COMPLEXITY OF FINITELY PRESENTED ALGEBRAS

Dexter Kozen
Cornell University

Abstract

An algebra \mathcal{A} is finitely presented if there is a finite set G of generator symbols, a finite set O of operator symbols, and a finite set Γ of defining relations $\forall x \forall y$ where x and y are well-formed terms over G and O, such that \mathcal{A} is isomorphic to the free algebra on G and O modulo the congruence induced by Γ.

The uniform word problem, the finite generation problem, the triviality problem (whether \mathcal{A} is the one element algebra), and the subalgebra membership problem (whether a given element of \mathcal{A} is contained in a finitely generated subalgebra of \mathcal{A}) for finitely presented algebras are shown to be $\mathbf{P}^{\mathbf{N}}$-complete for \mathbf{NP} and co-\mathbf{NP}, respectively. Finally, the problem of isomorphism of finitely presented algebras is shown to be polynomially many-one equivalent to the problem of graph isomorphism.

1. Introduction

In this paper we study the complexity of some decision problems of finitely presented algebras, a class of simple algebraic structures.

An algebra \mathcal{A} is finitely presented if there is a finite set G of generator symbols, a finite set O of operator symbols of various finite arities, and a finite set Γ of axioms or defining relations of the form $x \forall y$ where x and y are well-formed terms over G and O, such that \mathcal{A} is isomorphic to the free algebra on G and O modulo the congruence induced by Γ. That is, if \mathcal{T} is the free algebra (algebra of terms) over G and O, and \mathcal{T}_Γ is the smallest congruence relation satisfying the relations Γ, then \mathcal{A} is isomorphic to the quotient algebra $\mathcal{T}_\Gamma/\mathcal{T}_\Gamma$ with domain $\{ [x] | x \in \mathcal{T}, [x]$ is the \mathcal{T}_Γ-congruence class of x $\}$. For example, the two element Boolean algebra is presented by

$$G = \{0, 1\}$$

$$O = \{\land, \lor, \neg\}$$

$$\Gamma = \{0 \land 0 = 0, 0 \land 1 = 0, 1 \land 0 = 0, 1 \land 1 = 1, 0 \lor 0 = 0, 0 \lor 1 = 1, 1 \lor 0 = 1, 1 \lor 1 = 1, \neg 0 = 1, \neg 1 = 0\}.$$ All algebras with finite domains are finitely presented. Finitely presented algebras may be infinite, but infinite groups and semigroups are never finitely presented, since an axiom schema (a rule representing infinitely many axioms) is needed to postulate associativity.

There is a strong relationship between finitely presented algebras and the finite tree automata of Thatcher and Wright and Doner. This relationship is summed up in the following theorem, analogous to a theorem of Nerode regarding the representation of regular sets over a semigroup.

Theorem

L is a regular tree language (accepted by a finite tree automaton) over Γ iff L is a union of congruence classes of a finitely generated congruence relation on Γ of finite index.

Moreover, all congruence classes of any finitely generated congruence, finite index or not, are regular tree languages. The set of terms representing a single element of a finitely presented algebra is such a class.

Finite tree automata appear in diverse settings. Not only do they have a substantial theory of their own (see
[10,11] for a good bibliography), but they have also been used in logic to show the decidability of some second order theories [12,13,14] and in formal language theory to study derivation trees of context free grammars (see [10,11]). In view of the above theorem, the complexity results presented here should apply to those areas.

Most of the decision problems addressed herein can be restated as problems of tree replacement systems, hence our complexity results carry over into that area.

Finally, very recent results, notably [1,2], have pegged down the complexities of various decision problems in different algebraic theories. The present results fill a large gap here, and so would be essential to a general theory of the complexity of algebraic decision problems.

In spite of the above, the results presented here are most interesting not for any of these reasons. Their real interest lies in the generality and expressive power of the language of universal algebra. The finite structures that interest computer scientists, e.g., graphs, are easily represented as finitely presented algebras, and many known complete problems for P, NP, etc., can be reformulated easily as natural questions about finitely presented algebras, as evidenced by the trivial (often 9sm) reductions from known complete problems to the problems discussed in this paper. Thus finitely presented algebras should be viewed as a unifying framework in which many of the interesting questions of low-level complexity can be reformulated.

In §3 we give several natural problems of finitely presented algebras which are \(\log_\text{m} \) -complete for P. These problems generalize known problems complete for P. In §4 we look at axiom schemata of the form \(x \Rightarrow y \) where \(x \) and \(y \) are terms with variables, and show that the schema satisfiability problem is \(\log_\text{m} \) -complete for NP and the schema validity problem is \(\log_\text{co-NP} \) -complete for co-NP. In §5 we show that the problem of isomorphism of finitely presented algebras is polynomial time many-one equivalent to the problem of graph isomorphism.

2. Preliminaries

Definition

Let \(<M, \text{ARITY}>\) be a ranked alphabet, i.e., \(M \) is a finite set of symbols and ARITY: \(M \to \mathbb{N} \), where \(\mathbb{N} \) is the set of non-negative integers. Partition \(M \) into two sets:

\[
G = \{ a \in M \mid \text{ARITY}(a) = 0 \} \text{ are generator symbols,}
\]

\[
O = \{ a \in M \mid \text{ARITY}(a) > 0 \} \text{ are operator symbols.}
\]

We will use variables \(a, b \) to denote elements of \(G \) and \(0 \) to denote elements of \(O \). Let \(M^* \) be the set of finite length strings over \(M \).

Definition

The set of terms over \(M \) is the smallest subset of \(M^* \) such that:

i) all elements of \(G \) are terms;

ii) if \(\theta \) is \(m \)-ary (i.e., ARITY(\(\theta \)) = \(m \)) and \(x_1, \ldots, x_m \) are terms, then \(\theta x_1 \ldots x_m \) is a term.

Denote the set of terms by \(\tau \). Variables \(w, x, y, z \) will range over terms.

\(\tau \) may be viewed as the domain of an algebra with operations \(\theta \) defined by

\[
\theta (x_1, \ldots, x_m) = \theta x_1 \ldots x_m \quad \text{if } \theta \text{ is } m \text{-ary.}
\]

In this light we will refer to \(\tau \) as the free algebra on \(M \).

Definition

\(x < y \) if \(x \) is a (not necessarily proper) subterm of \(y \).

\(x[y/z] \) is the term \(x \) with all occurrences in \(x \) of the term \(y \) replaced by \(z \).

If \(y' \) is a particular occurrence of term \(y \) as a subterm of \(x \), then \(x[y'/z] \) is the term \(x \) with that occurrence only replaced by \(z \).

Definition

A binary relation \(\sim \) on \(\tau \) is a congruence provided:

i) \(\sim \) is an equivalence relation, and

ii) if \(\theta \) is \(m \)-ary and \(x_1', \ldots, x_m' \), \(y_1', \ldots, y_m' \) are terms such that \(x_i \sim y_i \), 1 \(\leq \) \(i \) \(\leq \) \(m \), then \(\theta x_1' \ldots x_m' \sim \theta y_1' \ldots y_m' \).

In the above definition, ii) guarantees that the operations \(O \) are well-defined on \(\sim \)-congruence classes, thus we can form the quotient algebra \(\tau / \sim \) with domain

\[
\{ [x] \mid x \in \tau, [x] \text{ is the } \sim \text{-congruence class of } x \}\ \text{and operations } O.
\]

165
Definition

Let Γ be a set of unordered pairs of terms. These pairs will be written $x \equiv y$ and will be called axioms or defining relations. Define Ξ_Γ to be the smallest congruence on Γ satisfying the axioms of Γ, and let

$$\{x\}_\Gamma = \{y \in \Gamma \mid x \equiv y\}.$$

We will omit the subscript Γ from Ξ_Γ and $\{x\}_\Gamma$ when it is understood. It is straightforward to show that $x \equiv y$ iff it can be deduced from:

i) $x \equiv x$

ii) $x \equiv y$

iii) $y \equiv x$

iv) $x \equiv y, y \equiv z \Rightarrow x \equiv z$

v) $x \equiv y$ for all axioms $x \equiv y$ of Γ.

Definition

An algebra \mathfrak{A} is presented by $\langle \mathcal{M}, \text{ARITY}, \Gamma \rangle$ if \mathfrak{A} is (isomorphic to) $\mathfrak{A}^\Gamma/\Xi_\Gamma$. The triple $\langle \mathcal{M}, \text{ARITY}, \Gamma \rangle$ is called a presentation of \mathfrak{A}. \mathfrak{A} is finitely presented if a presentation can be found with Γ a finite set.

It is convenient to represent terms as labeled trees, as follows:

i) if $a \in \mathcal{M}$ then a is represented by a single vertex with label a.

ii) $\theta y_1 \cdots y_m$ is represented by

where the root has label θ and y_i is the tree representation of term y_i.

This representation has three immediate advantages:

1) We can give a presentation consisting of a finite set of trees labeled as above, with an extra undirected edge set AXIOM such that, if y is the tree representation of term y,

$x \equiv y$ is an axiom \iff the roots of x and y are connected with an AXIOM edge.

We no longer need to specify \mathcal{M} and ARITY, since these are implicit in the new representation.

2) We can represent terms with common subterms more concisely by "factoring out" the common subterm, i.e., representing a set of trees as a dag.

E.g., terms $0abc$, $00abc0abc0$ may be represented as trees by

and then as dags, after factoring, by

3) We have a conceptually simpler deductive system for proving congruence of terms:

Define $x \vdash y$ (x derives y in one step) if there is an axiom $z \equiv w$ in Γ and an occurrence of z in x such that when that occurrence of z is replaced by w, then the result is y.

Let $*$ be the reflexive transitive closure of \vdash. The following is proved by an easy induction:

Theorem

$x \equiv y \iff x \vdash^* y$.

For these reasons we will henceforth adopt the new representation, and use the words "term" and "tree" interchangeably. We will allow trees to be represented as dags by factoring out common subterms, and we will consider a presentation to be given by a dag with AXIOM edges, as outlined above. We will use the symbol Γ for the dag representing presentation $\langle \mathcal{M}, \text{ARITY}, \Gamma \rangle$.

Definition

A proof of $x \equiv y$ is a sequence $x_1 \cdots x_n$ of terms such that $x = x_1 \vdash x_2 \vdash \cdots \vdash x_n \equiv y$.

The root of the transformation in $x \vdash y$ is the root of the subtree replaced. We say the entire tree is replaced in
\(x + y \) if the subtree of \(x \) that is replaced is the whole tree \(x \).

Definition

Let \(\Gamma \) be given. The following sets will be used throughout:

\[
R_{\Gamma} = \{ x \mid \text{there is an axiom } z \in x \text{ in } \Gamma \text{ and } x \leq y \}. \\
\Gamma_r = \{ (x)_{\Gamma} \mid x \in R_{\Gamma} \}.
\]

Thus \(R_{\Gamma} \) is the set of terms appearing in the presentation, and \(\Gamma_r \) are the elements of the presented algebra represented by terms in \(R_{\Gamma} \). The subscript \(\Gamma \) will be omitted when understood.

It is assumed the reader is familiar with the complexity classes \(P, NP \), etc., the reducibilities \(\leq_r \) and \(\leq^r \), and the notion of completeness.

3. Problems complete for \(P \)

The obvious first task is to determine the complexity of deciding whether two terms represent the same element of the algebra.

Definition

The word problem is the set

\[
WP = \{ <\Gamma, x, y> \mid x \equiv y \}.
\]

WP more accurately would be called the uniform word problem, since the presentation \(\Gamma \) is an input parameter.

Theorem 1

\(WP \in P \).

Proof

Let \(<\Gamma, x, y> \) be input. Let \(\Gamma' \) be the graph \(\Gamma \) plus the vertices and edges of \(x \) and \(y \). Let \(R^* = R_{\Gamma'} \). We will describe a polynomial time algorithm to construct a new undirected edge set \(E \) on \(\Gamma' \) so that \(\forall z, w \in R^* \), the roots of \(z \) and \(w \) are connected by an edge \((z, w) \) iff \(z \equiv w \).

Step 0. Add edges \(z \equiv w \) for all axioms \(z \equiv w \).

Step \(n \). If \(u, v, w \in R^* \) and \(u \equiv v, v \equiv w \), then add edge \(u \equiv w \). If \(\delta y \equiv x \equiv y \equiv \lambda y \equiv m \), then add edge \(\delta x_1 \ldots y \equiv y_1 \ldots y \).

If no new edges were added at step \(n \), then stop.

The algorithm is clearly polynomial, since at most \(n^2 \) edges can be added.

Claim

\[\forall w, z \in R^* \wedge z \equiv w \iff w \equiv z. \]

Proof of claim

(-) Easy induction on the step at which the edge was added, since no edge is added unless forced to be by the properties of \(\equiv \).

(-) Define a relation \(\equiv \) on congruent pairs of terms, as follows:

\[<x, y> \equiv <z, w> \iff \text{either} \]

i) the shortest proof \(x \equiv y \) is shorter than the shortest proof \(z \equiv w \); or

ii) the shortest proofs \(x \equiv y \) and \(z \equiv w \) are the same length and \(x \not\equiv y \equiv w \).

Clearly \(\equiv \) is a well-founded relation, so we proceed by induction on \(\equiv \).

Let \(x, y \in R^* \).

Base case: length of proof \(x \equiv y = 0 \).

Then \(x = y \) and \(x \equiv y \) at step 0.

Induction step: \(x \equiv y \) is a nonzero-length shortest proof. One of the following two cases must hold:

Case 1: The entire tree is replaced somewhere in \(x \equiv y \). In this case \(g z, w \equiv z, z \equiv w \) is an axiom, \(w \equiv y \). But \(z, w \in R^* \) hence \(z \equiv w \) and \(w \equiv y \) by induction hypothesis, since they are congruent via shorter proofs, and \(z \equiv w \) in step 0. Thus \(x \equiv y \) within two more steps.

Case 2: The entire tree is never replaced in \(x \equiv y \). Then \(x = \delta x_1 \ldots x_m = \delta x_1 \ldots x_m \) and \(x \equiv y \equiv x \) via a proof of length shorter than or equal to \(x \equiv y \) (the proof \(x \equiv y \) is given by the transformations applied to the interior of \(x_1 \equiv y_1 \) in the proof \(x \equiv y \)) and \(x \equiv x, y_1 \equiv y, \lambda y \equiv m \), hence...
\(\langle x_1, y_1 \rangle \) \(\leq \langle x, y \rangle \), \(1 \leq m \). But all \(x_i, y_i \in R^+ \), hence by the induction hypothesis, \(x_i \leq y_i \), \(1 \leq i \leq m \). Then in the next step of the algorithm, \(x \leq y \).

Definition

An instance of the circuit value problem (CVP) is a list \(B \) of assignments to variables \(C_1, C_2, \ldots, C_n \) of the form

\[
\begin{align*}
C_1 & = 0, \\
C_1 & = 1, \\
C_i & = C_j \lor C_k, \quad j, k < i, \\
or \quad C_i & = C_j \land C_k, \quad j, k < i,
\end{align*}
\]

such that each \(C_i \) appears on the left side of an assignment exactly once. \(B \) is in CVP provided \(\text{val}(C_i) = 1 \), where \(\text{val}(C_i) \) is the Boolean value of \(C_i \) computed from the list of assignments in the obvious way.

As demonstrated by Ladner, \(^3\) CVP is \(\leq^m \text{complete for } P \).

Theorem 2

\[\text{CVP} \leq^m \text{WP}. \]

Proof

Given the above instance of CVP, take

\[
\begin{align*}
G & = \{C_1, \ldots, C_n, 0, 1\} \\
O & = \{\wedge, \vee\} \\
\Gamma & = B \cup \{0 \in O, 0 \in O, 1 \in O, 1 \in O, 0 \in O, 0 \in O, 1 \in O, 1 \in O\}.
\end{align*}
\]

The restrictions on \(B \) and the eight extra axioms guarantee that the algebra presented by \(\Gamma \) is the two element lattice, and \(B \in \text{CVP} \iff C_i \in \text{WP} \iff \langle \Gamma, C_n \rangle \in \text{WP}. \)

Observe that CVP is really a special case of the word problem, as shown by the trivial (gsm) reduction.

Corollary 3

\[\text{WP} \leq^m \text{complete for } P. \]

We now wish to show the following three problems complete for \(P \).

Definition

\[\text{TRIV} = \{\Gamma \mid \Gamma \text{ presents the trivial (one element) algebra}\}. \]

\[\text{FIN} = \{\Gamma \mid \Gamma \text{ presents a finite algebra}\}. \]

\[\text{GEN} = \{\langle \Gamma, x_1, \ldots, x_n, y \rangle \mid \{y\} \text{ is contained in the subalgebra of } \Gamma \text{ generated by } \{x_1, \ldots, x_n\}\}. \]

Theorem 4

\[\text{TRIV} \in P. \]

Proof

Use the algorithm of Theorem 1 to decide for all \(a, b \in G \) whether \(a \equiv b \), then for all \(\emptyset \in O \) whether \(a \equiv a \).

Theorem 5

\[\text{CVP} \leq^m \text{TRIV}. \]

Proof

Let \(B \) be an instance of CVP. Construct \(\Gamma \) as in Theorem 2 and let \(\Gamma' = \Gamma \cup \{C \in O\} \). Then

\[B \in \text{CVP} \iff C_n \in \text{I} \iff 1 \in \text{I} \iff 0 \in \text{I} \iff \langle \Gamma', C_n \rangle \in \text{I} \iff \text{TRIV} \text{ is trivial}. \]

Corollary 6

\[\text{TRIV} \text{ is complete for } P. \]

We now wish to show that GEN is complete for \(P \). GEN is a more general formulation of the GEN of Jones and Lasser.

Theorem 7

\[\text{GEN} \in P. \]

Proof

Given \(\langle \Gamma, x_1, \ldots, x_n, y \rangle \), let \(\mathcal{A} \) be the subalgebra of \(\Gamma \in \) generated by \(\{x_1, \ldots, x_n\} \), and let \(E \) be the subalgebra of \(\Gamma \) generated by \(x_1, \ldots, x_n \). Then \(E / \mathcal{A} \) is isomorphic to \(\mathcal{A} \) and \(\{y\} \in \mathcal{A} \iff yx \in E \) such that \(y \equiv x \).

Let \(\Gamma^+ = \Gamma \cup \{x_1, \ldots, x_n, y\} \) and let \(R^+ = R^{++} \). Consider the following algorithm to mark elements of \(R^+ \) (vertices of \(\Gamma^+ \)).

Step 0. Run the algorithm of Theorem 1 on \(\Gamma^+ \) to determine for all \(x, w \in R^+ \) whether \(x \equiv w \). Mark each \(x_i \).

Step n. If \(y_1, \ldots, y_m \in R^+ \) and \(y_1, \ldots, y_m \) are marked, mark
If \(x, w \in R^+ \), \(x \equiv w \), and \(x \) is marked, mark \(w \). If no new terms are marked, stop.

The algorithm is clearly polynomial. The following claim establishes the result.

Claim

\(\emptyset \) is \(\mathcal{A} \) iff \(y \equiv w \) is marked by the above algorithm.

Proof of claim

(\(\Rightarrow \)) Let \(C_0 = \{ x, \ldots, x_n \} \)

\(C_{k+1} = \{ \emptyset y_1 \ldots y_m \mid y_1, \ldots, y_m \in C_k \} \cup C_k \).

Then \(\cup_{k=-\infty}^\infty C_k = \mathcal{L} \). Let \(y \equiv w \in R^+ \) such that \(y \in \mathcal{A} \). Then \(\exists x \in \mathcal{L} \) such that \(\exists \xi \in \mathcal{A} \). We prove the result by induction on the least \(k \) such that \(\exists \xi \in \mathcal{A} \).

Basis: \(k = 0 \). Then \(y \equiv x \), and \(x \) is marked at step 0, hence \(y \) is marked at step 1.

Induction step: \(k > 0 \). Then \(y \equiv x \), and \(x \) is marked at step 0, hence \(y \) is marked at step 1.

Case 1: The entire tree is never replaced in \(y \). Then \(y \equiv x \), and each \(z \) is eventually marked. Then when each \(z \) is marked, \(y \) is marked in the next step.

Case 2: \(y \equiv z \), \(z \equiv w \) is an axiom, \(w \equiv x \), and \(w \equiv \emptyset y \). Is \(w \) is the last time in the proof that \(y \) is replaced. Then \(w \) is eventually marked, hence \(y \) is eventually marked, and \(w \) is marked in the next step.

Corollary 8

\(\mathcal{A} \) is finite iff \(\mathcal{A} = \Gamma \).

Proof

(\(\Rightarrow \)) Trivial.

(\(\Leftarrow \)) Clearly \(\Gamma \subseteq \mathcal{A} \). Now assume there is an \(x \) such that \([x] \in \mathcal{L} \). Define a set of terms

\[
\begin{align*}
 x_0 &= x \\
 x_{n+1} &= \emptyset x_n \ldots x_n
\end{align*}
\]

where \(\emptyset \) is any operator. For all \(j > 0 \), if \(x_0 \equiv x_j \), then \(x_j \equiv x_0 \) and \(x_0 \equiv x_j \).

But in the proof \(x_j \equiv x_0 \), no ancestor of \(x \) in \(x_j \) can ever be the root of a transformation, or else \(x \) would be marked. Define a set of terms

\[
\begin{align*}
 x_0 &= x \\
 x_{n+1} &= \emptyset x_n \ldots x_n
\end{align*}
\]

where \(\emptyset \) is any operator. For all \(j > 0 \), if \(x_0 \equiv x_j \), then \(x_j \equiv x_0 \) and \(x_0 \equiv x_j \).

But in the proof \(x_j \equiv x_0 \), no ancestor of \(x \) in \(x_j \) can ever be the root of a transformation, or else \(x \) would be marked. Define a set of terms

\[
\begin{align*}
 x_0 &= x \\
 x_{n+1} &= \emptyset x_n \ldots x_n
\end{align*}
\]

where \(\emptyset \) is any operator. For all \(j > 0 \), if \(x_0 \equiv x_j \), then \(x_j \equiv x_0 \) and \(x_0 \equiv x_j \).

But in the proof \(x_j \equiv x_0 \), no ancestor of \(x \) in \(x_j \) can ever be the root of a transformation, or else \(x \) would be marked. Define a set of terms

\[
\begin{align*}
 x_0 &= x \\
 x_{n+1} &= \emptyset x_n \ldots x_n
\end{align*}
\]

where \(\emptyset \) is any operator. For all \(j > 0 \), if \(x_0 \equiv x_j \), then \(x_j \equiv x_0 \) and \(x_0 \equiv x_j \).

But in the proof \(x_j \equiv x_0 \), no ancestor of \(x \) in \(x_j \) can ever be the root of a transformation, or else \(x \) would be marked. Define a set of terms

\[
\begin{align*}
 x_0 &= x \\
 x_{n+1} &= \emptyset x_n \ldots x_n
\end{align*}
\]

where \(\emptyset \) is any operator. For all \(j > 0 \), if \(x_0 \equiv x_j \), then \(x_j \equiv x_0 \) and \(x_0 \equiv x_j \).

But in the proof \(x_j \equiv x_0 \), no ancestor of \(x \) in \(x_j \) can ever be the root of a transformation, or else \(x \) would be marked. Define a set of terms

\[
\begin{align*}
 x_0 &= x \\
 x_{n+1} &= \emptyset x_n \ldots x_n
\end{align*}
\]

where \(\emptyset \) is any operator. For all \(j > 0 \), if \(x_0 \equiv x_j \), then \(x_j \equiv x_0 \) and \(x_0 \equiv x_j \).

But in the proof \(x_j \equiv x_0 \), no ancestor of \(x \) in \(x_j \) can ever be the root of a transformation, or else \(x \) would be marked. Define a set of terms

\[
\begin{align*}
 x_0 &= x \\
 x_{n+1} &= \emptyset x_n \ldots x_n
\end{align*}
\]

where \(\emptyset \) is any operator. For all \(j > 0 \), if \(x_0 \equiv x_j \), then \(x_j \equiv x_0 \) and \(x_0 \equiv x_j \).

But in the proof \(x_j \equiv x_0 \), no ancestor of \(x \) in \(x_j \) can ever be the root of a transformation, or else \(x \) would be marked. Define a set of terms

\[
\begin{align*}
 x_0 &= x \\
 x_{n+1} &= \emptyset x_n \ldots x_n
\end{align*}
\]
The characteristic graph of a presentation Γ, denoted $\Gamma_\langle \rangle$, is a labeled directed graph with vertex labels 0 and edge labels $\{1, 2, \ldots, k\}$ where k is the maximum arity of any operator in O. The vertex set of $\Gamma_\langle \rangle$ consists primarily of unlabelled vertices $r_\langle \rangle$, plus other labeled vertices and labeled and unlabelled edges such that $\Gamma_\langle \rangle$ is the smallest graph in which

$[y_1 \ldots y_m]$

appears as a subgraph for every $y_1 \ldots y_m \in R_\langle \rangle$.

Example

The Γ of Theorem 2 presents the two element lattice. Its characteristic graph is:

$X_\langle \rangle$ is meant to represent the interaction of the elements of $r_\langle \rangle$ under the operations O. $X_\langle \rangle$ is constructible in polynomial time; we can just run the algorithm of

Theorem 1 to determine $\Xi_\langle \rangle$-classes (they appear as cliques of Ξ-edges), then for each $y_1 \ldots y_m$ in $R_\langle \rangle$, add a vertex \emptyset and edges

$[y_1 \ldots y_m]$

Lemma 10

For $x, y_1, \ldots, y_m \in R_\langle \rangle$, $x \equiv y_1 \ldots y_m$ iff

$[x]$

appears in $\Gamma_\langle \rangle$.

Proof

(\Rightarrow) If the subgraph pictured appears in $\Gamma_\langle \rangle$, then by construction of $\Gamma_\langle \rangle$ it must be that $z_1 \ldots z_m \equiv z_1 \ldots z_m$ and $z_1 \equiv y_i$, $1 \leq i \leq m$. Then $x \equiv z_1 \ldots z_m \equiv y_1 \ldots y_m$.

(\Leftarrow) Consider a proof $x \equiv y_1 \ldots y_m$.

If the entire tree is ever replaced, $z_1 \ldots z_m \equiv w \equiv y_1 \ldots y_m$ and $z_1 \equiv y_i$, $1 \leq i \leq m$, and $w \equiv z_1 \ldots z_m$ is an axiom. If the entire tree is never replaced, then $z_1 \ldots z_m \equiv y_1 \ldots y_m$ and $z_1 \equiv y_i$, $1 \leq i \leq m$. In either case,

$[y_1 \ldots y_m]$

appears in $\Gamma_\langle \rangle$, and $[y_1 \ldots y_m] = [x]$ and $[z_1] = [y_1], 1 \leq i \leq m$.■

Lemma 11

χ is finite iff for all m, for all m-ary \emptyset and $[y_1], \ldots, [y_m] \in r_\langle \rangle$, there is an $[x] \in r_\langle \rangle$ such that

$[x]$

is finite iff for all m, for all m-ary \emptyset and $[y_1], \ldots, [y_m] \in r_\langle \rangle$, there is an $[x] \in r_\langle \rangle$ such that
appears in χ_Γ.

Proof

By the previous lemma, for all θ and $\{y_1, \ldots, y_m\}$, there is an $[x] \in r_\Gamma$ such that the above graph appears in χ_Γ iff r_Γ is closed under all the operations G.

But since \mathcal{A} is generated by $\{[a] \mid a \in G\}$, this occurs iff $\mathcal{A} = r_\Gamma$. By Lemma 9, this occurs iff \mathcal{A} is finite.

Theorem 12

$\text{FIN} \in \mathbb{P}$.

Proof

Construct χ_Γ, and for each m-ary θ, cycle through all $\{y_1, \ldots, y_m\}$, rejecting if we ever find a $\{y_1, \ldots, y_m\}$ such that for no $x \in r_\Gamma$ does χ_Γ appear in χ_Γ. For each distinct $\{y_1, \ldots, y_m\}$, if we ever find such x, there must be a distinct vertex θ (i.e. the one appearing in the above subgraph), hence the number of steps of the algorithm is polynomially bounded to the size of χ_Γ, which is polynomial in the input Γ.

Theorem 13

$\text{CVP} \leq^m \text{log} \text{FIN}$.

Proof

We use the presentation Γ' constructed in Theorem 5, such that Γ' presents either the trivial algebra or the two element lattice, and $\Gamma' = \mathcal{B} \in \text{CVP}$.

Append another generator symbol b to G, and the axioms $\{b \land a = a, b \land 0 = 0, b \lor 0 = b, b \lor b = b\}$ to Γ' to get Γ''. It is left to the reader to verify that Γ'' presents the trivial algebra if Γ' does, an infinite algebra otherwise.

Corollary 14

FIN is complete for \mathbb{P}.

4. Schema problems

Definition

Let $\tau = \{\text{terms over } G \text{ and } O\}$, as usual.

Let $V = \{v_1, \ldots, v_m\}$ be a set of variable symbols,

$G^+ = G^\cup V$,

$\tau^+ = \{\text{terms over } G^+ \text{ and } O\}$.

Thus τ^+ is the set of terms with occurrences of variables V.

An assignment to variables is a map $I: V \rightarrow \tau$. If we take $I(a) = a$ for $a \in G$, then I extends uniquely to a homomorphism $\tau^+ \rightarrow \tau$, which we will also denote by I.

A schema $x \equiv y$, where $x, y \in \tau$. Given Γ, a schema $x \equiv y$ is satisfiable in τ/\equiv_Γ if there is an assignment I such that $I(x) \equiv_\Gamma I(y)$. That is, $x \equiv y$ is satisfiable if there is an interpretation of terms with variables over τ/\equiv_Γ such that x and y represent the same element of τ/\equiv_Γ.

A schema $x \equiv y$ is valid in τ/\equiv_Γ if for all assignments I, $I(x) \equiv_\Gamma I(y)$.

Definition

The schema satisfiability problem is the set

$\text{SATIS} = \{\langle \Gamma, x, y \rangle \mid \text{schema } x \equiv y \text{ is satisfiable}\}$.

The schema validity problem is the set

$\text{VALID} = \{\langle \Gamma, x, y \rangle \mid \text{schema } x \equiv y \text{ is valid}\}$.

Observe that the Boolean satisfiability problem of Cook is a special case of SATIS, where the algebra presented by Γ is the two element Boolean algebra.

Theorem

$\text{SATIS} \leq^m \text{complete for } \mathbb{NP}$ and log
VALID is \leq^m_{\log}-complete for co-NP. ■

The proof is omitted.

It should be noted that if we allow quantification over variables, deciding membership in SATIS is equivalent to deciding truth of closed formulas (those in which all variables are quantified) of the form

$$\exists v_1 \ldots \exists v_n \ x = \gamma,$$

and deciding membership in VALID is equivalent to deciding truth of closed formulas of the form

$$\forall v_1 \ldots \forall v_n \ x = \gamma,$$

in the algebra presented by Γ.

This is quite remarkable in view of the fact that the quantified variables range unboundedly over a possibly infinite set. In other results of this type, either the structure is finite, or the quantifiers are bounded.

If we define S_n, V_n by

$$S_n(V_n) = \{<\Gamma, \bar{O} \times \bar{\gamma}> | \bar{O} \times \bar{\gamma} \text{ is a closed formula where } \bar{O} \text{ is a string of quantifiers with } n \text{ alternations, the outermost a } S(m), \bar{\gamma} \times \gamma \text{ is true in } T/\zeta \}$$

and if we let Σ_p^n and Π_p^n represent the n-th Σ and Π levels of the polynomial time hierarchy, we have by the preceding results

i) $S_0^0 = V_0^0$ is \leq^m_{\log}-complete for $\Sigma_p^0 = \log$ P;

ii) S_1 is \leq^m_{\log}-complete for $\Sigma_p^1 = \text{NP}$;

iii) V_1 is \leq^m_{\log}-complete for $\Pi_p^1 = \text{co-NP}$.

Like other results in this area, we have

Theorem

S_n is \leq^m_{\log}-complete for Σ_p^n and V_n is \leq^m_{\log}-complete for Π_p^n for all n; and $S_n \cup V_n$ is complete for PSPACE. ■

The proof is omitted.

5. Isomorphism of finitely presented algebras

In this section we wish to show that the problem of isomorphism of finitely presented algebras (ISOM) is polynomially equivalent to the problem of graph isomorphism.

As before, the reduction from the graph problem (the more specific) to the algebra problem (the more general) is trivial. To go the other way, we show that every finitely presented algebra has a "reduced" presentation, which is unique in a certain well defined sense. In view of the relationship between finitely presented algebras and regular tree languages noted in §1, this result corresponds roughly to the minimization of states in a finite tree automaton.

In proving ISOM \leq^m_p graph isomorphism, we use the reduction sequence

isomorphism of undirected graphs without multiple edges or loops

\leq^m_{\log} ISOM

\leq^m_{\log} isomorphism of labeled directed graphs

\leq^m_{\log} isomorphism of directed graphs without multiple edges or loops

\leq^m_{\log} isomorphism of undirected graphs without multiple edges or loops

The \leq^m_{\log} reductions in the above sequence are easy exercises and are left to the reader.

Definition

ISOM = $\{<\Gamma, \Delta> | \Gamma$ and Δ present isomorphic algebras.$\}$

We will assume that the number of operator symbols of each arity in O_γ and O_Δ is the same. The interested reader may verify that there is a polynomial time algorithm to check whether two operator symbols in any O specify the same operation, hence the assumption is without loss of generality.

To prove the reduction ISOM \leq^m_p graph isomorphism, we will show that every finitely presented algebra \mathfrak{A} has a "reduced" presentation Γ, which can be found in polynomial time, such that r_Γ is unique (up to isomorphism). But r_Γ is uniquely represented by the characteristic graph X_Γ introduced in §3, as shown by the following lemma:
Lemma 24

r_Γ and r_Δ are isomorphic (as subsets of algebras) iff χ_Γ and χ_Δ are isomorphic (as graphs).

Proof

Follows directly from Lemma 10.

Definition

A presentation is reduced provided

i) if $8x_1\ldots x_m \equiv 8y_1\ldots y_m$ is an axiom, then one of $x_1^2y_1\ldots, x_m^2y_m$;

ii) no axiom of the form $a \equiv x$ occurs, where $a \in G$ and a does not occur in x.

Lemma 25

There is a polynomial time algorithm which for input Γ gives an equivalent reduced Γ^*.

Proof

Given R_Γ, find all congruent pairs, using the word problem algorithm of Theorem 1. Repeat the following two steps until no more changes occur:

a) If $8x_1\ldots x_m \equiv 8y_1\ldots y_m$ is an axiom and $x_1 \equiv y_1\ldots, x_m \equiv y_m$ follow, replace $8x_1\ldots x_m \equiv 8y_1\ldots y_m$ in Γ with new axioms $x_1 \equiv y_1\ldots, x_m \equiv y_m$.

b) If $a \equiv x$ is an axiom, $a \in G$, and a does not occur in x, replace all occurrences of a in other terms of R_Γ with pointers to x, and eliminate the axiom $a \equiv x$.

E.g.

We claim first that this algorithm is polynomially time bounded. Note that step b) occurs at most n times, since each time, a generator symbol disappears. For each occurrence of b), step a) occurs at most n times, provided whenever $8x_1\ldots x_m \equiv 8y_1\ldots y_m$ and $8x_1\ldots z_k \equiv 8w_1\ldots w_k$, are axioms, and $x_i \equiv y_i, z_j \equiv w_j$ for $1 \leq i \leq n, 1 \leq j \leq k$, and $8x_1\ldots z_k \equiv 8w_1\ldots w_k$.

Step a) is applied to the axiom $8x_1\ldots x_m \equiv 8y_1\ldots y_m$ first. We must also ensure that every time b) occurs, a valid presentation results, i.e. the graph remains acyclic. This follows from the requirement in b) that a not occur in x in the axiom $a \equiv x$.

Hence the algorithm halts in polynomial time with a reduced presentation Γ^*, so it remains to show that Γ^* and Γ are equivalent, i.e. present the same algebra. If a^* is applied, we have axiom $8x_1\ldots x_m \equiv 8y_1\ldots y_m \in \Gamma$ and $x_1 \equiv y_1\ldots, x_m \equiv y_m$. Let $\Gamma' = \Gamma - \{8x_1\ldots x_m \equiv 8y_1\ldots y_m\}$. Since $8x_1\ldots x_m \equiv 8y_1\ldots y_m$ follows from $\Gamma' \cup \{x_1 \equiv y_1\ldots, x_m \equiv y_m\}$, we have that under the assumptions Γ', $\{x_1 \equiv y_1\ldots, x_m \equiv y_m\}$ and $\{8x_1\ldots x_m \equiv 8y_1\ldots y_m\}$ are equivalent. If b) is applied, let $a \equiv x$ be the axiom removed. Let $\Gamma' = \{\text{terms over G \& G-(a)}\}$, and let $f: \Gamma \to \Gamma'$ be given by $f(y) = y[a \setminus x]$. An application of b) replaces axioms $\Gamma = \{x_1 \equiv y_1\ldots, x_k \equiv y_k\}$ with $\Gamma' = \{f(x_1) \equiv f(y_1)\ldots, f(x_k) \equiv f(y_k)\}$, inducing congruence $\equiv' = \equiv_{\Gamma'}$, so we need to show that \equiv_{Γ} and $\equiv'_{\Gamma'}$ are isomorphic. But it is easily verified that for $z, y \in \Gamma'$, $z \equiv' y$ iff $z \equiv y$, and each $y \in \Gamma \equiv \Gamma'$ is congruent via \equiv to $y[a \setminus x] \in \Gamma'$, thus there exists an h such that the diagram

```
          f
  \|         \|
\Gamma ---- \Gamma'
     \|         \|
1 \downarrow \quad \downarrow 1
I \quad 1
```

commutes, and h is an isomorphism.

In the following, let Γ and Δ be finite presentations of algebras \mathcal{A} and \mathcal{B}, respectively. The symbols G, O, R, etc. will have their usual meaning, except we will attach subscripts Γ and Δ to denote the presentation with which they are associated.

Lemma 26

Suppose \mathcal{A} and \mathcal{B} are isomorphic via h, and suppose Γ is reduced. Then there is a function $f: \Gamma_{\Gamma} \to \Gamma_{\Delta}$ such that

i) the diagram

```
          f
  \|         \|
\Gamma ---- \Gamma'
     \|         \|
I \quad 1
\```

```
 \| \|
1 \downarrow \quad \downarrow 1
I \quad 1
```

173
commutes, and $f[R_1] \subseteq R_\Delta^*$. 

**Proof**

We have assumed previously that the number of operators of each arity in $O_\Gamma$ and $O_\Delta$ are the same. Since $A$ and $B$ are isomorphic, there is a 1-1 correspondence between $O_\Gamma$ and $O_\Delta$. Hence for notational convenience and without loss of generality, we will assume $O_\Gamma = O_\Delta$ and the correspondence is given by identity.

We first define an $f_1 : \Gamma \rightarrow \Delta$ satisfying i) only. For $a \in G_\Gamma$, let $f_1(a) = y$ where $y$ is any term in $\Delta$ such that $[y]_\Delta = h([a])$. $f_1$ extends uniquely to a homomorphism $\Gamma \rightarrow \Delta$, by taking $f_1(\theta x_1 \ldots x_m) = \theta f_1(x_1) \ldots f_1(x_m)$. Then $f_1$ satisfies i), since for $a \in G$, $[f_1(a)]_\Delta = h([a])$ by definition, and proceeding by structural induction,

$[f_1(\theta x_1 \ldots x_m)]_\Delta = \theta [f_1(x_1)]_\Delta \ldots [f_1(x_m)]_\Delta$

$= \theta h([x_1]) \ldots h([x_m])$

$= h([\theta x_1 \ldots x_m])$.

since $[,]_\Delta$ and $h[,]_\Delta$ are homomorphisms.

Let us take $f(x) = f_1(x)$ for $x \notin R_\Gamma$. We need only to find, for every $x \in R_\Gamma$, a $y \in R_\Delta$ such that $y \equiv_\Delta f_1(x)$; then we can take $f(x) = y$, and ii) will hold, but $f$ will satisfy i), since $\forall x f(x) = f_1(x)$ + $\forall x [f(x)]_\Delta = [f_1(x)]_\Delta = h([x])$.

**Case 1:** $x$ appears in an axiom $x \equiv y \in \Gamma$, and neither $x$ nor $y$ are generator symbols.

Observe that since $f_1$ satisfies i), $x \equiv y \Rightarrow f_1(x) \equiv f_1(y)$. Let $f_1(x) + f_1(y)$ be a proof of $f_1(x) \equiv f_1(y)$. If the entire tree is ever replaced, then we have $f_1(x) + z + w + f_1(y)$ where $z \equiv w$ is an axiom of $\Delta$. Then $\pi \in R_\Delta^*$ hence we can take $f(x) = z$, and we are done. Otherwise, since neither $x$ nor $y$ are generator symbols, by construction of $f_1$ we have $f_1(x) = \theta f_1(x_1) \ldots f_1(x_m) \equiv f_1(y_1) \ldots f_1(y_m)$, and $f_1(x_1) \equiv f_1(y_1) \ldots f_1(x_m) \equiv f_1(y_m)$, where $x = \theta x_1 \ldots x_m$ and $y = \theta y_1 \ldots y_m$. But then $x \equiv_\Delta y_1 \ldots y_m$, contradicting the fact that $\Gamma$ was reduced.

**Case 2:** $a \in G_\Gamma$ and a occurs in an axiom $a \equiv x$, where $x \notin G_\Gamma$.

Since $\Gamma$ is reduced, $x$ must contain occurrences of $a$. Then $f_1(a) \equiv_\Delta f_1(x)$ and $f_1(a) \notin f_1(x)$. Let $y$ be a $\Delta$-minimal element of $[f_1(a)]_\Delta$, and let $w = f_1(x)[f_1(a) / y]$. Then $w \equiv y$, and $y \notin w$. In a proof $w \equiv y$, either an ancestor of some occurrence of $y$ in $w$ is the root of a transformation, in which case $y \equiv x \in R_\Delta$ as above; or not, in which case $y$ is congruent to a proper subterm of itself, contradicting the assumption of $\Delta$-minimality.

**Case 3:** $x$ is a proper subterm of a term $y$ appearing in an axiom $y \equiv z$.

By cases 1 and 2, we have $f(y) \in R_\Delta$. But then $f_1(y) \equiv_\Delta f(y)$ and $f_1(x) \equiv f(y)$. In a proof $f_1(y) \equiv f(y)$, either an ancestor of $f_1(x)$ is the root of a transformation or not. If so, $f(x)$ is congruent to a subterm of an axiom of $\Delta$, if not, $f_1(x)$ is congruent to a subterm of $f(y)$. But in either case, $\exists w \in R_\Delta f_1(x) \equiv_\Delta w$, hence we can take $f(x) = w$.

**Case 4:** $a \in G_\Gamma$ and $a$ occurs only in the axiom $a \equiv a$. Then $f_1(a)$ must be in $G_\Delta$, otherwise $\exists x_1 \ldots x_n \in \Gamma$ such that $f_1(a) \equiv \theta f_1(x_1) \ldots f_1(x_n)$, since $h$ is an isomorphism; but then $a \equiv \theta x_1 \ldots x_n$, which is impossible if $a$ occurs only in $\equiv a$. Thus take $f(a) = f_1(a) \in R_\Delta^*$.

**Theorem 27**

Let $A$, $B$ be isomorphic via $h$, and let $\Gamma$ and $\Delta$ be reduced. Then $\Gamma$ and $\Delta$ are isomorphic via $h$.

**Proof**

Using the lemma, form $f$ and $g$ such that...
commute, and $f[R_\Gamma] \subseteq R_\Delta$, $g[R_\Gamma] \subseteq R_\Gamma$.  Now $x \in R_\Gamma$ if and only if $h([x]_\Gamma) = [f(x)]_\Delta \in R_\Delta$, since $f(x) \in R_\Delta$; hence $h[R_\Gamma] \subseteq R_\Delta$.

Similarly, using $g$, $h^{-1}[R_\Delta] \subseteq R_\Gamma$.  But then $h[R_\Gamma] = R_\Delta$, since $h$ is an isomorphism.

Theorem 28

Let $R_\Gamma$ and $R_\Delta$ be isomorphic via $h$. Then $h$ extends to an isomorphism between $\mathcal{A}$ and $\mathcal{B}$.

Proof

Define $f : \Gamma \rightarrow \Delta$ by taking $f(a) = y$ where $y \in R_\Delta$ such that $[y]_\Delta = h([a]_\Gamma)$ for $a \in \Gamma$, and extend $f$ to the unique homomorphism $\Gamma \rightarrow \Delta$, as in the previous proof.

Claim

Define $f : \Gamma \rightarrow \Delta$ by taking $f(a) = y$ where $y \in R_\Delta$ such that $[y]_\Delta = h([a]_\Gamma)$ for $a \in \Gamma$, and extend $f$ to the unique homomorphism $\Gamma \rightarrow \Delta$, as in the previous proof.

Claim

commutes.

Proof of claim

For $a \in \Gamma$, $h([a]_\Gamma) = [f(a)]_\Delta$ by definition, and for $x_1, \ldots, x_m \in R_\Gamma$, we have $x_1, \ldots, x_m \in R_\Gamma$, hence by structural induction,

$$h([x_1 \ldots x_m]_\Gamma) = h([x_1]_\Gamma) \ldots h([x_m]_\Gamma) = [f(x_1)]_\Delta \ldots [f(x_m)]_\Delta$$

and the claim is verified.

We wish to extend $h$ to $\hat{h}$ on domain $\mathcal{A}$ by taking $\hat{h}([x]_\Gamma) = [f(x)]_\Delta$, but first we must show that $[\ ]_\Delta f$ is well-defined on $\Xi_\Gamma$-congruence classes, i.e., $x \equiv_\Gamma y \Rightarrow [f(x)]_\Delta = [f(y)]_\Delta$, so that $h$ will be well-defined.

For $x, y \in \Gamma$, take $x \equiv_\Gamma y$ iff $[f(x)]_\Delta = [f(y)]_\Delta$. Since $[\ ]_\Delta^\circ f$ is a homomorphism, $\Xi_\Gamma$ is a congruence relation on $\Gamma$. By the above claim, we have for $x, y \in \Gamma$

$$x \equiv_\Gamma y \iff [x]_\Gamma = [y]_\Gamma$$

$$\iff h([x]_\Gamma) = h([y]_\Gamma)$$

$$\iff [f(x)]_\Delta = [f(y)]_\Delta$$

$$\iff x \equiv_\Gamma y.$$

Since $\Xi_\Gamma$ is defined to be the smallest (most general) congruence satisfying the axioms of $\Gamma$, and $\Xi$ satisfies the axioms of $\Gamma$, it follows that $\Xi_\Gamma$ is a refinement of $\Xi$. Hence $\forall x, y \in \Gamma$, $x \equiv_\Gamma y \Rightarrow [f(x)]_\Delta = [f(y)]_\Delta$ as was to be shown.

Now we have that

$$x \equiv_\Gamma y \iff [x]_\Gamma = [y]_\Gamma$$

$$\iff h([x]_\Gamma) = h([y]_\Gamma)$$

$$\iff [f(x)]_\Delta = [f(y)]_\Delta$$

$$\iff x \equiv_\Delta y.$$
and similarly \( \forall y \in \Delta \bar{\Delta}, (h^{-1}(y)_{\Delta}) = [y]_{\Delta} \). Thus \( \mathcal{A} \) and \( \mathcal{B} \) are isomorphic via \( h \).

**Corollary 29**

ISOM is \( P \)-isomorphism of labeled directed graphs.

**Proof**

Given an instance of ISOM \( \langle \Gamma, \Delta \rangle \), reduce \( \Gamma \) and \( \Delta \) to get \( \Gamma^* \) and \( \Delta^* \), and then form the graphs \( \chi_{\Gamma^*} \) and \( \chi_{\Delta^*} \). By Lemmas 10 and 25, this can be done in polynomial time. Then by Theorems 27 and 28 and Lemma 24,

\[
\mathcal{A} \approx \mathcal{B} \iff \forall r_{\Gamma^*} \approx r_{\Delta^*} \iff \chi_{\Gamma^*} \approx \chi_{\Delta^*}.
\]

Again, it is rather remarkable that isomorphism of possibly infinite structures should reduce to that of finite ones, unlike previous results in this area.

The \( P \)-equivalence of graph isomorphism and ISOM should be of great interest to those who believe graph isomorphism is \( NP \)-complete. It is clear that graph isomorphism is in \( NP \), but the form of the problem is so restricted (i.e., two graphs with the same numbers of vertices of each in- and out-degree) that standard reduction techniques fail to show even that it is hard for \( P \). However, there are no such restrictions on the form of instances of ISOM, and it is quite trivial to show ISOM is \( P \)-hard:

**Theorem 30**

ISOM is \( \text{Log} \)-hard for \( P \).

**Proof**

Use the \( \Gamma^* \) of Theorem 5 and a presentation of the trivial algebra.

Thus it would surely be easier to show that ISOM, the more general of the two problems, is \( NP \)-hard.

**Acknowledgment**

I would like to thank Erik Schmidt for turning me on to finite tree automata.

**References**

1) Lipton, R.J. and Y. Zalcstein, Word Problems Solvable in Logspace, Technical Report #8, Department of Computer Science, SUNY at Stony Brook, 1975.


