmost state labeled � �one back to
itself and one to the second state� and no transitions from the rightmost
state� This automaton accepts the set A� because for any string x whose
�fth symbol from the right is �� there exists a sequence of legal transitions
leading from the start state to the accept state �it moves from the �rst
state to the second when it scans the �fth symbol from the right�! and for
any string x whose �fth symbol from the right is �� there is no possible
sequence of legal transitions leading to the accept state� no matter what
choices it makes �recall that to accept� the machine must be in an accept
state when the end of the input string is reached��

Informally� we can think of the machine as guessing when it sees a � whether
to take the transition from the �rst state to the second� i�e� whether that
� is �fth from the right� But it is not enough to guess� the machine must
also verify that its guess was correct! this is the purpose of the tail of the
automaton leading to the accept state�

To show formally that this machine accepts the set A� we would have to
argue that for any string x � A� i�e� for any string with a � �fth from the
right� there is a lucky sequence of guesses that leads to an accept state
when the end of x is reached! but for any string x �� A� i�e� for any string
with a � �fth from the right� no sequence of guesses leads to an accept state
when the end of x is reached� no matter how lucky the automaton is�

There does exist a deterministic automaton accepting the set A� but any
such automaton must have at least �� �� states� since a deterministic
machine essentially has to remember the last �ve symbols seen�

Equivalence of DFAs and NFAs

We will prove a rather remarkable fact� in terms of the sets accepted� nonde

terministic �nite automata are no more powerful than deterministic ones�
In other words� for every nondeterministic �nite automaton� there is a

�� Lecture �

deterministic one accepting the same set� The deterministic automaton�
however� may require more states�

This theorem can be proved using the so
called subset construction� Here
is the idea� Given a nondeterministic machine N � think of putting pebbles
on the states to keep track of all the states N could possibly be in after
scanning an initial substring of the input� We start with pebbles on all the
start states of the nondeterministicmachine� Say after scanning some initial
substring x of the input string� we have pebbles on some set P of states�
and say P is the set of all states N could possibly be in after scanning x�
depending on the nondeterministic choices that N could have made so far�
If input symbol b comes in� pick the pebbles up o� the states of P and
put a pebble down on each state reachable from a state in P under input
symbol b� Let P � be the new set of states covered by pebbles� Then P � is
the set of states that N could possibly be in after scanning xb�

Although for a state q of N � there may be many possible next states after
scanning b� note that the set P � is uniquely determined by P and b� We will
thus build a deterministic automatonM whose states are these sets� That
is� a state of M will be a set of states of N � These will be the P � P �� etc�
The start state of M will be the set of start states of N � indicating that
we start with one pebble on each of the start states of N � A �nal state of
M will be any set P containing a �nal state of N � since we want to accept
x if it is possible for N to have made choices while scanning x leading to
an accept state of N �

It takes a stretch of the imagination to regard a set of states of N as a
single state ofM � Let�s illustrate the construction with a shortened version
of the example above� Consider the set

A fx � f�� �g� j the second symbol from the right is �g �

s s s� �g����j�

�� �

� �� �
p q r

Label the states p� q� r from left to right� as illustrated� The states of M
will be subsets of the set of states of N � In this example there are eight
such subsets�

�� fpg� fqg� frg� fp� qg� fp� rg� fq� rg� fp� q� rg �

Nondeterministic Finite Automata ��

Here is the deterministic automatonM �

� �
� � �

� fpg fpg fp� qg
fqg frg frg
frgF � �

fp� qg fp� rg fp� q� rg
fp� rgF fpg fp� qg
fq� rgF frg frg

fp� q� rgF fp� rg fp� q� rg

For example� if we have pebbles on p and q �the �fth row of the table�� and
if we see input symbol � ��rst column�� then in the next step there will be
pebbles on p and r� This is because in the automaton N � p is reachable
from p under input � and r is reachable from q under input �� and these
are the only states reachable from p and q under input �� The accept states
of M �marked F in the table� are those sets containing an accept state of
N � The start state of M is fpg� the set of all start states of N �

Following � and � transitions from the start state fpg of M � one can see
that states fq� rg� fqg� frg� � of M can never be reached� These states of
M are inaccessible and we might as well throw them out� This leaves

� �
� fpg fpg fp� qg
fp� qg fp� rg fp� q� rg
fp� rgF fpg fp� qg

fp� q� rgF fp� rg fp� q� rg

This four
state automaton is exactly the one you would have come up with
if you had built a deterministic automaton directly to remember the last
two bits seen and accept if the next to last bit is a ��

s s�
�

	
�s

s�
�

gg���� ����M K
U N

� �

� �

� �

� �

�
� ����� ����

����

����

Here the state labels �bc� indicate the last two bits seen �for our purposes
the null string is as good as having just seen two ��s�� Note that these
two automata are isomorphic �i�e�� they are the same automaton up to
renaming of the states��

fpg � ����

fp� qg � ����

	� Lecture �

fp� rg � ����

fp� q� rg � ���� �

Here is another example� Consider the set

fx � fag� j jxj is divisible by � or 	g � �	���

Here is an eight
state nondeterministic automatonN with two start states
accepting this set �labels a on transitions are omitted since there is only
one input symbol��

� �
 �

� 	 �

�k k
�

�

�
�� �A

AK AAU
�

���

QQk��	

The only nondeterminism is in the choice of start state� The machine
guesses at the outset whether to check for divisibility by � or 	� After
that� the computation is deterministic�

Let Q be the states of N � We will build a deterministic machineM whose
states are subsets of Q� There are �� �	
 of these in all� but most will
be inaccessible �not reachable from the start state of M under any input��
Think about moving pebbles�for this particular automaton� if you start
with pebbles on the start states and move pebbles to mark all states the
machine could possibly be in� you always have exactly two pebbles on N �
This says that only subsets of Q with two elements will be accessible as
states of M �

The subset construction gives the following deterministic automaton M
with �fteen accessible states�

f�� �g
�� ��f�� 	g f��
g f�� �g

�� ��f�� �g f�� �g
�� ��f�� 	g�� ��

f��
gf�� �gf�� �g
�� ��f�� �g

�� ��f�� 	gf��
g
�� ��f�� �gf�� �g

� � � � � � �

� � � � � � �

��R

Next time we will give a formal de�nition of nondeterministic �nite au

tomata and a general account of the subset construction�

Lecture �

The Subset Construction

Formal De�nition of Nondeterministic Finite Automata

A nondeterministic �nite automaton �NFA� is a �ve
tuple

N �Q� "� $� S� F �

where everything is the same as in a deterministic automaton� except�

� S is a set of states� i�e� S � Q� instead of a single state� The elements
of S are called start states!

� $ is a function

$ � Q
"� �Q �

where �Q denotes the power set of Q� or set of all subsets of Q�

�Q
def
 fA j A � Qg �

Intuitively� $�p� a� gives the set of all states that N is allowed to move to
from p in one step under input symbol a� We often write

p
a

� q

��

	� Lecture �

if q � $�p� q�� The set $�p� a� can be the empty set �� The function $ is
called the transition function�

Now we de�ne acceptance for NFAs� The function $ extends in a natural
way by induction to a function

b$ � �Q
 "� � �Q

according to the formal de�nition below� Intuitively� for A � Q and x �
"�� b$�A�x� is the set of all states reachable under input string x from
some state in A� Note that $ takes a single state as its �rst input and a
single symbol as its second input� whereas b$ takes a set of states as its
�rst input and a string of symbols as its second input�

b$�A� �� def
 A �
���

b$�A�xa� def �
q�b	
A�x�

$�q� a� � �
���

Equation �
��� says that the set of all states reachable from a state in A
under the null input is just A� In �
���� the notation on the right hand side

means the union of all the sets $�q� a� for q � b$�A�x�! in other words�
q � b$�A�xa� if there exists r � b$�A�x� such that q � $�r� a��
p r q� �x a

Thus q � b$�A�x� if N can move from some state p � A to state q under

input x� This is the nondeterministic analog of the construction of b� for
deterministic automata we have already seen�

Note that for a � "�

b$�A� a� �
p�b	
A���

$�p� a�

�
p�A

$�p� a� �

The automaton N is said to accept x � "� if

b$�S� x�� F � � �

In other words� N accepts x if there exists an accept state q �i�e�� q � F �
such that q is reachable from a start state under input string x �i�e�� q �
b$�S� x���
We de�ne L�N� to be the set of all strings accepted by N �

L�N� fx � "� j N accepts xg �

The Subset Construction 		

Under this de�nition� every DFA

�Q� "� �� s� F �

is equivalent to an NFA

�Q� "� $� fsg� F � �

where $�p� a�
def
 f��p� a�g� Below we will show that the converse holds as

well� every NFA is equivalent to some DFA�

Here are some basic lemmas that we will �nd useful when dealing with
NFAs� The �rst corresponds to Exercise � of Homework � for deterministic
automata�

Lemma ��� For any x� y � "� and A � Q�

b$�A�xy� b$�b$�A�x�� y� �
Proof� The proof is by induction on jyj� For the basis y ��

b$�A�x�� b$�A�x�
 b$�b$�A�x�� �� by �
����

For the induction step�

b$�A�xya� �
q�b	
A�xy�

$�q� a� by �
���

�

q�b	
b	
A�x��y�

$�q� a� induction hypothesis

 b$�b$�A�x�� ya� by �
����

�

Lemma ��� The function b$ commutes with set union	 for any indexed family Ai of
subsets of Q and x � "��

b$��
i

Ai� x�
�
i

b$�Ai� x� �

Proof� By induction on jxj� For the basis� by �
����

b$��
i

Ai� ��
�
i

Ai
�
i

b$�Ai� �� �

	� Lecture �

For the induction step�

b$��
i

Ai� xa�
�

p�b	

S

i
Ai�x�

$�p� a� by �
���

�

p�
S

i
b	
Ai�x�

$�p� a� induction hypothesis

�
i

�
p�b	
Ai�x�

$�p� a� basic set theory

�
i

b$�Ai� xa� by �
����

�

In particular� expressing a set as the union of its singleton subsets�

b$�A�x� �
p�A

b$�fpg� x� � �
���

The Subset Construction� General Account

The subset construction works in general� Let

N �QN � "� $N � SN � FN�

be an arbitrary NFA� We will use the subset construction to produce an
equivalent DFA� Let M be the DFA

M �QM � "� �M � sM � FM� �

where

QM
def
 �QN

�M �A� a�
def
 b$N �A� a�

sM
def
 SN

FM
def
 fA � QN j A� FN � �g �

Note that �M is a function from states of M and input symbols to states
of M � as it should be� because states of M are sets of states of N �

Lemma ��� For any A � QN and x � "��

b�M �A�x� b$N �A�x� �

The Subset Construction 	�

Proof� Induction on jxj� Basis x �� we want to show

b�M �A� �� b$N �A� �� �

But both of these are A� by de�nition of b�M and b$N �

Induction step� assume that

b�M �A�x� b$N �A�x� �

We want to show the same is true for xa� a � "�

b�M �A�xa� �M �b�M�A�x�� a� de�nition of b�M
 �M �b$N�A�x�� a� induction hypothesis

 b$N �b$N �A�x�� a� de�nition of �M

 b$N �A�xa� Lemma
���

�

Theorem ��� The automata M and N accept the same set�

Proof�

x � L�M�

�� b�M�sM � x� � FM de�nition of acceptance for M

�� b$N �SN � x� � FN � � de�nition of sM and FM � Lemma
��

�� x � L�N� de�nition of acceptance for N �

�

��Transitions

Here is another extension of �nite automata that turns out to be quite
useful� but really adds no more power�

An ��transition is a transition with label �� a letter that stands for the null
string ��

p
�

� q

The automaton can take such a transition anytime without reading an
input symbol�

	� Lecture �

Example ��	

p q rk
s t u� �

� � ��
�
�
��

�
�
�
��

� �

� �

b b b

�

If the machine is in state s and the next input symbol is b� it can nonde

terministically decide to do one of three things�

� read the b and move to state p!

� slide to t without reading an input symbol� then read the b and move
to state q! or

� slide to t without reading an input symbol� then slide to u without
reading an input symbol� then read the b and move to state r�

The set of strings accepted by this automaton is fb� bb� bbbg� �

Example ��� Here is a nondeterministic automaton with �
transitions accepting the set
fx � fag� j jxj is divisible by � or 	g�s
s
s s

s
s s
ssg g

�
�
��R

�

�
�
��� �J

J
J� B

B
BBN ��

�
���
c

cck���	
� �

a a a a

a a

a a

The automaton chooses at the outset which of the two conditions to check
for �divisibility by � or 	� and slides to one of the two loops accordingly
without reading an input symbol� �

The main bene�t of �
transitions is convenience� They do not really add
any power� a modi�ed subset construction involving the notion of ��closure
can be used to show that every NFA with �
transitions can be simulated
by a DFA without �
transitions �Miscellaneous Exercise ��� thus all sets
accepted by nondeterministic automata with �
transitions are regular� We
will also give an alternative treatment in Lecture �� using homomorphisms�

More Closure Properties

Recall that the concatenation of sets A and B is the set

AB fxy j x � A and y � Bg �

The Subset Construction 	

For example�

fa� abgfb� bag fab� aba� abb� abbag �

If A and B are regular� then so is AB� To see this� letM be an automaton
for A and N an automaton for B� Make a new automaton P whose states
are the union of the state sets of M and N � and take all the transitions of
M and N as transitions of P � Make the start states ofM the start states of
P and the �nal states of N the �nal states of P � Finally� put �
transitions
from all the �nal states ofM to all the start states of N � Then L�P � AB�

Example ��
 Let A faag� B fbbg� Here are automata for A and B�

s s s� �g� a a s s s� �g� b b

Here is the automaton you get by the construction above for AB�

s s s s s s� � � � �g� �a a b b

�

If A is regular� then so is its asterate

A� f�g � A� A� �A� � � � �

 fx�x� � � � xn j n � � and xi � A� � � i � ng �

To see this� take an automaton M for A� Build an automaton P for A�

as follows� Start with all the states and transitions of M � Add a new state
s� Add �
transitions from s to all the start states of M and from all the
�nal states of M to s� Make s the only start state of P and also the only
�nal state of P �thus the start and �nal states ofM are not start and �nal
states of P �� Then P accepts exactly the set A��

Example ��� Let A faag� Consider the three
state automaton for A in Example
���
Here is the automaton you get for A� by the construction above�

s s s s� � �g��

� 	
�

�

a a

	� Lecture �

�

In this construction� you must add the new start%�nal state s� You might
think that putting in �
transitions from the old �nal states back to the old
start states and making the old start state a �nal state should su�ce� but
this doesn�t always work� Here�s a counterexample�

s s�g����j�

a

b

The set accepted is fanb j n � �g� The asterate of this set is

f�g � fstrings ending with bg �

but if you put in an �
transition from the �nal state back to the start state
and made the start state a �nal state� then the set accepted would be
fa� bg��

Historical Notes

Rabin and Scott ����� introduced nondeterministic �nite automata and
showed using the subset construction that they were no more powerful
than deterministic �nite automata�

Closure properties of regular sets were studied by Ginsburg and Rose ����
�
�� Ginsburg ����� McNaughton and Yamada ��	�� and Rabin and Scott
������ among others�

