
KAT-ML: An interactive theorem prover for
Kleene algebra with tests

Kamal Aboul-Hosn — Dexter Kozen

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501 (USA)

kamal@cs.cornell.edu
kozen@cs.cornell.edu

ABSTRACT. We describe KAT-ML, an implementation of an interactive theorem prover for Kleene
algebra with tests (KAT). The system is designed to reflect the natural style of reasoning with
KAT that one finds in the literature. One can also use the system to reason about properties of
simple imperative programs using schematic KAT (SKAT). We explain how the system works
and illustrate its use with some examples, including an extensive scheme equivalence proof.

KEYWORDS: Kleene algebra, theorem provers, program verification, mathematical knowledge
management.

1. Introduction

Kleene algebra with tests (KAT), introduced in [KOZ 97], is an equational system
for program verification that combines Kleene algebra (KA), the algebra of regular
expressions, with Boolean algebra. KAT has been applied successfully in various
low-level verification tasks involving communication protocols, basic safety analysis,
source-to-source program transformation, concurrency control, compiler optimiza-
tion, and dataflow analysis [ANG 01, BAR 02, COH , COH 93, COH 94, KOZ 97,
KOZ 00b]. This system subsumes Hoare logic and is deductively complete for partial
correctness over relational models [KOZ 00a].

Much attention has focused on the equational theory of KA and KAT. The axioms
of KAT are known to be deductively complete for the equational theory of language-
theoretic and relational models. Validity is decidable in PSPACE [COH 96, KOZ 96].
But because of the practical importance of premises, it is the universal Horn theory
that is of more interest; that is, the set of valid sentences of the form

p1 = q1 ∧ · · · ∧ pn = qn → p = q, (1)

Journal of Applied Non-Classical Logics.Volume – No. /

2 JANCL – /. Implementation of Logics

where the atomic symbols are implicitly universally quantified. The premises pi = qi
are typically assumptions regarding the interaction of atomic programs and tests, and
the conclusion p = q represents the equivalence of an optimized and unoptimized
program or of an unannotated and annotated program. The necessary premises are ob-
tained by inspection of the program and their validity may depend on properties of the
domain of computation, but they are usually quite simple and easy to verify by inspec-
tion, since they typically only involve atomic programs and tests. Once the premises
are established, the proof of (1) is purely propositional. This ability to introduce
premises as needed is one of the features that makes KAT so versatile. By comparison,
Hoare logic has only the assignment axiom for introducing non-propositional struc-
ture, which is significantly more limited. In addition, this style of reasoning allows
a clean separation between first-order interpreted reasoning to justify the premises
pi = qi and purely propositional reasoning to establish that the conclusion p = q
follows from the premises.

The PSPACE decision procedure for the equational theory has been implemented
by Cohen [COH , COH 93, COH 94]. Cohen’s approach is to try to reduce a Horn for-
mula to an equation, then apply the PSPACE decision procedure to verify the resulting
equation automatically. However, this reduction is not always possible.

KAT can also be used to reason about flowchart schemes in an algebraic frame-
work. A flowchart scheme is a vertex-labeled graph that represents an uninterpreted
program. This version of KAT, called schematic KAT (SKAT), was introduced in
[ANG 01]. The semantics of SKAT coincides with the semantics of flowchart schemes
over a ranked alphabet Σ. A translation to SKAT from a flowchart scheme is possible
by considering the scheme to be a schematic automaton, a generalization of automata
on guarded strings [KOZ 03a]. The equivalence of schematic automata and SKAT ex-
pressions, as well as the soundness of the method for scheme equivalence, are proven
in [ANG 01].

Our system, KAT-ML, allows the user to develop a proof interactively in a natural
human style, keeping track of the details of the proof. An unproven theorem has a
number of outstanding tasks in the form of unproven Horn formulas. The initial task
is the theorem itself. The user applies axioms and lemmas to simplify the tasks, which
may introduce new (presumably simpler) tasks. When all tasks are discharged, the
proof is complete.

As the user applies proof rules, the system constructs a representation of the proof
in the form of a λ-term. The proof term of an unproven theorem has free task vari-
ables corresponding to the undischarged tasks. The completed proof can be verified
and exported to LATEX. The system is based on the publish/cite system described in
[KOZ 05].

KAT-ML also has the capability of reasoning at the schematic level. One can
input simple imperative programs, translate them to KAT, and then use propositional
rules and theorems and schematic axioms to reason about the programs. The formal
proof maintained in the system can be regarded as verification of the code’s behavior.
Other extensions of KAT such as von Wright’s refinement algebra [WRI 02] or Kleene

KAT-ML 3

algebra with domain of Desharnais et al. [DES 03] could be supported in the system
with few changes.

In this paper we describe KAT-ML and give examples of its use. We have verified
formally several known results in the literature, some of which had previously been
verified only by hand, including the KAT translation of the Hoare partial correctness
rules [KOZ 00a], a verification problem involving a Windows device driver [BAL 01],
and an intricate scheme equivalence problem [ANG 01]. The last is provided in this
paper as an extended example of the system’s capabilities.

The system is implemented in Standard ML and is easy to install and use. Source
code and executable images for various platforms are available. Several tutorial ex-
amples are also provided. The distribution is available from the KAT-ML website
[KAT].

2. Preliminary definitions

2.1. Kleene algebra

Kleene algebra (KA) is the algebra of regular expressions [KLE 56, CON 71]. The
axiomatization used here is from [KOZ 94]. A Kleene algebra is an algebraic structure
(K, +, ·, ∗, 0, 1) that satisfies the following axioms:

(p + q) + r = p + (q + r) (2) (pq)r = p(qr) (3)
p + q = q + p (4) p1 = 1p = p (5)
p + 0 = p + p = p (6) 0p = p0 = 0 (7)

p(q + r) = pq + pr (8) (p + q)r = pr + qr (9)

1 + pp∗ ≤ p∗ (10) q + pr ≤ r → p∗q ≤ r (11)

1 + p∗p ≤ p∗ (12) q + rp ≤ r → qp∗ ≤ r (13)

This a universal Horn axiomatization. We use pq to represent p · q. Axioms (2)–(9)
say that K is an idempotent semiring under +, ·, 0, 1. The adjective idempotent refers
to the axiom p + p = p (6). Axioms (10)–(13) say that p∗q is the ≤-least solution
to q + px ≤ x and qp∗ is the ≤-least solution to q + xp ≤ x, where ≤ refers to the
natural partial order on K defined by p ≤ q

def⇐⇒ p+ q = q.

Standard models include the family of regular sets over a finite alphabet, the family
of binary relations on a set, and the family of n × n matrices over another Kleene
algebra. Other more unusual interpretations include the min,+ algebra, also known
as the tropical semiring, used in shortest path algorithms, and models consisting of
convex polyhedra used in computational geometry.

There are several alternative axiomatizations in the literature, most of them infini-
tary. For example, a Kleene algebra is called star-continuous if it satisfies the infinitary
property pq∗r = supn pq

nr. This is equivalent to infinitely many equations

pqnr ≤ pq∗r, n ≥ 0 (14)

4 JANCL – /. Implementation of Logics

and the infinitary Horn formula

(
∧
n≥0

pqnr ≤ s) → pq∗r ≤ s. (15)

All natural models are star-continuous. However, this axiom is much stronger than the
finitary Horn axiomatization given above and would be more difficult to implement,
since it would require meta-rules to handle the induction needed to establish (14) and
(15).

The completeness result of [KOZ 94] says that all true identities between regular
expressions interpreted as regular sets of strings are derivable from the axioms. In
other words, the algebra of regular sets of strings over the finite alphabet P is the
free Kleene algebra on generators P. The axioms are also complete for the equational
theory of relational models.

See [KOZ 94] for a more thorough introduction.

2.2. Kleene algebra with tests

A Kleene algebra with tests (KAT) [KOZ 97] is just a Kleene algebra
with an embedded Boolean subalgebra. That is, it is a two-sorted structure
(K, B, +, ·, ∗, , 0, 1) such that

– (K, +, ·, ∗, 0, 1) is a Kleene algebra,
– (B, +, ·, , 0, 1) is a Boolean algebra, and
– B ⊆ K.

Elements of B are called tests. The Boolean complementation operator is defined
only on tests. In KAT-ML, variables beginning with an upper-case character denote
tests, and those beginning with a lower-case character denote arbitrary Kleene ele-
ments.

The axioms of Boolean algebra are purely equational. In addition to the Kleene
algebra axioms above, tests satisfy the equations

BC = CB BB = B
B + CD = (B + C)(B +D) B + 1 = 1
B + C = B C BC = B + C
B +B = 1 BB = 0

B = B

KAT-ML 5

The while program constructs are encoded as in propositional Dynamic Logic
[FIS 79]:

p ; q def= pq

if B then p else q def= Bp+Bq

while B do p def= (Bp)∗B.

The Hoare partial correctness assertion {B} p {C} is expressed as an inequality
Bp ≤ pC, or equivalently as an equation BpC = 0 or Bp = BpC. Intuitively,
BpC = 0 says that there is no execution of p for which the input state satisfies the
preconditionB and the output state satisfies the postconditionC, andBp = BpC says
that the test C is always redundant after the execution of p under precondition B. The
usual Hoare rules translate to universal Horn formulas of KAT. Under this translation,
all Hoare rules are derivable in KAT; indeed, KAT is deductively complete for rela-
tionally valid propositional Hoare-style rules involving partial correctness assertions
[KOZ 00a], whereas propositional Hoare logic is not.

The following simple example illustrates how equational reasoning with Horn for-
mulas proceeds in KAT. To illustrate the use of KAT-ML, we will give a mechanical
derivation of this lemma in Section 3.5.

LEMMA 1. — The following equations are equivalent in KAT:

(i) Cp = C

(ii) Cp+ C = 1
(iii) p = Cp+ C.

PROOF. — We prove separately the four Horn formulas (i) → (ii), (i) → (iii), (ii) →
(i), and (iii) → (i).

For the first, assume that (i) holds. Replace Cp by C on the left-hand side of (ii)
and use the Boolean algebra axiom C + C = 1.

For the second, assume again that (i) holds. Replace the second occurrence of C
on the right-hand side of (iii) byCp and use the distributive lawCp+Cp = (C+C)p,
the Boolean algebra axiom C +C = 1, and the multiplicative identity axiom 1p = p.

Finally, for (ii) → (i) and (iii) → (i), multiply both sides of (ii) or (iii) on the left
by C and use distributivity and the Boolean algebra axioms CC = 0 and CC = C as
well as (6) and (7).

n

See [KOZ 97, KOZ 00a, KOZ 03b] for a more detailed introduction to KAT.

6 JANCL – /. Implementation of Logics

2.3. Schematic KAT

Schematic KAT (SKAT) is a specialization of KAT involving an augmented syn-
tax to handle first-order constructs and restricted semantic actions whose intended
semantics coincides with the semantics of first-order flowchart schemes over a ranked
alphabet Σ [ANG 01]. Atomic actions are assignment operations x := t, where x is a
variable and t is a Σ-term.

Five identities are paramount in proofs using SKAT:

x := s; y := t = y := t[x/s]; x := s (y 6∈ FV (s)) (16)
x := s; y := t = x := s; y := t[x/s] (x 6∈ FV (s)) (17)
x := s; x := t = x := t[x/s] (18)
ϕ[x/t]; x := t = x := t;ϕ (19)

x := x = 1 (20)

where x and y are distinct variables and FV (s) is the set of variables occurring in
s in (16) and (17). The notation s[x/t] denotes the result of substituting t for all
occurrences of x in s. As special cases of (16) and (19), we have

x := s; y := t = y := t; x := s (y 6∈ FV (s), x 6∈ FV (t)) (21)
ϕ; x := t = x := t;ϕ (x 6∈ FV (ϕ)) (22)

s = t; x := s = s = t; x := t (23)

3. Description of the system

3.1. Rationale for independent implementation

We might have implemented KAT in the context of an existing general-purpose
automated deduction system such as NuPRL, Isabelle, or Coq. In fact, Isabelle has al-
ready been used to reason about Kleene algebra by several researchers. Struth formal-
izes Church-Rosser proofs in Kleene algebra and checks them using Isabelle [STR 02,
STR 01]. Kahl also works in Isabelle to create theories that could be used to reason
about Kleene algebras [KAH 03]. He uses the Isar (Intelligible Semi-Automated Rea-
soning) language [NIP 03, WEN 02, BAU 01] and locales [BAL 03] to create and
display proofs for Kleene algebra and heterogeneous relational algebras. Other proof
assistants such as PCP (Point and Click Proofs) [JIP 01] emphasize human interaction
in proof creation over automation. The PCP system is designed with Javascript to run
in a web browser. It facilitates the manual creation of proofs in several algebraic theo-
ries, including KA. The system is geared specifically towards web-based presentations
of proofs in algebra courses, but does not provide any facility for proof reuse.

We initially considered implementing KAT in the context of NuPRL and MetaPRL
[HIC 03] and expended considerable effort in this direction. However, we discovered
that some aspects of these more complex and general systems make them less desir-
able for our purposes. Because of their complexity, they tend to have steep learning

KAT-ML 7

curves that make them impractical for novice users who just want to experiment with
KAT by proving a few theorems. Our experience with NuPRL indicated that installing
and learning the system require a level of effort that is prohibitive for all but the most
determined user, and are difficult without expert assistence. Moreover, encoding KAT
requires the translation of the primitive KAT constructs into the (quite different) prim-
itive NuPRL constructs, a task requiring considerable design effort and orthogonal to
our main interest. We were interested in providing a lighter-weight tool that would ap-
peal to naive users, allowing them to quickly understand the system and begin proving
theorems immediately. Indeed, an early version of KAT-ML was used successfully by
students in an undergraduate course on automata theory to understand and manipulate
regular expressions.

Furthermore, systems such as MetaPRL are meant to be general tools for reasoning
in several different logics. Because of this generality, it is difficult to take advantage
of the structure of a specialized logic such as KAT in the internal data representation.
For example, in KAT we know that addition and multiplication are associative, and we
can draw advantage from this fact in the form of more efficient data structures for the
representation of terms. In systems such as NuPRL, associativity is not built in, but
must be programmed as axioms. Thus proofs contain many citations of associativity
to rebalance terms, contributing to their complexity. Similarly, because KAT only
deals with universal formulas, most of the infrastructure for quantifier manipulation
can remain implicit.

For a theorem prover whose goal is to automate as many of steps as possible, these
are not serious issues, but if the goal is to faithfully reflect the equational reasoning
style specific to KAT used by humans, they are an undesirable distraction.

3.2. Overview of KAT-ML

KAT-ML is an interactive theorem prover for Kleene algebra with tests. It is writ-
ten in Standard ML and is available for several platforms. The system has a command-
line interface and a graphical user interface. A user can create and manage libraries of
KAT theorems that can be proved and cited by name in later proofs. A few standard li-
braries containing the axioms of KAT and commonly used lemmas are provided. The
system is freely available for downloading from the project website [KAT].

KAT-ML maintains a library of proofs that can be used easily, even by novices. We
have used KAT-ML to verify several proofs in the literature, all of which are explained
in detail in the distribution and on the KAT-ML website. KAT-ML has been used by
others, including the author of [PUC 05], who installed, learned, and used the system
to prove a theorem for his paper in only a few hours.

At the core of the KAT theorem prover are the commands publish and cite. Publi-
cation is a mechanism for making previous constructions available in an abbreviated
form. Citation incorporates previously constructed objects in a proof without having
to reconstruct them. All other commands relate to these two in some way. In contrast

8 JANCL – /. Implementation of Logics

to other systems, in which these operations are typically implemented at the system
level, in KAT-ML they are considered part of the underlying proof theory.

3.3. Representation of proofs

KAT-ML is a constructive logic in which a theorem is regarded as a type and
a proof of that theorem as an object of that type, according to the Curry–Howard
Isomorphism [SØR 98]. Proofs are represented as λ-terms abstracted over variables
p, q, . . . and B,C, . . . ranging over individual elements and tests, respectively, and
variables P0, P1, . . . ranging over proofs. If the proof is not complete, the proof term
also contains free task variables T0, T1, . . . for the undischarged tasks. The theorem
and its proof can be reconstructed from the proof term.

For instance, consider a theorem

∀x1 . . .∀xm ϕ1 → ϕ2 → · · · → ϕn → ψ,

where ϕ1, . . . , ϕn are the premises, ψ is the conclusion, and x1, . . . , xm are all of the
individual variables that appear in the ϕi or ψ. Viewed as a type, this theorem would
be realized by a proof term representing a function that takes an arbitrary substitution
for the variables xi and proofs of the premises ϕj and returns a proof of the conclusion
ψ. Initially, the proof is represented as the λ-term

λx1 . . . λxm.λP1 . . . λPn.(TP1 · · ·Pn),

where T is a free variable of type ϕ1 → ϕ2 → · · · → ϕn → ψ representing the
main task. Publishing the theorem results in the creation of this initial proof term. As
proof rules are applied, the proof term is expanded accordingly. Citing a theorem α
as a lemma in the proof of another theorem β is equivalent to substituting the proof
term of α for a free task variable in the proof term of β. The proof of α need not be
complete for this to happen; any undischarged tasks of α become undischarged tasks
of β.

3.4. Citation

Citations are applied to the current task. One may cite a published theorem with
the command cite or a premise of the current task with the command use.

The system allows two forms of citation, focused and unfocused. In unfocused
citation, the conclusion of the cited theorem is matched with the conclusion of the
current task, giving a substitution of terms for the individual and test variables of the
cited theorem. This substitution is then applied to the premises of the cited theorem,
and the current task is replaced with several new (presumably simpler) tasks, one for
each premise of the cited theorem. Each specialized premise of the cited theorem must
now be proved under the premises of the original task.

For example, suppose the current task is

KAT-ML 9

T6: p < r, q < r, r;r < r |- p;q + q;p < r

indicating that one must prove the conclusion pq + qp ≤ r under the three premises
p ≤ r, q ≤ r, and rr ≤ r (in the display, the symbol < denotes less-than-or-equal-to
≤ and ; denotes sequential composition). The proof term at this point is

\p,q,r.\P0,P1,P2.(T6 (P0,P1,P2)) (24)

(in the display, \ represents λ). This means that T6 should return a proof of pq+ qp ≤
r, given proofs P0, P1, and P2 for the three premises.

An appropriate citation at this point would be the lemma

sup: x < z -> y < z -> x + y < z

The conclusion of sup, namely x+ y ≤ z, is matched with the conclusion of the task
T6, giving the substitution x = pq, y = qp, z = r. This substitution is then applied
to the premises of sup, and the old task T6 is replaced by the new tasks

T7: p < r, q < r, r;r < r |- p;q < r

T8: p < r, q < r, r;r < r |- q;p < r

This operation is reflected in the proof term as follows:

\p,q,r.\P0,P1,P2.(sup [x=p;q y=q;p z=r] (T7 (P0,P1,P2),

T8 (P0,P1,P2)))

This new proof term is a function of the same type as (24), but its body has been
expanded to reflect the application of the lemma sup. The free task variables T7 and
T8 represent the remaining undischarged tasks.

A premise can be cited with the command use just when the conclusion is identical
to that premise, in which case the corresponding task variable is replaced with the
proof variable of the cited premise.

Focused citation is used to implement the proof rule of substitution of equals for
equals. In focused citation, a subterm of the conclusion of the current task is specified;
this subterm is called the focus. The system provides a set of navigation commands
to allow the user to focus on any subterm. When there is a current focus, any citation
will attempt to match either the left- or the right-hand side of the conclusion of the
cited theorem with the focus, then replace it with the specialized other side. As with
unfocused citation, new tasks are introduced for the premises of the cited theorem. A
corresponding substitution is also made in the proof term. In the event that multiple
substitutions are possible, the system prompts the user with the available options and
applies the one selected.

For example, suppose that the current task is

10 JANCL – /. Implementation of Logics

T0: p;q = 0 |- (p + q)* < q*;p*

The axiom

R: x;z + y < z -> x;y < z

would be a good one to cite. However, the system will not allow the citation yet, since
there is nothing to match y. If the task were

T1: p;q = 0 |- (p + q)*;1 < q*;p*

then y would match 1. We can make this change by focusing on the left-hand side of
the conclusion of T0 and citing the axiom

id.R: x;1 = x

Focusing on the desired subterm gives

T0: p;q = 0 |- (p + q)* < q*;p*

where the focus is underlined. Now citing id.R matches the right-hand side with the
focus and replaces it with the specialized left-hand side of id.R, yielding

T1: p;q = 0 |- (p + q)*;1 < q*;p*

At this point we can apply *R.

Another useful rule is the cut rule. This rule adds a new premise σ to the list
of premises of the current task and adds a second task to prove σ under the original
premises. Starting from the task ϕ1, . . . , ϕn ` ψ, the command cut σ yields the new
tasks

ϕ1, . . . , ϕn, σ ` ψ

ϕ1, . . . , ϕn ` σ.

3.5. An extended example

The following is an example of the system in use. It illustrates the interactive
development of the implications (i)→(ii) and (iii)→(i) in the proof of Lemma 1. In
the display, � represents Boolean negation. The proof demonstrates basic publication
and citation, focus, and navigation. For more examples of varying complexity, see the
Examples directory in the KAT-ML distribution [KAT]. The command-line interface
is used here instead of the graphical user interface for ease of reading.

KAT-ML 11

>pub C p = C -> C p + ~C = 1
L0: C;p = C -> C;p + ~C = 1
(1 task)

current task:
T0: C;p = C |- C;p + ~C = 1

>proof
\C,p.\P0.(T0 P0)

current task:
T0: C;p = C |- C;p + ~C = 1

>focus

current task:
T0: C;p = C |- C;p + ~C = 1

C;p + ~C = 1

>down

current task:
T0: C;p = C |- C;p + ~C = 1

C;p + ~C = 1

>use A0 l
cite A0

current task:
T1: C;p = C |- C + ~C = 1

C + ~C = 1
-

>unfocus

current task:
T1: C;p = C |- C + ~C = 1

>cite compl+
cite compl+
task completed

no tasks

>proof
\C,p.\P0.(subst [0,0,1] (C;p + ~C = 1)

L P0 (compl+ [B=C]))

no tasks

>pub p = ~C p + C -> C p = C
L3: p = ~C;p + C -> C;p = C (1 task)

current task:
T15: p = ~C;p + C |- C;p = C

>proof
\C,p.\P3.(T15 P3)

current task:
T15: p = ~C;p + C |- C;p = C

>focus

current task:
T15: p = ~C;p + C |- C;p = C

C;p = C

>r

current task:
T15: p = ~C;p + C |- C;p = C

C;p = C
-

>cite id+L r
cite id+L

current task:
T16: p = ~C;p + C |- C;p = 0 + C

C;p = 0 + C

>d

current task:
T16: p = ~C;p + C |- C;p = 0 + C

C;p = 0 + C
-

>cite annihL r
cite annihL
x=? p

current task:
T17: p = ~C;p + C |- C;p = 0;p + C

C;p = 0;p + C

>d

current task:
T17: p = ~C;p + C |- C;p = 0;p + C

C;p = 0;p + C
-

>cite compl. r
cite compl.
B=? C

current task:
T18: p = ~C;p + C |- C;p = C;~C;p + C

C;p = C;~C;p + C

>u r

current task:
T18: p = ~C;p + C |- C;p = C;~C;p + C

12 JANCL – /. Implementation of Logics

C;p = C;~C;p + C
-

>cite idemp. r
cite idemp.

current task:
T19: p = ~C;p + C |- C;p = C;~C;p + C;C

C;p = C;~C;p + C;C

>u

current task:
T19: p = ~C;p + C |- C;p = C;~C;p + C;C

C;p = C;~C;p + C;C

>cite distrL r
cite distrL

current task:
T20: p = ~C;p + C |- C;p = C;(~C;p + C)

C;p = C;(~C;p + C)

>unfocus

current task:
T20: p = ~C;p + C |- C;p = C;(~C;p + C)

>cite cong.L
cite cong.L
cite A0
task completed

no tasks

>proof
\C,p.\P3.(subst [1,1] (C;p = C) R
(id+L [x=C])
(subst [1,0,1] (C;p = 0 + C) R
(annihL [x=p]) (subst [1,0,0,1]
(C;p = 0;p + C) R
(compl. [B=C]) (subst [1,1,1]
(C;p = C;~C;p + C) R
(idemp. [B=C]) (subst [1,1]
(C;p = C;~C;p + C;C) R
(distrL [x=C y=~C;p z=C])
(cong.L [x=C y=p z=~C;p + C] P3))))))

no tasks

3.6. Heuristics and reductions

KAT-ML has a set of simple heuristics to aid in proving theorems. It is true that
a PSPACE decision procedure exists for the equational theory of KAT, including the
ability to reduce some Horn formulas to equations, which we could have used to per-
form more steps automatically. However, its usefulness is limited. Only certain forms
of premises can be reduced to equations. In fact, the Horn theory of star-continuous
Kleene algebras and relational Kleene algebras is Π1

1-complete [KOZ 02, HAR 03].
Even limited to premises of the form ab = ba, which express the commutativity of
primitive operations and occur frequently in program equivalence proofs [COH 93],
these theories are undecidable. In general, the decidability of (not necessarily star-
continuous) Kleene algebra with Horn formulas containing premises of this form is
unknown. We decided to focus our attention on more practical heuristics for KAT-ML.

The heuristics can automatically perform unfocused citation with premises or the-
orems in the library that have no premises (such as reflexivity) that match the current
task. The system also provides a list of suggested citations from the library, both fo-
cused and unfocused, that match the current task and focus. Currently, the system
does not attempt to order the suggestions, but only provides a list of possible citations.

In addition, KAT-ML has a more complex heuristic system called reductions. Re-
ductions are sequences of citations of theorems and premises and focus motion carried
out by the system. Reductions are derived from MetaPRL tactics for KAT [HIC 03].
A user can create new reductions, store them, and apply them manually or automat-

KAT-ML 13

ically. A reduction is enabled if it can be applied to the current task at the current
focus.

The most basic reduction command either cites a theorem or moves the focus. The
former is of the form theorem side, where theorem is the name of a theorem in the
library and side is l or r, indicating which side should be used in the matching for a
focused citation. The command move direction shifts focus left, right, up, or down,
when direction is l, r, u, or d, respectively. The keyword premises, which is enabled if
any of the premises of the current task can be used, is also a basic reduction.

Reductions can be combined as follows:

red1 + red2 is enabled if either red1 or red2 is enabled
red1 red2 is enabled if red1 is enabled, and after applying red1,

red2 is enabled
(red)∗ is always enabled; it applies red as many times as possible.

There are several other special reductions for testing the result of other reductions
without actually performing them. These reductions do not change the state of the
current task.

fails [red] is true if red is not enabled
succeeds [red] is true if red is enabled

match [term] is true if the current focus matches the KAT term term.

With the addition of 0 and 1, it is not hard to verify that the language of reductions
itself satisfies the axioms of KAT. The reductions match and succeeds are Boolean
terms and fails has the same effect as the negation operator. In the system prefer-
ences, it is possible to limit the length of time the system tries to apply reductions
or specifically limit the number of times a ∗-reduction is applied to avoid circulari-
ties or nonterminating computations. The user has the ability to create and manage
reductions and their application with the command reduce.

Reductions are meant to encapsulate common sequences of citations and changes
of focus that would otherwise be done manually. For example, a standard sequence
of citations in KAT uses premises and Boolean commutativity to move a Boolean
term in one direction in a sequence of terms as far as possible, then eliminate it with
idempotence. One could specify this reduction as

((commut. l + premises);move r)*;idemp. l

If the current task were

T6: A;b = b;A, A;c = c;A |- A;b;c;D;A = b;c;D;A

and the current focus were on A;b, the user could use the above reduction sequence to
automatically get the new task

14 JANCL – /. Implementation of Logics

T7: A;b = b;A, A;c = c;A |- b;c;D;A = b;c;D;A

which can be completed with reflexivity of equality.

While our heuristics are not as extensive as the tactics present in several existing
theorem provers, their simplicity allows them to be created and applied quickly and
easily. As argued by Delahaye [DEL 00], complex tactic languages separated from the
underlying logic of a theorem prover often complicate systems for both the designer
and the user.

3.7. Proof output and verification

Once a proof is complete, the system can export it in XML format. There is a
separate postprocessor that translates the XML file to LATEX source, which produces
human-readable output. The exported proof correctly numbers and references as-
sumptions and tasks and prints every step in the proof. With minimal alteration, one
could incorporate the proof in a paper. Examples will be given later.

KAT-ML has a built-in verifier. It checks each step of the proof to make sure that
it is valid and that there are no circularities in the library. The verifier also exists as
a stand-alone program. One could use it to create a central repository of theorems,
uploaded by users and verified by the system so that others could download and use
them. We have created and tested a prototype of such a system. It is available on the
KAT-ML website.

3.8. SKAT in KAT-ML

The KAT theorem prover has the ability to parse simple imperative programming
language constructs and translate programs into propositional KAT. One may then
cite the schematic axioms (16)–(20) to create and use premises automatically based
on schematic properties. The schematic axioms are used only to establish premises
used at the propositional level, where most of the reasoning is done.

The syntax for the imperative language is:

A ::= N | S | A+A | A−A | A ∗A | A / A | A % A | S(L) | (A)

B ::= true | false | A = A | A <= A | A >= A | A > A | A < A | !B

| B && B | B || B | (B)

C ::= S := A | $B | if (B) then {C} else {C} | while (B) do {C} | C;C

Here A, B, and C denote arithmetic expressions, Boolean expressions, and im-
perative commands, respectively. N , S, and L correspond to the natural numbers,
strings, and lists of arithmetic expressions, respectively. The arithmetic operations are

KAT-ML 15

addition (+), subtraction (−), multiplication (∗), division (/), and mod (%). S(L)
represents a function call with a list of arithmetic arguments. For Booleans, we have
standard comparisons for arithmetic expressions (=, <=, >=, <,>) and the Boolean
operators negation (!), conjunction (&&), and disjunction (||). The operator $B allows
one to execute a Boolean expression as an imperative command or guard. Booleans
are programs in KAT, which is very important in the creation of proofs. The $ is used
only to resolve an ambiguity in the grammar. A program is a statement C.

In the system, all commands related to first-order terms are managed in the first-
order terms window. One can create a new theorem based on programs entered by the
user, with any necessary premises. Upon publication of a theorem, KAT-ML maintains
a translation table for the user, mapping KAT primitive propositions to assignments
and Boolean tests. Once published, the user can create the proof using any of the
applicable propositional axioms and theorems, as well as the schematic first-order
axioms.

If a schematic axiom is cited, the system translates the necessary terms back into
the first-order equivalents, matches them with the axiom, checks necessary precondi-
tions (such as x 6∈ FV (s)), and then replaces the terms with new terms. If necessary,
KAT-ML makes propositions out of newly created first-order terms and adds them to
the translation table. If the system cannot determine one of the expressions needed in
the matching, it prompts the user to fill one in.

The citation of a first-order axiom (16)–(20) is a shortcut for steps normally done
manually. The system creates a new premise ϕ and performs a cut, thereby creating
two new tasks, one for the original conclusion with ϕ as an additional premise and one
for proving the conclusion ϕ under the original premises. The system immediately
proves the latter by replacing all occurrences of it in the proof by an application of the
first-order axiom.

For example, consider the program x := 5 ; z := x + 7. Assume that the system
already has these assignments translated to propositional terms such that a represents
x := 5 and b represents z := x + 7. We wish to apply the schematic axiom (16) to the
term ab by matching ab with the left-hand side of (16). KAT-ML looks up a and b
to find the first-order terms they represent. Next, it attempts to match the terms with
x := s; y := t. It succeeds, matching x with x, s with 5, y with z, and t with x + 7. The
system then checks any necessary preconditions, in this case that x and z are distinct
and that z is not a free variable of 5. These conditions are true, so the system creates
a new term and makes propositional substitutions.

Now KAT-ML creates a new first-order term representing the right-hand side of
the axiom with the appropriate substitutions made, giving z := 5 + 7 ; x := 5. The
system creates a new primitive proposition c for z := 5 + 7 and translates the new
program to the propositional term ca. Now the system performs a cut on the equation
ab = ca. The first of the two new tasks created is ab = ca. It is replaced in the proof
term by a special construct including the name of the first-order axiom used and the
substitution, thus completing that task. In the other task, ab is replaced with ca using
the new premise.

16 JANCL – /. Implementation of Logics

Sometimes first-order unification does not give a unique substitution. Consider
trying to replace the assignment x := 2 + 5 with x := 2 ; x := x + 5 using (18). The
system can match x with x and t[x/s] with 2 + 5, but could choose from infinitely
many possibilities for s. Consequently, the system asks the user to input the desired
value for s, which is 2 in this case.

As a longer example, consider the following proof from [MAT 01]. We wish to
prove the following two programs equivalent:

y := x; x := 2 * x;
y := 2 * y; y := 2 * y;
x := 2 * x y := x

By hand, the proof requires two citations of (18) and one citation of (16). When
we type the programs into KAT-ML, the system creates new propositions a,b, and c,
corresponding to y := x, y := 2 * y, and x := 2 * x, respectively. The proof using
the system is in Figure 1. The command-line interface is used for ease of reading and
movement within the equation is suppressed.

We first focus on ab, which is y := x ; y := 2 * y. We then cite (18), matching
with the left-hand side. This matches x with y, s with x, and t with 2 * y. After the
substitution, the right-hand side becomes y := 2 * x, for which the system creates a
new term d and uses the appropriate newly created assumption ab = d. Next, we move
the focus to dc and cite (16), matching with the right side. As a result, we get the new
assumption ca = dc, which is used to replace the focused term. Finally, we want to
replace a with ba, so we focus on it and cite (18). In this case, the system matches x
with y and t[x/s] with x. However, the system cannot find a unique substitution for
s, so it asks the user to specify it. We want s to be 2 * y. Finally, we cite reflexivity
of equality to complete the proof. Note how the proof term represents the citation
of the schematic axioms as a substitution specifying the name of the axiom and the
propositional term that represents each statement in the axiom.

The LATEX output generated by the system for this theorem is in Figure 2. Here S1
and S3 refer to axiom (16) and (18), respectively.

3.9. A schematic example

Paterson presents the problem of proving the equivalence of the schemes in Fig-
ure 3. Manna proves the equivalence of the schemes by manipulating the structures
of the graphs themselves [MAN 74]. Presented in [ANG 01] is a proof of the equiv-
alence of the two schemes using the axioms of SKAT and algebraic reasoning. With
KAT-ML, the citation of all of the SKAT axioms, with all variable substitutions, is
handled by the system.

Without the first-order axioms, it is still possible to prove the equivalence of these
schemes. However, it requires that all of the citations of first-order axioms be deter-
mined in advance and added as premises to the theorem. The proof was completed

KAT-ML 17

current task:
T1:

a;b;c = c;b;a

a;b;c = c;b;a
>focus
no premises

current task:
T1:

a;b;c = c;b;a

a;b;c = c;b;a

>cite S3 l
cite S3
cite A0
no premises

current task:
T4:

d;c = c;b;a

d;c = c;b;a

>cite S1 r
cite S1
cite A0
no premises

current task:
T7:

c;a = c;b;a

c;a = c;b;a
-

>cite S3 r
cite S3
s?2 * y
cite A0
no premises

current task:
T10:

c;b;a = c;b;a

c;b;a = c;b;a

>unfocus
no premises

current task:
T10:

c;b;a = c;b;a

c;b;a = c;b;a
>cite ref=
cite ref=
task completed

no tasks
>proof
\b,a,c,d.(subst [0,0,2] (a;b;c = c;b;a) L
(S3 [x := s=a x := t=b x :=t[x/s]=d])
(subst [0,1] (d;c = c;b;a) R
(S1 [y := t[x/s]=d x := s=c
x := s=c y := t=a])
(subst [0,1,1] (c;a = c;b;a) R
(S3 [x := t[x/s]=a x := s=b x := t=a])
(ref= [x=c;b;a]))))

no tasks

Figure 1. Proof steps for theorem from [MAT 01]

successfully without the use of schematic axioms, with a total of 46 premises created
manually.

While the proof is correct, it does not explain the origin of the premises. This
would be desirable if the proof were distributed and independently verified. With the
first-order level of reasoning, the system creates a special substitution in the proof
term to indicate that a first-order axiom was cited.

18 JANCL – /. Implementation of Logics

THEOREM. —
a · b · c = c · b · a

where

a = y := x

b = y := (2 ∗ y)

c = x := (2 ∗ x)

d = y := (2 ∗ x)

Proof. By S3, we know that
a · b · c = d · c

By S1, we know that
d · c = c · a

By S3, we know that
c · a = c · b · a

By ref=, the proof is complete. 2

Figure 2. Generated LATEX output

When using the first-order capabilities, we need only five premises, corresponding
to the citation of specific lemmas proven in [ANG 01]. Once entered and translated
by KAT-ML, the theorem we must prove is in Figure 4.

The statement of the theorem is not meant to be read directly. The user enters a
program at the first-order level. A translation table created by the system, shown for
this example in Table 1, can be used to interpret terms. The translation from automata
to KAT expressions applies a generalized version of Kleene’s theorem, as described in
[ANG 01]. The premises (25)–(29) represent lemmas concerning variable elimination
and renaming. These lemmas use properties of homomorphisms of KAT expressions,
which cannot be handled by the system.

The proof proceeds exactly as in the original paper [ANG 01]. We highlight some
of the advantageous uses of the system here.

KAT-ML 19

start

y1 := x

y4 := f(y1)

y1 := f(y1)

y2 := g(y1,y4)

y3 := g(y1,y1)

P(y1)

y1 := f(y3)

P(y4)

P(y2)

y2 := f(y2) P(y3)

z := y2

halt

F T

T

T

T

F

F

F

start

y := f(x)

P(y)

y := g(y,y)loop

P(y)

y := f(f(y)) z := y

halt

Figure 3. Schemes S6A and S6E

I; n; r; (C; H; p; s)∗; C; i = I; r; (C; H; s)∗; C; i (25)

b; c; d; e; f ; (B; d; e; f + B; g; E; e; f + B; g; E; (C; h)∗; C; D; c; d; e; f)∗; B; g; E;

(C; h)∗; C; D; i = b; c; d; e; f ; (B; d; e; f + B; g; E; e; f + B; g; E;

(C; h)∗; C; D; c; d; e; f)∗; B; E; (C; h)∗; C; D; i (26)

b; (c; d; t; f ; B; g; (C; h)∗; C; D)∗; c; d; t; f ; (C; h)∗; B; C; D; i =

b; (d; t; f ; B; g; (C; h)∗; C; D)∗; d; t; f ; (C; h)∗; B; C; D; i (27)

n; (B; t; f ; C; p; (C; h)∗; C)∗; t; f ; C; (C; h)∗; B; C; i =

n; (B; t; C; p; (C; h)∗; C)∗; t; C; (C; h)∗; B; C; i (28)

o; C; u; (C; q; C; u)∗; C; i = j; F ; k; (F ; l; F ; k)∗; F ; m (29)

b; c; d; e; f ; (B; d; e; f)∗; B; g; ((E + E; (C; h)∗; C; D; c; d); e; f ; (B; d; e; f)∗; B; g)∗;
E; (C; h)∗; C; D; i = j; F ; k; (F ; l; F ; k)∗; F ; m

Figure 4. Scheme equivalence theorem

20 JANCL – /. Implementation of Logics

Table 1. Translation table for scheme proof

B : P(y1) = 1 h : y2 := f(y2)
C : P(y2) = 1 i : z := y2

D : P(y3) = 1 j : y := f(x)
E : P(y4) = 1 k : y := g(y, y)
F : P(y) = 1 l : y := f(f(y))
G : P(f(y1)) = 1 m : z := y
H : P(f(f(y2))) = 1 n : y1 := f(x)
I : P(f(x)) = 1 o : y2 := f(x)
b : y1 := x p : y1 := f(f(y2))
c : y4 := f(y1) q : y2 := f(f(y2))
d : y1 := f(y1) r : y2 := g(f(x), f(x))
e : y2 := g(y1, y4) s : y2 := g(f(f(y2)), f(f(y2)))
f : y3 := g(y1, y1) t : y2 := g(y1, y1)
g : y1 := f(y3) u : y2 := g(y2, y2)

One task that comes up frequently is of the form a = a(A↔ B), which says that
A and B are equivalent after executing a. For instance, in the scheme equivalence
problem above, we need to prove that tf = tf(C ↔ D), where

t is y2 := g(y1, y1),

f is y3 := g(y1, y1),

C is P(y2) = 1, and

D is P(y3) = 1.

We represent C ↔ D as (CD + C D). The proof steps are in Figure 5. Changes in
focus have been suppressed.

The proof proceeds by using (19) and the laws of Boolean algebra. After citing dis-
tributivity, we use (19) to commuteC and f , which is possible because y3 6∈ FV (P(y2

= 1)). However, when we apply the axiom to tC, x matches y2, which is a free vari-
able in the Boolean test. Therefore, y2 is replaced by t, which is g(y1,y1), creating the
new test P(g(y1,y1)) = 1, represented by the new term K. The other citations of (19)
are similar to these two.

Once we have the Booleans on the left-hand side of each sequence, we use Boolean
axioms to get the right-hand side of the equality to match the left-hand side, then cite
reflexivity. The proof term (Figure 6) reflects our sequence of citations.

KAT-ML 21

t;f = t;f;(C;D + ~C;~D)

t;f = t;f;(C;D + ~C;~D)

cite distrL

t;f = t;f;C;D + t;f;~C;~D

cite S7
cite A0

t;f = t;C;f;D + t;f;~C;~D

cite S7
cite A1

t;f = K;t;f;D + t;f;~C;~D

cite S7
cite A2

t;f = K;t;K;f + t;f;~C;~D

cite S7
cite A3

t;f = K;K;t;f + t;f;~C;~D

cite idemp.

t;f = K;t;f + t;f;~C;~D

cite S7
cite A4

t;f = K;t;f + t;~C;f;~D

cite S7
cite A5

t;f = K;t;f + ~K;t;f;~D

cite S7
cite A6

t;f = K;t;f + ~K;t;~K;f

cite S7
cite A7

t;f = K;t;f + ~K;~K;t;f

cite idemp.

t;f = K;t;f + ~K;t;f

cite distrR

t;f = (K + ~K);t;f

cite compl+

t;f = 1;t;f

cite id.L

t;f = t;f

t;f = t;f

cite ref=

task completed

Figure 5. Proof steps for tf = tf(C ↔ D)

22 JANCL – /. Implementation of Logics

\t,f,C,D,K.(subst [1,1] (t;f = t;f;(C;D + ~C;~D)) L (distrL [x=t;f y=C;D z=~C;~D])
(subst [1,0,1,2] (t;f = t;f;C;D + t;f;~C;~D) R (S7 [x := t=f &phi[x//t]=C x := t=f])
(subst [1,0,0,2] (t;f = t;C;f;D + t;f;~C;~D) R (S7 [x := t=t &phi[x//t]=K x := t=t])
(subst [1,0,2,2] (t;f = K;t;f;D + t;f;~C;~D) R (S7 [x := t=f &phi[x//t]=K x := t=f])
(subst [1,0,1,2] (t;f = K;t;K;f + t;f;~C;~D) R (S7 [x := t=t &phi[x//t]=K x := t=t])
(subst [1,0,0,2] (t;f = K;K;t;f + t;f;~C;~D) L (idemp. [B=K])
(subst [1,1,1,2] (t;f = K;t;f + t;f;~C;~D) R (S7 [x := t=f &phi[x//t]=~C x := t=f])
(subst [1,1,0,2] (t;f = K;t;f + t;~C;f;~D) R (S7 [x := t=t &phi[x//t]=~K x := t=t])
(subst [1,1,2,2] (t;f = K;t;f + ~K;t;f;~D) R (S7 [x := t=f &phi[x//t]=~K x := t=f])
(subst [1,1,1,2] (t;f = K;t;f + ~K;t;~K;f) R (S7 [x := t=t &phi[x//t]=~K x := t=t])
(subst [1,1,0,2] (t;f = K;t;f + ~K;~K;t;f) L (idemp. [B=~K])
(subst [1,1] (t;f = K;t;f + ~K;t;f) R (distrR [x=K y=~K z=t;f])
(subst [1,0,1] (t;f = (K + ~K);t;f) L (compl+ [B=K])
(subst [1,1] (t;f = 1;t;f) L (id.L [x=t;f]) (ref= [x=t;f])))))))))))))))

Figure 6. Proof term for tf = tf(C ↔ D)

When doing the proof manually, it is easy to conclude that tfC = tfD, which is
the actual step used in the full proof. However, formalizing this equality requires an
additional cut and citations of distributivity and some rules related to Booleans.

The complete proof includes more than 50 proven tasks. When exported to LATEX,
the proof is 41 pages, compared to the 9 pages of the original, hand-constructed proof.
The increased size is not unreasonable, given that it is a completely formal, mechani-
cally developed and verified proof of one of Manna’s most difficult examples.

4. Conclusions

We have described an interactive theorem prover for Kleene algebra with tests
(KAT). The system provides an intuitive interface with simple commands that allow
a user to learn the system quickly. We feel that the most interesting part of this work
is not the particular data structures or algorithms we have chosen—these are fairly
standard—but rather the design of the mode of interaction between the user and the
system.

Our main goal was not to automate as much of the reasoning process as possible,
but rather to provide support to the user for developing proofs in a natural human
style, similar to proofs in KAT found in the literature. KAT is naturally equational,
and equational reasoning pervades every aspect of reasoning with KAT. Our system
is true to that style. The user can introduce self-evident equational premises describ-
ing the interaction of atomic programs and tests using SKAT and reason under those
assumptions to derive the equivalence of more complicated programs. The system
performs low-level reasoning and bookkeeping tasks and facilitates sharing of theo-
rems using a proof-theoretic library mechanism, but it is up to the user to develop the
main proof strategies. Ultimately, KAT-ML could provide a user-friendly and mathe-
matically sound apparatus for code analysis and verification.

KAT-ML 23

Acknowledgements

We are indebted to Nikita Kuznetsov for his work on the heuristics and reduc-
tion system. This work was supported in part by NSF grant CCR-0105586 and ONR
Grant N00014-01-1-0968. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of these organizations or the US
Government.

5. References

[ANG 01] ANGUS A., KOZEN D., “Kleene Algebra with Tests and Program Schematology”,
report num. 2001-1844, July 2001, Computer Science Department, Cornell University.

[BAL 01] BALL T., RAJAMANI S. K., “Automatically Validating Temporal Safety Properties
of Interfaces”, Proc. 8th Int. SPIN Workshop on Model Checking of Software (SPIN 2001),
vol. 2057 of Lect. Notes in Comput. Sci., Springer-Verlag, May 2001, p. 103–122.

[BAL 03] BALLARIN C., “Locales and Locale Expressions in Isabelle/Isar.”, BERARDI S.,
COPPO M., DAMIANI F., Eds., TYPES, vol. 3085 of Lecture Notes in Computer Science,
Springer, 2003, p. 34-50.

[BAR 02] BARTH A., KOZEN D., “Equational Verification of Cache Blocking in LU Decom-
position using Kleene Algebra with Tests”, report num. 2002-1865, June 2002, Computer
Science Department, Cornell University.

[BAU 01] BAUER G., WENZEL M., “Calculational reasoning revisited—An Isabelle/Isar ex-
perience”, BOULTON R. J., JACKSON P. B., Eds., Proc. 14th Int. Conf. Theorem Proving
in Higher Order Logics (TPHOLs’01), vol. 2152 of Lect. Notes in Comput. Sci., Springer,
2001.

[COH] COHEN E., “Lazy Caching in Kleene Algebra”,
http://citeseer.nj.nec.com/22581.html.

[COH 93] COHEN E., “Hypotheses in Kleene algebra”, report num. TM-ARH-023814, 1993,
Bellcore, http://citeseer.nj.nec.com/1688.html.

[COH 94] COHEN E., “Using Kleene algebra to reason about concurrency control”, report ,
1994, Telcordia, Morristown, N.J.

[COH 96] COHEN E., KOZEN D., SMITH F., “The complexity of Kleene algebra with tests”,
report num. 96-1598, July 1996, Computer Science Department, Cornell University.

[CON 71] CONWAY J. H., Regular Algebra and Finite Machines, Chapman and Hall, London,
1971.

[DEL 00] DELAHAYE D., “A Tactic Language for the System Coq”, PARIGOT M.,
VORONKOV A., Eds., LPAR, vol. 1955 of Lecture Notes in Computer Science, Springer,
2000, p. 85-95.

[DES 03] DESHARNAIS J., MOLLER B., STRUTH G., “Kleene algebra with domain”, report
num. 2003-07, June 2003, Universität Augsburg, Institut für Informatik.

24 JANCL – /. Implementation of Logics

[FIS 79] FISCHER M. J., LADNER R. E., “Propositional dynamic logic of regular programs”,
J. Comput. Syst. Sci., vol. 18, num. 2, 1979, p. 194–211.

[HAR 03] HARDIN C., KOZEN D., “On the complexity of the Horn theory of REL”, report
num. 2003-1896, May 2003, Computer Science Department, Cornell University.

[HIC 03] HICKEY J., NOGIN A., CONSTABLE R. L., AYDEMIR B. E., BARZILAY E.,
BRYUKHOV Y., EATON R., GRANICZ A., KOPYLOV A., KREITZ C., KRUPSKI V. N.,
LORIGO L., SCHMITT S., WITTY C., YU X., “MetaPRL—A Modular Logical Environ-
ment”, BASIN D., WOLFF B., Eds., Proc. 16th Int. Conf. Theorem Proving in Higher
Order Logics (TPHOLs 2003), vol. 2758 of LNCS, Springer-Verlag, 2003, p. 287–303.

[JIP 01] JIPSEN P., “PCP: Point and Click Proofs”, 2001,
http://www1.chapman.edu/~jipsen/PCP/PCPhome.html.

[KAH 03] KAHL W., “Calculational Relation-Algebraic Proofs in Isabelle/Isar”, BERGHAM-
MER R., MÖLLER B., STRUTH G., Eds., Proc. Int. Conf. Relational Methods in Computer
Science (RelMiCS’03), vol. 3051 of Lecture Notes in Computer Science, Springer, 2003,
p. 178-190.

[KAT] http://www.cs.cornell.edu/Projects/kat/.

[KLE 56] KLEENE S. C., “Representation of events in nerve nets and finite automata”, SHAN-
NON C. E., MCCARTHY J., Eds., Automata Studies, p. 3–41, Princeton University Press,
Princeton, N.J., 1956.

[KOZ 94] KOZEN D., “A completeness theorem for Kleene algebras and the algebra of regular
events”, Infor. and Comput., vol. 110, num. 2, 1994, p. 366–390.

[KOZ 96] KOZEN D., SMITH F., “Kleene algebra with tests: Completeness and decidabil-
ity”, VAN DALEN D., BEZEM M., Eds., Proc. 10th Int. Workshop Computer Science Logic
(CSL’96), vol. 1258 of Lecture Notes in Computer Science, Utrecht, The Netherlands,
September 1996, Springer-Verlag, p. 244–259.

[KOZ 97] KOZEN D., “Kleene algebra with tests”, Transactions on Programming Languages
and Systems, vol. 19, num. 3, 1997, p. 427–443.

[KOZ 00a] KOZEN D., “On Hoare logic and Kleene algebra with tests”, Trans. Computational
Logic, vol. 1, num. 1, 2000, p. 60–76.

[KOZ 00b] KOZEN D., PATRON M.-C., “Certification of compiler optimizations using Kleene
algebra with tests”, LLOYD J., DAHL V., FURBACH U., KERBER M., LAU K.-K.,
PALAMIDESSI C., PEREIRA L. M., SAGIV Y., STUCKEY P. J., Eds., Proc. 1st Int. Conf.
Computational Logic (CL2000), vol. 1861 of Lecture Notes in Artificial Intelligence, Lon-
don, July 2000, Springer-Verlag, p. 568–582.

[KOZ 02] KOZEN D., “On the complexity of reasoning in Kleene algebra”, Information and
Computation, vol. 179, 2002, p. 152–162.

[KOZ 03a] KOZEN D., “Automata on Guarded Strings and Applications”, Matématica Con-
temporânea, vol. 24, 2003, p. 117–139.

[KOZ 03b] KOZEN D., TIURYN J., “Substructural Logic and Partial Correctness”, Trans.
Computational Logic, vol. 4, num. 3, 2003, p. 355–378.

KAT-ML 25

[KOZ 05] KOZEN D., RAMANARAYANAN G., “Publication/Citation: A Proof-Theoretic Ap-
proach to Mathematical Knowledge Management”, report num. 2005-1985, March 2005,
Computer Science Department, Cornell University.

[MAN 74] MANNA Z., Mathematical Theory of Computation, McGraw-Hill, 1974.

[MAT 01] MATEEV N., MENON V., PINGALI K., “Fractal symbolic analysis”, Proc. 15th
Int. Conf. Supercomputing (ICS’01), New York, 2001, ACM Press, p. 38–49.

[NIP 03] NIPKOW T., “Structured proofs in Isar/HOL”, GEUVERS H., WIEDIJK F., Eds.,
Types for Proofs and Programs (TYPES 2002), vol. 2646 of LNCS, Springer, 2003, p. 259-
278.

[PUC 05] PUCELLA R., “On Partially Additive Kleene Algebras”, Proc. 8th Int. Conf. Rela-
tional Methods in Computer Science (RelMiCS 8), February 2005.

[SØR 98] SØRENSEN M. H., URZYCZYN P., Lectures on the Curry–Howard isomorphism,
Available as DIKU Rapport 98/14, 1998.

[STR 01] STRUTH G., “Isabelle Specification and Proofs of Church-Rosser Theorems”, 2001,
http://www.informatik.uni-augsburg.de/~struth/papers/isabelle.

[STR 02] STRUTH G., “Calculating Church-Rosser Proofs in Kleene Algebra”, Proc. 6th Int.
Conf. Relational Methods in Computer Science (ReIMICS’01), London, 2002, Springer-
Verlag, p. 276–290.

[WEN 02] WENZEL M. M., “Isabelle/Isar: A Versatile Environment for Human-Readable
Formal Proof Documents”, PhD thesis, Institut für Informatik, TU München, 2002.

[WRI 02] VON WRIGHT J., “From Kleene Algebra to Refinement Algebra”, BOITEN E. A.,
MÖLLER B., Eds., Proc. Conf. Mathematics of Program Construction (MPC’02), vol. 2386
of Lect. Notes in Comput. Sci., Springer, July 2002, p. 233-262.

