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Lecture 1

Course Roadmap and Historical Perspective

The goal of this course is to understand the foundations of computation.
We will ask some very basic questions, such as:

e What does it mean for a function to be computable?
e Are there any noncomputable functions?

¢ How does computational power depend on programming constructs?

These questions may appear simple, but they are not. They have intrigued
scientists for decades, and the subject is still far from closed.

In the quest for answers to these questions, we will encounter along the
way some fundamental and pervasive concepts: state, transition, nonde-
terminism, reduction, and undecidability, to name a few. Some of the most
important achievements in theoretical computer science have been the crys-
tallization of these concepts. They have shown a remarkable persistence,
even as technology changes from day to day. They are crucial for every good
computer scientist to know, so that they can be recognized when they are
encountered, as they surely will be.

Various models of computation have been proposed over the years, all
of which capture some fundamental aspect of computation. We will con-
centrate on the following three classes of models, in order of increasing
power:
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(i) (finite memory) finite automata, regular expressions
(ii) (finite memory + stack) pushdown automata
(iii) (unrestricted)

e Turing machines (Alan Turing [120])

e Post systems (Emil Post [99, 100])

o p-recursive functions (Kurt Gédel [51], Jacques Herbrand)
o MA-calculus (Alonzo Church [23], Stephen C. Kleene [66])

combinatory logic (Moses Schonfinkel 1924 [111], Haskell B. Curry
[29])

These systems were developed long before computers existed. Nowa-
days one could add PASCAL, FORTRAN, BASIC, LISP, SCHEME,
C++, JAVA, or any sufficiently powerful programming language to
this list.

In parallel with and independent of the development of these models of
computation, the linguist Noam Chomsky was attempting to formalize the
notion of grammar and language. This effort resulted in the definition of the
Chomsky Hierarchy, a hierarchy of language classes defined by grammars
of increasing complexity:

(i) right-linear grammars and languages
(ii) context-free grammars and languages

(iii) unrestricted grammars and languages

Although grammars and machine models appear quite different on a super-
ficial level, the process of parsing a sentence in a language bears a strong
resemblance to computation. Upon closer inspection, it turns out that each
of the grammar types (i-iii) are equivalent in computational power to the
machine models (i-iii) above, respectively, in a certain well-defined sense.
There is even a fourth natural class called the context-sensitive grammars
and languages, which fits in between (ii) and (iii) above and which corre-
sponds to a certain natural class of machine models called linear bounded
automata.

It is quite surprising that a naturally defined hierarchy in one field should
correspond so closely to a naturally defined hierarchy in a completely
different field. Could this be mere coincidence?
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Abstraction

The machine models mentioned above were first identified in the same
way that theories in physics or any other scientific discipline arise. When
studying real-world phenomena, one becomes aware of recurring patterns
and themes that appear in various guises. These guises may differ sub-
stantially on a superficial level, but may bear enough resemblance to one
another to suggest that there are common underlying principles at work.
When this happens, it makes sense to try to construct an abstract model
that captures these underlying principles in the simplest possible way, de-
void of the unimportant details of each particular manifestation. This is
the process of abstraction. Abstraction is the essence of scientific progress,
because it focusses attention on the important principles, unencumbered
by irrelevant details.

Perhaps the most striking example of this phenomenon we will see is the
formalization of the concept of effective computability. This quest started
around the beginning of the 20th century with the development of the
formalist school of mathematics, championed by the philosopher Bertrand
Russell and the mathematician David Hilbert. They wanted to reduce all
of mathematics to the formal manipulation of symbols.

Of course, the formal manipulation of symbols is a form of computation,
although there were no computers around at the time. However, there cer-
tainly existed an awareness of computation and algorithms. Mathemati-
cians, logicians, and philosophers knew a constructive method when they
saw it. There followed several attempts to come to grips with the gen-
eral notion of effective computability. Several definitions emerged (Turing
machines, Post systems, etc.), each with its own peculiarities, and differing
radically in appearance. However, it turned out that as different as all these
formalisms appeared to be, they could all simulate one another, thus they
were all computationally equivalent.

The formalist program was eventually shattered by Kurt Godel’s Incom-
pleteness Theorem, which states that no matter how strong a deductive
system for number theory you take, it will always be possible to construct
simple statements that are true but unprovable. This theorem is widely
regarded as one of the crowning intellectual achievements of the twentieth
century. It is essentially a statement about computability, and we will be
in a position to give a full account of it by the end of the course.

The process of abstraction is inherently mathematical. It involves build-
ing models that capture observed behavior in the simplest possible way.
Although we will consider plenty of concrete examples and applications
of these models, we will work primarily mathematically, in terms of their
properties. We will always be as explicit as possible about these properties.
We will usually start with definitions, then subsequently reason purely in
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terms of those definitions. For some, this will undoubtedly be a new way
of thinking, but it is a skill that is worth cultivating.

Keep in mind that a large intellectual effort often goes into coming up with
just the right definition or model that captures the essence of the principle
at hand with the least amount of extraneous baggage. After the fact, the
reader often sees only the finished product, and is not exposed to all the
misguided false attempts and pitfalls that were encountered along the way.
Remember that it took many years of intellectual struggle to arrive at the
theory as it exists today. This is not to say that the book is closed—far
from it!



Lecture 2

Strings and Sets

Decision Problems vs. Functions

A decision problem is a function with a one-bit output: “yes” or “no”. To
specify a decision problem, one must specify

e the set A of possible inputs

e the subset B C A of “yes” instances.

For example, to decide if a given graph is connected, the set of possible
inputs is the set of all (encodings of) graphs, and the “yes” instances are
the connected graphs. To decide if a given number is a prime, the set of
possible inputs is the set of all (binary encodings of ) integers, and the “yes”
instances are the primes.

In this course we will mostly consider decision problems as opposed to func-
tions with more general outputs. We do this for mathematical simplicity,
and because the behavior we want to study is already present at this level.
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Definition 2.1

Strings

Now to our first abstraction: we will always take the set of possible inputs to
a decision problem to be the set of finite-length strings over some fixed finite
alphabet (formal definitions below). We do this for uniformity and simplic-
ity. Other types of data—graphs, the natural numbers N = {0,1,2,...},
trees, even programs—can be encoded naturally as strings. By making
this abstraction, we only have to deal with one data type and a few basic
operations.

An alphabet is any finite set. For example, we might use the alphabet
{0,1,2,...,9} if we are talking about decimal numbers; the set of
all ASCII characters if talking about text; {0,1} if talking about bit
strings. The only restriction is that the alphabet be finite.

When speaking about an arbitrary finite alphabet abstractly, we usu-
ally denote it by the Greek letter . We call elements of X letters or
symbols and denote them by a,b,c,...

Often we do not care at all about the nature of the elements of X, only
that there are finitely many of them.

A string over X is any finite-length sequence of elements of . Example:
it ¥ = {a,b}, then aabab is a string over ¥ of length five. We use
Z,Y,%,... to refer to strings.

The length of a string = is the number of symbols in . The length of
z is denoted |z|. For example, |aabab| = 5.

There is a unique string of length 0 over X called the null string or
empty string and denoted by € (Greek epsilon, not to be confused with
the symbol for set containment €). Thus |e| = 0.

We write a™ for a string of a’s of length n. For example, a® = aaaaa,

a' = a, and a° = e. Formally, a” is defined inductively:

def
@ e
def
a1 = q"a

The set of all strings over alphabet ¥ is denoted ©*. For example,

{a,b}* = {e,a,b,aa, ab, ba, bb, aaa, aab, ...}
{a}* = {¢a,00,a00,000q,...}
={a"|n>0}.
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By convention, we take
x def
g = {6} ’

where @ denotes the empty set. This may seem a bit strange, but there is
good mathematical justification for it, which will become apparent shortly.

If ¥ is nonempty, then ¥* is an infinite set of finite-length strings. Be
careful not to confuse strings and sets. We won’t be seeing any infinite
strings until much later in the course. Here are some differences between
strings and sets:

e {a,b} = {b,a} but ab # ba
e {a,a,b} = {a,b} but aab # abd.

Note also that @, {€}, and € are three different things. The first is a set
with no elements; the second is a set with one element, namely ¢; and the
last is a string, not a set.

Operations on Strings

The operation of concatenation takes two strings  and y and makes a new
string zy by putting them together end to end. The string zy is called the
concatenation of z and y. Note that zy and yz are different in general.
Some useful properties of concatenation are:

e concatenation is associative: (zy)z = z(yz)
e the null string € is an identity for concatenation: ex = ze = z
o |zyl = || + 1yl

A special case of the last equation is a™a™ = a™*" for all m,n > 0.

A monoid is any algebraic structure consisting of a set with an associative
binary operation and an identity for that operation. By our definitions
above, the set ©* with string concatenation as the binary operation and e
as the identity is a monoid. We will be seeing some other examples later
on in the course.

o We write z" for the string obtained by concatenating n copies of z. For
example, (aab)® = aabaabaabaabaab, (aab)' = aab, and (aad)’ = e.
Formally, ™ is defined inductively:

def
ZUO 1€

def
"= g



10

Lecture 2

e If g € ¥ and z € %, we write #a(z) for the number of a’s in z. For

example, #0(001101001000) = 8 and #1(00000) = 0.
[

Operations on Sets

We usually denote sets of strings (subsets of ¥*) by A4, B,C,... The car-
dinality (number of elements) of set A is denoted |A|. The empty set @ is
the unique set of cardinality 0.

Let’s define some useful operations on sets. Some of these you have probably
seen before, some probably not.

Liff = if and only if

o Set union:

AUBdéf{:zzHcEAora:eB}.
In other words, z is in the union of A and B iff' either z isin A or z
is in B. For example, {a,ab} U {ab,aab} = {a, ab, aab}.

Set intersection:

AﬂBdéf{aﬂ:cEAanda:EB}.
In other words, x is in the intersection of A and B iff z is in both A
and B. For example, {a,ab} N {ab,aab} = {ab}.

Complement in L*:
~AS (zeT* |2 g A},
For example,
~ {strings in ©* of even length} = {strings in ©* of odd length} .
Unlike U and N, the definition of ~ depends on X*. The set ~ A4 is
sometimes denoted ¥* — A to emphasize this dependence.

Set concatenation:

ABdﬁf{wyMGAandyeB}
In other words, z is in AB iff 2 can be written as a concatena-
tion of two strings z and y, where x € A and y € B. For exam-
ple, {a,ab}{b,ba} = {ab,aba,abb,abba}. When forming a set con-
catenation, you include all strings that can be obtained in this way.
Note that AB and BA are different sets in general. For example,
{b,ba}{a, ab} = {ba, bab, baa, baab}.
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e The powers A™ of a set A are defined inductively as follows:
A0 g
AL gqn
In other words, A™ is formed by concatenating n copies of A together.

Taking A° = {¢} makes the property A™*™ = A™ A" hold, even when
one of m or n is 0. For example,

{ab,aab}’ = {€}

{ab, aab}* = {ab, aabd}

{ab,aab}® = {abab, abaab, aabab, aabaab}

{ab, aab}® = {ababab, ababaab, abaabab, aababab,

abaabaab, aababaab, aabaabab, aabaabaab} .
Also,

{a,6}" = {z € {a,0}" | |2] = n}
= {strings over {a,b} of length n} .

o The asterate A* of a set A is the union of all finite powers of A:
A* déf U A
n>0
=A'vAdltuAd?uAdiu...
Another way to say this is
A*:{aclzvg---acn|n20andxi€A, 1<i<n}.

Note n can be 0; thus the null string € is in A* for any A.

We previously defined X* to be the set of all finite-length strings
over the alphabet ¥. This is exactly the asterate of the set X, so our
notation is consistent.

e We define AT to be the union of all nonzero powers of A:

AT L qax = L 4m.

n>1
Here are some useful properties of these set operations:

e Set union, set intersection, and set concatenation are associative:
(AUB)UC =AU (BUCQC)
(AnNB)NC=An(BnCQ()
(AB)C = A(BC) .
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e Set union and intersection are commutative:
AUB=BUA
ANB=BnNA.

As noted above, set concatenation is not.
e The null set @ is an identity for U:

AUg=gUA=A.

The set {€} is an identity for set concatenation:
{e}A=A{e} = A .
e The null set @ is an annihilator for set concatenation:

AT =0A =0 .

e Set union and intersection distribute over each other:

AU(BNC)=(AUB)N(AUC)
AN(BUC) = (ANB)U(ANC).

e Set concatenation distributes over union:

A(BUC)= ABUAC
(AUB)C = ACUBC .
In fact, concatenation distributes over the union of any family of sets.

If {B; |i € I} is any family of sets indexed by another set I, finite or
infinite, then

A(lJBi) = |J 4B

i€l icl
(UBia=JBiA.
i€l i€l

Here | J,;; B denotes the union of all the sets B; for ¢ € I. An element
2 is in this union iff it is in one of the B;.

Set concatenation does not distribute over intersection. For example,
take A = {a,ab}, B = {b}, C = {€}, and see what you get when you
compute A(BN C) and ABN AC.

e The De Morgan Laws hold:

~(AUB)=~AN~B
~(ANB)=~AU~B .
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e The asterate operation * satisfies the following properties:

A*A* = A*

A** — A*

A* = {e} U AA* = {e} U A*A
g* = {e}.
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Finite Automata and Regular Sets

States and Transitions

Intuitively, a state of a system is an instantaneous description of that sys-
tem, a snapshot of reality frozen in time. A state gives all relevant infor-
mation necessary to determine how the system can evolve from that point
on. Transitions are changes of state; they can happen spontaneously or in
response to external inputs.

We assume that state transitions are instantaneous. This is a mathemat-
ical abstraction. In reality, transitions usually take time. Clock cycles in
digital computers enforce this abstraction and allow us to treat computers
as digital instead of analog devices.

There are innumerable examples of state transition systems in the real
world: electronic circuits, digital watches, elevators, Rubik’s cube (54!/9!°
states and twelve transitions, not counting peeling the little sticky squares
off), the game of Life (2* states on a screen with k cells, one transition).

A system that consists of only finitely many states and transitions among
them is called a finite-state transition system. We model these abstractly
by a mathematical model called a finite automaton.

14
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Example 3.1

Finite Automata

Formally, a deterministic finite automaton (DFA) is a structure

M=(Q,X%6 s, F)

where:

Q is a finite set; elements of @ are called states
Y is a finite set, the input alphabet

6:Q xX — @ is the transition function (recall @ x X is the set of
ordered pairs {(¢q,a) | ¢ € Q and a € ©}). Intuitively, 6 is a function
that tells which state to move to in response to an input: if M is in
state ¢ and sees input a, it moves to state 6(g,a).

s € @ is the start state

F is a subset of Q; elements of F’ are called accept or final states.

When you specify a finite automaton, you must give all five parts. Au-
tomata may be specified in this set theoretic form, or as a transition
diagram or table as in the example below.

Here is an example of a simple four-state finite automaton. We’ll take the
set of states to be {0, 1,2, 3}, the input alphabet to be {a, b}, the start state
to be 0, the set of accept states to be {3}, and the transition function to

be

6(0,a) =1

6(1,a) =2

6(2,a) =6(3,a) =3

6(¢,0) =q, q€{0,1,2,3}.

All parts of the automaton are completely specified. We can also specify
the automaton by means of a table

a b

— 0 1 0
1 2 1

2 3 2
3F |3 3

or transition diagram
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a a a

The final states are indicated by an F in the table and by a circle in the
transition diagram. In both, the start state is indicated by —. The states in
the transition diagram from left to right correspond to the states 0,1,2,3
in the table. One advantage of transition diagrams is that you don’t have
to name the states. |

Another convenient representation of finite automatais transition matrices;
see Miscellaneous Exercise 7.

Informally, here is how a finite automaton operates. An input can be any
string € ¥*. Put a pebble down on the start state s. Scan the input string
z from left to right, one symbol at a time, moving the pebble according
to §: if the next symbol of z is b and the pebble is on state ¢, move the
pebble to 6(q,b). When we come to the end of the input string, the pebble
is on some state p. The string z is said to be accepted by the machine M
if p e F, rejected if p ¢ F. There is no formal mechanism for scanning or
moving the pebble; these are just intuitive devices.

For example, the automaton of Example 3.1, starting in its start state 0,
will be in state 3 after scanning the input string baabbaab, so that string
is accepted; whereas it will be in state 2 after scanning the string babbbab,
so that string is rejected. For this automaton, a moment’s thought reveals
that when scanning any input string, the automaton will be in state 0 if it
has seen no a’s, 1 if it has seen one a, 2 if it has seen two a’s, and 3 if it
has seen three or more a’s.

This is how we do formally what we just described informally above. We
first define a function

§:QxY*=0Q
from 6 by induction on the length of x:

(0,0 Eq (3.1)

~

(g,2a) = 6(8(q,2),0) (3.2)

The function 8 maps a state ¢ and a string & to a new state 5((],:1:). Intu-
itively, 5 is the multi-step version of 6. The state g(q, z) is the state M ends
up in when started in state ¢ and fed the input =, moving in response to
each symbol of z according to §. Equation (3.1) is the basis of the inductive
definition; it says that the machine doesn’t move anywhere under the null
input. Equation (3.2) is the induction step; it says that the state reachable
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from ¢ under input string za is the state reachable from p under input
symbol a, where p is the state reachable from ¢ under input string z.

Note that the second argument toj\ can be any string in ¥*, not just a
string of length one as with §; but ¢ and ¢ agree on strings of length one:

—~ ~

6(g,a) = 6(q, €a) since a = ea
= 6(8(q,¢),a) by (3.2), taking z = ¢
=6(g,a) by (3.1).
Formally, a string z is said to be accepted by the automaton M if
8(s,x) € F
and rejected by the automaton M if
6(s,z) ¢ F

where s is the start state and F is the set of accept states. This captures
formally the intuitive notion of acceptance and rejection described above.

The set or language accepted by M is the set of all strings accepted by M,
and is denoted L(M):

LMY {z e |8(s,2) € F} .

A subset A C * is said to be regular if A = L(M) for some finite au-
tomaton M. The set of strings accepted by the automaton of Example 3.1
is the set

{z € {a,b}* | z contains at least three a’s} ,
so this is a regular set.
Here is another example of a regular set and a finite automaton accepting

1t.

Consider the set

{zaaay | 2,y € {a,b}*)
= {z € {a,b}" | = contains a substring of three consecutive a’s} .

For example, baabaaaab is in the set and should be accepted, whereas
babbabab is not in the set and should be rejected (because the three a’s
are not consecutive). Here is an automaton for this set, specified in both
table and transition diagram form:

N = O
W W N e
w o O oo
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O

The idea here is that you use the states to count the number of consecutive
a’s you have seen. If you haven’t seen three a’s in a row and you see a b, you
must go back to the start. Once you have seen three a’s in a row, though,
you stay in the accept state.
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More on Regular Sets

Here is another example of a regular set that is a little little harder than
the example given last time. Consider the set

{z € {0,1}* | x represents a multiple of three in binary} (4.1)

(leading zeros permitted, € represents the number 0). For example, the
following binary strings represent multiples of three and should be accepted:

binary decimal equivalent

0 0

11 3
110 6
1001 9
1100 12
1111 15
10010 18

19



20 Lecture 4

Strings not representing multiples of three should be rejected. Here is an
automaton accepting the set (4.1):

F

N =O
=N OO
WO M

The states 0, 1, 2 are written in boldface to distinguish them from the
input symbols 0, 1.

1 0
X0
1 0
In the diagram, the states are 0, 1, 2 from left to right. We prove that this

automaton accepts exactly the set (4.1) by induction on the length of the
input string. First we associate a meaning to each state?:

if the number represented by then the machine
the string scanned so far is will be in state

0 mod 3 0
1 mod3 1
2 mod 3 2

Let #x denote the number represented by string = in binary. For example,

#e =0
#0 =0
#11 =3
#100 =4,

etc. Formally, we want to show for any string z in {0,1}*,

8(0,z) = 0 iff #z = 0 mod 3 (4.2)
6(0,2) = 1 iff #2 =1 mod 3

5(0,z) = 2 iff #z =2 mod 3

or in short,

5(0,z) = #z mod 3 . (4.3)

*Here a mod n denotes the remainder when dividing a by n using ordinary integer division. We
also write ¢ = bmod n (read: a is congruent to b modulo n) to mean that a and b have the same
remainder when divided by n; i.e., that n divides b — a.
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This will be our induction hypothesis. The final result we want, namely
(4.2), is a weaker consequence of (4.3), but we need the more general
statement (4.3) for the induction hypothesis.

We have by elementary number theory that

#(20) = 2(#2) +0
#(21) = 2(#a) + 1

or in short,
#(zc) =2(#x) + ¢ (4.4)

for ¢ € {0,1}. From the machine above, we see that for any state ¢ €
{0,1,2} and input symbol ¢ € {0,1},

6(g,¢) = (29 +c)mod 3 . (4.5)

This can be verified by checking all six cases corresponding to possible
choices of ¢ and c. (In fact, (4.5) would have been a great way to define
the transition function formally—then we wouldn’t have had to prove it!)
Now we use the inductive definition of § to show (4.3) by induction on |z|.

Basis

For || =0, i.e. T = ¢,

5(0,6) =0 by definition of §
= #e since #e¢ =0
= #emod 3 .

Induction step

Assuming (4.3) is true for z € {0,1}*, we show it is true for xc, where
c€{0,1}.

:5\(0, zc) = 6(3\(0, z),c) definition of §
= §(#z mod 3,c¢) induction hypothesis
= (2(#2z mod 3) + ¢) mod 3 by (4.5)
= (2(#z)+ ¢) mod 3 elementary number theory

= #zcmod 3 by (4.4).
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Some Closure Properties of Regular Sets

For A,B C X*, recall the definitions

AUB={z|z € Aorz € B} union
ANB={z|z€ Aandz € B} intersection
~A ={zeX*|z¢A} complement
AB ={zy|ze Aandy € B} concatenation
A* ={z122-zp|n>0andz; € 4,1 <i<n}
=A'vA'uA’UAu--- asterate

Don’t confuse set concatenation with string concatenation. Sometimes ~ A
is written ©* — A.

We show below that if A and B are regular, then so are AU B, AN B, and
~ A. We'll show later that AB and A* are also regular.

The Product Construction

Agsume that A and B are regular. Then there are automata

Ml = (Qla Ea 513 51, Fl)
M2 = (Q27 Ea 625 52, F2)

with L(M;) = A and L(M,) = B. To show that AN B is regular, we will
build an automaton Ms such that L(M3) = AN B.

Intuitively, M3 will have the states of My and M, encoded somehow in its
states. On input z € X%, it will simulate M; and My simultaneously on z,
accepting iff both M7 and My would accept. Think about putting a pebble
down on the start state of M; and another on the start state of Ms. As the
input symbols come in, move both pebbles according to the rules of each
machine. Accept if both pebbles occupy accept states in their respective
machines when the end of the input string is reached.

Formally, let
Ms = (Qs, X, 63, s3, F3)

where

Q=01 xQ2={(p,q)|p€Q1and g€ Qa}
F3 =F1><F2={(p,q)|p€F1 anquFg}

s3 = (s1,82)
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Lemma 4.1

Theorem 4.2

and let
03:Q3x X = Q3

be the transition function defined by

83((p,q), @) = (61(p, ), d2(g, a)) .

The automaton Mj is called the product of M; and My. A state (p,q) of
Mj3 encodes a configuration of pebbles on M7 and Mj.

Recall the inductive definition (3.1), (3.2) of the extended transition func-
tion ¢ from Lecture 2. Applied to é3, this gives:

83((p,9),¢) = (p,q)

-~

8((p,9), za) = 63(83((p, ), z), a) -
For all x € X%,

-~ -~ -~

53((17, q)’ l‘) = (51(17, $)752(Q7 x)) -
Proof. By induction on |z|.

Basis
For |z| =0, i.e. z = ¢,

-~ -~ -~

63((p,9),€) = (p,q) = (61(p, €),62(g,¢€)) -

Induction step

Assuming the Lemma holds for z € ©*, we show it holds for za, where
a € X.

83((p,q), za) = 63(83((p, q), ), a) definition of &3
= 63((31 (p, ), & (g,2)),a) induction hypothesis
= (61(81(p, ), @), 62(62(q,z)),a))  definition of &3
= (81(p, za), b2(q, za)) definition of 6; and &5.

O

L(Ms) = L(My) N L(Ms) .
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Proof. For all z € ©*,

z € L(Ms3)

<— 53(33, z) € F3 definition of acceptance
— 3\3((51, $2),z) € Fi x Fy definition of s3 and F3
= (61(s1,z),69(52,2)) € Fy x Fy Lemma 4.1

— 51(31, z) € Fy and 52(52,30) € I, definition of set product
< z € L(M;) and z € L(M>) definition of acceptance
< z € L(My)N L(M,) definition of intersection.

O

To show that regular sets are closed under complement, take an automaton
accepting A and interchange the set of accept and nonaccept states. The
resulting automaton accepts exactly when the original automaton would
reject, so the set accepted is ~ A.

Once we know regular sets are closed under N and ~, it follows that they
are closed under U by one of the De Morgan Laws:

AUB=~(~AN~B).

If you use the constructions for N and ~ given above, this gives an automa-
ton for A U B which looks exactly like the product automaton for AN B,
except that the accept states are

Fs={(p,g)|pe Frorqge Fy} = (F1 x Q2) U(Q1 x F3)

instead of Fy x Ij.

Historical Notes

Finite state transition systems were introduced by McCulloch and Pitts in
1943 [84]. Deterministic finite automata in the form presented here were
studied by Kleene [70]. Our notation is borrowed from Hopcroft and Ullman
[60].
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Nondeterministic Finite Automata

Nondeterminism

Nondeterminism is an important abstraction in computer science. It refers
to situations in which the next state of a computation is not uniquely
determined by the current state. Nondeterminism arises in real life when
there is incomplete information about the state or when there are external
forces at work that can affect the course of a computation. For example,
the behavior of a process in a distributed system might depend on messages
from other processes that arrive at unpredictable times with unpredictable
contents.

Nondeterminism is also important in the design of efficient algorithms.
There are many instances of important combinatorial problems with effi-
cient nondeterministic solutions, but no known efficient deterministic so-
lution. The famous P = NP problem—whether all problems solvable in
nondeterministic polynomial time can be solved in deterministic polyno-
mial time—is a major open problem in computer science, and arguably
one of the most important open problems in all of mathematics.

In nondeterministic situations, we may not know how a computation will
evolve, but we may have some idea of the range of possibilities. This is

25
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modeled in automata theory by allowing automata to have multiple-valued
transition functions. For decision problems, the dominant paradigm is guess
and verify—on a given input, guess a successful computation or proof that
the input is a “yes” instance of the decision problem, and verify that the
guess is indeed correct.

In this lecture and the next, we will show how nondeterminism is incor-
porated naturally in the context of finite automata. One might think that
adding nondeterminism might increase expressive power, but in fact for
finite automata it does not: in terms of the sets accepted, nondeterminis-
tic finite automata are no more powerful than deterministic ones. In other
words, for every nondeterministic finite automaton, there is a deterministic
one accepting the same set. However, nondeterministic machines may be
exponentially more succinct.

Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is one for which the next state
is not necessarily uniquely determined by the current state and input sym-
bol. In a deterministic automaton, there is exactly one start state and
exactly one transition out of each state for each symbol in X, given by the
function 6. In a nondeterministic automaton, there may be one, more than
one, or zero. The set of possible next states that the automaton may move
to from a particular state ¢ in response to a particular input symbol a is
part of the specification of the automaton, but there is no mechanism for
deciding which one will actually be taken. Formally, we won’t be able to
represent this with a function 6 : @ x ¥ — @ anymore; we will have to
use something more general. Also, a nondeterministic automaton does not
have a unique start state, but may have many, and may start in any one
of them.

Informally, a nondeterministic automaton is said to accept its input z if it
is possible to start in some start state and scan z, moving according to the
transition rules (making choices along the way if there are more than one
possible next state) such that when the end of z is reached, the machine is
in an accept state. Because the start state is not determined and because
of the choices along the way, there may be several possible paths through
the automaton in response to the input z; some may lead to accept states
while others may lead to reject states. The automaton is said to accept
x if at least one computation path on input z starting from at least one
start state leads to an accept state. The automaton is said to reject z if no
computation path on input z from any start state leads to an accept state.
Again, there is no mechanism for determining which state to start in or
which of the possible next moves to take in response to an input symbol.



Nondeterministic Finite Automata 27

For example, consider the set
A ={z € {0,1}* | the fifth symbol from the right is 1} .
Thus 11010010 € A but 11000010 ¢ A.

Here is a six-state nondeterministic automaton accepting A:

0,1

There is only one start state, namely the leftmost, and only one accept
state, namely the rightmost. The automaton is not deterministic because
there are two transitions from the leftmost state labeled 1 (one back to
itself and one to the second state) and no transitions from the rightmost
state. This automaton accepts the set A, because for any string  whose
fifth symbol from the right is 1, there exists a sequence of legal transitions
leading from the start state to the accept state (it moves from the first
state to the second when it scans the fifth symbol from the right); and for
any string  whose fifth symbol from the right is 0, there is no possible
sequence of legal transitions leading to the accept state, no matter what
choices it makes (recall that to accept, the machine must be in an accept
state when the end of the input string is reached).

Informally, we can think of the machine as guessing when it sees a 1 whether
to take the transition from the first state to the second, i.e. whether that
1 is fifth from the right. But it is not enough to guess, the machine must
also verify that its guess was correct; this is the purpose of the tail of the
automaton leading to the accept state.

To show formally that this machine accepts the set A, we would have to
argue that for any string z € A, i.e. for any string with a 1 fifth from the
right, there is a lucky sequence of guesses that leads to an accept state
when the end of z is reached; but for any string x ¢ A, i.e. for any string
with a 0 fifth from the right, no sequence of guesses leads to an accept state
when the end of x is reached, no matter how lucky the automaton is.

There does exist a deterministic automaton accepting the set A, but any
such automaton must have at least 2° = 32 states, since a deterministic
machine essentially has to remember the last five symbols seen.

Equivalence of DFAs and NFAs

We will prove a rather remarkable fact: in terms of the sets accepted, nonde-
terministic finite automata are no more powerful than deterministic ones.
In other words, for every nondeterministic finite automaton, there is a
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deterministic one accepting the same set. The deterministic automaton,
however, may require more states.

This theorem can be proved using the so-called subset construction. Here
is the idea. Given a nondeterministic machine N, think of putting pebbles
on the states to keep track of all the states N could possibly be in after
scanning an initial substring of the input. We start with pebbles on all the
start states of the nondeterministic machine. Say after scanning some initial
substring z of the input string, we have pebbles on some set P of states,
and say P is the set of all states IV could possibly be in after scanning =z,
depending on the nondeterministic choices that N could have made so far.
If input symbol b comes in, pick the pebbles up off the states of P and
put a pebble down on each state reachable from a state in P under input
symbol b. Let P’ be the new set of states covered by pebbles. Then P’ is
the set of states that N could possibly be in after scanning zb.

Although for a state ¢ of N, there may be many possible next states after
scanning b, note that the set P’ is uniquely determined by P and b. We will
thus build a deterministic automaton M whose states are these sets. That
is, a state of M will be a set of states of N. These will be the P, P', etc.
The start state of M will be the set of start states of NV, indicating that
we start with one pebble on each of the start states of N. A final state of
M will be any set P containing a final state of N, since we want to accept
x if it is possible for N to have made choices while scanning z leading to
an accept state of N.

It takes a stretch of the imagination to regard a set of states of V as a
single state of M. Let’s illustrate the construction with a shortened version
of the example above. Consider the set

A ={z € {0,1}* | the second symbol from the right is 1} .

0,1
1 0,1
—Q»o—’»@
p q r

Label the states p,q,r from left to right, as illustrated. The states of M
will be subsets of the set of states of N. In this example there are eight
such subsets:

9, {p}v {Q}’ {T}a {pv‘I}a {p’T}v {(],T}, {paQaT} .
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Here is the deterministic automaton M:

0 1
j%) j%) %)
— {p} {r}  {p,q}
{a} {r} {r}
{r}F jo] @

{r,a} |{pr} {p,0,7}
{,r}F | {p} {p.q}
{g,7}F | {r} {r}
{p,q,7}F | {p,7} {p,q,7}

For example, if we have pebbles on p and ¢ (the fifth row of the table), and
if we see input symbol 0 (first column), then in the next step there will be
pebbles on p and r. This is because in the automaton N, p is reachable
from p under input 0 and r is reachable from ¢ under input 0, and these
are the only states reachable from p and ¢ under input 0. The accept states
of M (marked F in the table) are those sets containing an accept state of
N. The start state of M is {p}, the set of all start states of N.

Following 0 and 1 transitions from the start state {p} of M, one can see
that states {q,7}, {¢}, {r}, @ of M can never be reached. These states of
M are inaccessible and we might as well throw them out. This leaves

0 1
- {p} {r}  {p,q}
{r,a} |{pr} {p,0,7}
{o,r}F | {p} {p.q}
{p,q,7}F | {p,7} {p,q,7}

This four-state automaton is exactly the one you would have come up with
if you had built a deterministic automaton directly to remember the last
two bits seen and accept if the next to last bit is a 1:

1[0 g
0 [00] 1{lo [11] 1
0 [ﬁﬁ 0

Here the state labels [bc] indicate the last two bits seen (for our purposes
the null string is as good as having just seen two 0’s). Note that these
two automata are isomorphic (i.e., they are the same automaton up to
renaming of the states):

{p}  ~[00]
{p,q} ~|[01]
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{p,r} =~[10]
{p,q,r} =[11] .

Here is another example. Consider the set
{z € {a}* | |z is divisible by 3 or 5} . (5.1)

Here is an eight-state nondeterministic automaton N with two start states
accepting this set (labels ¢ on transitions are omitted since there is only
one input symbol):

The only nondeterminism is in the choice of start state. The machine
guesses at the outset whether to check for divisibility by 3 or 5. After
that, the computation is deterministic.

Let @ be the states of N. We will build a deterministic machine M whose
states are subsets of Q. There are 22 = 256 of these in all, but most will
be inaccessible (not reachable from the start state of M under any input).
Think about moving pebbles—for this particular automaton, if you start
with pebbles on the start states and move pebbles to mark all states the
machine could possibly be in, you always have exactly two pebbles on N.
This says that only subsets of @ with two elements will be accessible as
states of M.

The subset construction gives the following deterministic automaton M
with fifteen accessible states:

(3,8} = {2,7} {3,5} {3,7} < {2,6}
D 251 501D 29 @D

Next time we will give a formal definition of nondeterministic finite au-
tomata and a general account of the subset construction.
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The Subset Construction

Formal Definition of Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is a five-tuple
N=(Q,% A, S, F)

where everything is the same as in a deterministic automaton, except:

e Sis a set of states, i.e. 5 C @, instead of a single state. The elements
of S are called start states;

e A is a function
A:Qxx—29,
where 29 denotes the power set of Q, or set of all subsets of Q:
20 1414 C Q).

Intuitively, A(p,a) gives the set of all states that N is allowed to move to
from p in one step under input symbol a. We often write
a
pP—49q

31
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if ¢ € A(p,q). The set A(p,a) can be the empty set @. The function A is
called the transition function.

Now we define acceptance for NFAs. The function A extends in a natural
way by induction to a function

A:29 x o* 5 0@

according to the formal definition below. Intuitively, for A C @ and z €
Y*, A(A,z) is the set of all states reachable under input string = from
some state in A. Note that A takes a single state as its first input and a
single symbol as its second input, whereas A takes a set of states as its

first input and a string of symbols as its second input.
A4, ¥4 (6.1)
A4,20)E | Alga). (6.2)

gEA(A,)

Equation (6.1) says that the set of all states reachable from a state in A
under the null input is just A. In (6.2), the notation on the right hand side
means the union of all the sets A(g,a) for ¢ € K(A,a:); in other words,
q € A(A, za) if there exists r € A(A, ) such that ¢ € A(r,a).

Thus g € E(A,:U) if N can move from some state p € A to state ¢ under
input z. This is the nondeterministic analog of the construction of § for
deterministic automata we have already seen.

Note that for a € X,

K(A,a) = U A(p,a)
PEA(Ae)

= U A(p,a) .

pEA

The automaton N is said to accept z € X* if

-~

A(S,2)NF #o .
In other words, N accepts z if there exists an accept state ¢ (i.e., ¢ € F)

such that ¢ is reachable from a start state under input string = (i.e., ¢ €

~

A(S,x)).
We define L(N) to be the set of all strings accepted by N:
L(N)={z € ©* | N accepts z} .
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Under this definition, every DFA
(@, %, 6, s F)
is equivalent to an NFA
Q. %, A, {s}, F),
where A(p,a) = {6(p,a)}. Below we will show that the converse holds as

well: every NFA is equivalent to some DFA.

Here are some basic lemmas that we will find useful when dealing with
NFAs. The first corresponds to Exercise 3 of Homework 1 for deterministic
automata.

Lemma 6.1 For any z,y € ¥* and A C Q,

A(4,zy) = A(A(4,2),y) .
Proof. The proof is by induction on |y|. For the basis y = ¢,

A(A,ze) = A(A, z)
= A(A(A,z),¢) by (6.1).

For the induction step,

AAzya)= ) Aga) by (6.2)
qEA(A,zy)
= U A(g,a) induction hypothesis
gEA(A(A,2),9)

~ o~

A(A(A, z),ya) by (6.2).

O

Lemma 6.2 The function A commutes with set union: for any indezed family A; of
subsets of Q and © € ¥,

A(U Agz) = U A(A;,z) .

Proof. By induction on |z|. For the basis, by (6.1),

A(U A e) = UAi = UB(AZ-,E) :
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Lemma 6.3

For the induction step,

A(Jdiza)=  |J Alp,a) by (6.2)
: PR, Asz)
= U A(p,a) induction hypothesis
pEUi/A\(Aum)

= U U A(p,a)  basic set theory
* peN(Aiz)

= JA(4;, za) by (6.2).
Z O
In particular, expressing a set as the union of its singleton subsets,
A4, )= |J A{p}.2) . (6.3)

pE€A

The Subset Construction: General Account
The subset construction works in general. Let
N = (QN, Z, AN, SN, FN)

be an arbitrary NFA. We will use the subset construction to produce an
equivalent DFA. Let M be the DFA

MZ(QM; 27 5M> SM, FM)’

where
Qu e 90w
6u(A0) = Ax(4,0)
SM oy
Fu A C QN |ANFy # 2} .

Note that 6y is a function from states of M and input symbols to states
of M, as it should be, because states of M are sets of states of N.

For any A C Qy and © € T*,

bu(A,z) = Ay(4,2) .
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Theorem 6.4

Proof. Induction on |z|. Basis ¢ = e: we want to show
bu(A,€) = Ay(4,e) .
But both of these are A, by definition of EM and ﬁN.
Induction step: assume that
ou(A,z) = Ayx(A,z).
We want to show the same is true for za, a € X.

6m (A, za) = 61 (61(4, 2),0) definition of 6y
= 6u(ANn(A,z),a)  induction hypothesis
=An(AN(A,z),a) definition of 6

= An(4,za) Lemma 6.1.
O
The automata M and N accept the same set.
Proof.
z € L(M)
= ZS\M(SM, z) € Fiy definition of acceptance for M
— ﬁN(SN, z)N Fy # @  definition of sp; and Fpy, Lemma 6.3
<z € L(N) definition of acceptance for N.
O

e- Transitions

Here is another extension of finite automata that turns out to be quite
useful, but really adds no more power.
An e-transition is a transition with label €, a letter that stands for the null
string e:
€
p—4q

The automaton can take such a transition anytime without reading an
input symbol.
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Example 6.5

Example 6.6

— S € > { € > U
P )
P q Q)

If the machine is in state s and the next input symbol is b, it can nonde-
terministically decide to do one of three things:

¢ read the b and move to state p;

e slide to ¢ without reading an input symbol, then read the b and move
to state g; or

e slide to ¢t without reading an input symbol, then slide to » without
reading an input symbol, then read the b and move to state 7.

The set of strings accepted by this automaton is {b, bb, bbb}. O

Here is a nondeterministic automaton with e-transitions accepting the set
{z € {a}* | |z| is divisible by 3 or 5}:

The automaton chooses at the outset which of the two conditions to check
for (divisibility by 3 or 5) and slides to one of the two loops accordingly
without reading an input symbol. m|

The main benefit of e-transitions is convenience. They do not really add
any power: a modified subset construction involving the notion of e-closure
can be used to show that every NFA with e-transitions can be simulated
by a DFA without e-transitions (Miscellaneous Exercise 9), thus all sets
accepted by nondeterministic automata with e-transitions are regular. We
will also give an alternative treatment in Lecture 10 using homomorphisms.

More Closure Properties

Recall that the concatenation of sets A and B is the set

AB={zy|z € Aand y € B} .
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Example 6.7

Example 6.8

For example,
{a,ab}{b,ba} = {ab,aba,abd,abba} .

If A and B are regular, then so is AB. To see this, let A be an automaton
for A and N an automaton for B. Make a new automaton P whose states
are the union of the state sets of M and N, and take all the transitions of
M and N as transitions of P. Make the start states of M the start states of
P and the final states of N the final states of P. Finally, put e-transitions
from all the final states of M to all the start states of N. Then L(P) = AB.

Let A = {aa}, B = {bb}. Here are automata for A and B:

a aS b b§

Here is the automaton you get by the construction above for AB:

If A is regular, then so is its asterate

A* ={efuAuAluaiuy...
={z122-zp|n>0andz; € 4,1 <i<n}.

To see this, take an automaton M for A. Build an automaton P for A*
as follows. Start with all the states and transitions of M. Add a new state
s. Add e-transitions from s to all the start states of M and from all the
final states of M to s. Make s the only start state of P and also the only
final state of P (thus the start and final states of M are not start and final
states of P). Then P accepts exactly the set A*.

Let A = {aa}. Consider the three-state automaton for A in Example 6.7.
Here is the automaton you get for A* by the construction above:

oo o)
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O

In this construction, you must add the new start/final state s. You might
think that putting in e-transitions from the old final states back to the old
start states and making the old start state a final state should suffice, but
this doesn’t always work. Here’s a counterexample:

41

O

The set accepted is {a™b | » > 0}. The asterate of this set is
{e} U {strings ending with b} ,

but if you put in an e-transition from the final state back to the start state
and made the start state a final state, then the set accepted would be

{a,b}*.

Historical Notes

Rabin and Scott [102] introduced nondeterministic finite automata and
showed using the subset construction that they were no more powerful
than deterministic finite automata.

Closure properties of regular sets were studied by Ginsburg and Rose [48,
46], Ginsburg [43], McNaughton and Yamada [85], and Rabin and Scott
[102], among others.



