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Abstract. We study the problem of maximizing the amount of stochas-
tic diffusion in a network by acquiring nodes within a certain limited bud-
get. We use a Sample Average Approximation (SAA) scheme to translate
this stochastic problem into a simulation-based deterministic optimiza-
tion problem, and present a detailed empirical study of three variants
of the problem: where all purchases are made upfront, where the budget
is split but one still commits to purchases from the outset, and where
one has the ability to observe the stochastic outcome of the first stage in
order to “re-plan” for the second stage. We apply this to a Red Cockaded
Woodpecker conservation problem. Our results show interesting runtime
distributions and objective value patterns, as well as a delicate trade-off
between spending all budget upfront vs. saving part of it for later.

1 Introduction

Many real-world processes are diffusive in nature, giving rise to optimization
problems where the goal is to maximize or minimize the spread of some en-
tity through a network. For example, in epidemiology, the spread of infectious
diseases in a human or animal network is a diffusion-based process. In ecology,
so-called metapopulation models capture the diffusion of species in a fragmented
landscape of habitat patches. Similarly, the adoption of a certain marketed prod-
uct by an individual may trigger his or her friends or fans to adopt that product
as well, suggesting viral marketing strategies in human networks. In the social
network setting, particularly in Internet-based networks such as Facebook and
Twitter, the spread of information between individuals is yet another diffusion
process. The stochastic nature of such diffusion processes, or cascades, and how
best to intervene in order to influence their outcomes, has been the study of
several recent papers in these areas [e.g. 2, 4, 6, 8, 10, 11, 13]. A key question
in this context is, if one had limited resources to purchase part of the network
to use either as the initially “active” nodes or as nodes that may participate in
the diffusion process, which nodes should one purchase?

We study this question with a focus on the case where the intervention bud-
get, instead of all being available upfront, is split into two or more time steps.
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We evaluate our techniques on a specific conservation problem in which the
diffusion process of interest is the dispersal and territory establishment of an en-
dangered bird species, the Red-Cockaded Woodpecker (RCW) [3, 5, 15]. Using
a stochastic model of the diffusion of RCW through geographic maps, we study
the solutions of three optimization variants that differ in when the conservation-
ist is allowed to make purchase decisions. The methodology and results apply
not only to RCW conservation but also to many other problems in the field
of computational sustainability [7], where maximizing or minimizing diffusion
is a commonly encountered problem in areas ranging from ecology to poverty
mitigation through food networks.

Formally, we pose this optimization task as a stochastic Mixed Integer Pro-
gramming (MIP) problem. Even extremely simple classes of stochastic linear pro-
grams are #P-hard [cf. 15]. However, an effective solution method with stochastic
optimality gap guarantees is the Sample Average Approximation (SAA) [14]. The
application of SAA to a formulation of the RCW conservation problem has been
previously evaluated on a real-life size instance, motivated by the actual data
for the RCW population in North Carolina [15]. In order to better understand
the effectiveness and scalability of this solution methodology from a computa-
tional perspective, we introduce a synthetic problem generator1 that uses real
map data as a basis for generating random instances. This analysis reveals sev-
eral interesting computational trends: an easy-hard-easy runtime pattern as the
budget fraction is varied, an increase in hardness as the “self-colonization” prob-
ability is increased, more runtime variation for instances that are harder to solve
(for a fixed budget), and a roughly inverse relation between the computational
hardness and the solution objective value (again for a fixed budget).

We also study a natural and realistic generalization of the problem where the
total budget is actually not available to be spent at the beginning but is rather
split into two stages. This modification significantly increases the computational
difficulty of the problem and makes it non-trivial to apply the SAA methodol-
ogy which was originally designed for the case where stochastic samples can be
drawn right upfront, rather than adaptively. Indeed, the most general approach,
a truly multi-stage stochastic version of the problem [1], has very limited scala-
bility. Instead, we consider two simpler problem variants that are more scalable:
committing to both first and second time step purchase decisions upfront (the
single-stage method for the split-budget problem) or committing to purchase de-
cisions for the first time step but re-evaluating what is best to purchase in the
second time step after observing the stochastic outcome of the first stage (the
two-stage re-planning method). Our experiments show that the re-planning ap-
proach, although computationally more expensive, does pay off—the solution
objective obtained through an SAA-style implementation of re-planning is often
significantly better than that obtained by the single-stage split-budget with all
purchase decisions made upfront; more interestingly, the value of information
gained from first stage observations can result in a re-planning objective that is
better than spending all budget upfront.

1 http://www.cs.cornell.edu/∼kiyan/rcw/generator.htm
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2 Problem Description, Model, and Solution Methods

A diffusion process can be quite complex; patch-based models [8] represent dif-
fusion as occurring on a network of nodes which become active upon the arrival
of the dispersing entity. Given a network of nodes (i.e., an undirected graph), a
network dispersion model specifies for each pair of nodes (r1, r2) the probability
that node r2 will become active at the next time step, given that r1 is currently
active. Similarly, if node r is currently active, it remains so after one time step
with a specified survival probability. In our optimization setting, we assume that
the process can only spread to nodes that have been purchased. We divide the
nodes into disjoint node sets with an associated cost and assume that a manager
making purchase decisions is limited by a budget in each time step. Given the
stochastic nature of the dispersion process, the overall goal is to maximize the
expected number of active nodes at a specified time horizon.

For our experiments, we consider a specific instance of this problem in which
the diffusing entity is the Red-Cockaded Woodpecker (RCW). Geographic ter-
ritories suitable for RCW inhabitance represent graph nodes, with territories
grouped into real estate parcels available for purchase. Node activity here rep-
resents the settlement of a territory by RCW members dispersing from other
territories. As in most conservation settings, the geographic territories must be
owned and maintained by conservationists for species members to survive there.

We formulate this problem as a stochastic Mixed Integer Program (MIP),
shown below. (One can create alternative MIP formulations of this problem as
well, using, e.g., network flow.) Let R be the number of nodes in the network,
P the number of node sets, H the planning horizon, C(p) the cost of node set
p ∈ {1..P}, B(t) the budget available at time step t ∈ {0..H − 1}, P (r) the node
set that node r ∈ {1..R} belongs to, and I(r) the 0-1 indicator of whether node
r is initially active (node sets containing an initially active node are assumed
to be already owned). Binary variables {y(p, t) | p ∈ {1..P} , t ∈ {0..H − 1}} cor-
respond to the action of buying node set p at time step t. Binary variables
{x(r, t) | r ∈ {1..R} , t ∈ {0..H − 1}} correspond to r being active at time t. The
constraints of the MIP encode the basic requirements discussed earlier in the
problem description. For lack of space, we refer the reader to [15] for details
and mention here only that the budget constraint (2) has been generalized to
include a time-step-specific budget and that ξt−1

r′,r are the stochastic coefficients
that follow the dispersion model probability for r′ and r.

In reality, we cannot directly optimize this stochastic MIP. Instead, we use
the Sample Average Approximation (SAA) method [14, 18], which uses random
samples from the underlying probability distribution of the stochastic parameters
to generate a finite number of scenarios and creates a deterministic MIP to
optimize the empirical average (rather than the true expectation) of the number
of active territories over this finite set of sampled scenarios. We will describe this
shortly. In this deterministic version of our stochastic MIP defined over a set of k
scenarios S1, S2, . . . , Sk, we still have one purchase variable for each node set at
each time step but k different activity variables for each node at each time step,
capturing the different diffusion activity in the k different scenarios. In other
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maximize
R

r=0

x(r,H) such that

y(p, 0) = 1 ∀p ∈ initial (free) parcels (1)
P

p=1

C(p) × y(p, t) ≤ B(t) ∀t ∈ {0..H − 1} (2)

H−1

t=0

y(p, t) ≤ 1 ∀p ∈ {1..P} (3)

x(r, t) ≤
t

t′=0

y(P (r), t′) ∀r ∈ {1..R} , ∀t ∈ {1..H} (4)

x(r, t) ≤
R

r′=1

ξt−1
r′,r

x(r′, t − 1) ∀r ∈ {1..R} , ∀t ∈ {1..H} (5)

x(r, 0) = I(r) ∀r ∈ {1..R} (6)

words, the purchase decisions are synchronized amongst the different scenarios
but activity variables differ depending on which nodes were occupied in which
scenario. For the objective function, we simply sum up the activity variables
at the horizon for all k scenarios, thus optimizing the sum of active territories
(or, equivalently, the average activity) over the k scenarios at the horizon. This
results in an expanded deterministic formulation very similar to the one above,
and we denote it by MIP(S1, S2, . . . , Sk).2

While our MIP allows a budget constraint for each time step, in our exper-
iments we consider two variants. In the upfront variant, all budget is spent at
time step T = 0. In the split variant, the budget is split into (b1, b2) in a given
proportion between T1 = 0 and T2 < H , and is set to 0 for other time steps.

2.1 Sample Average Approximation and Re-planning

The SAA approach has been instrumental in addressing large-scale stochastic
optimization problems [14, 18]. It provides provable convergence guarantees—it
may over-fit for a small number of scenarios, but converges to the true opti-
mum with increasing training samples and provides a statistical bound on the
optimality gap. The SAA procedure works in three phases. In the TRAINING
phase, we generate N candidate solutions by creating N SAA MIPs with k train-
ing scenarios each and solving them to optimality. In the VALIDATION phase,
we generate M1 new validation scenarios, evaluate each of the N candidate so-
lutions on these scenarios, and choose the solution s∗ with the best validation
objective. In the TEST phase, we generate M2 fresh scenarios to re-evaluate
s∗, thus obtaining and reporting an estimate of the true objective value of s∗.
2 In the deterministic MIP, we add redundant constraints that force any variable x(r, t)

of a scenario to be set to 1 whenever the corresponding node set has been bought
and there was dispersal from nodes active at the previous time step.
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The test objective of s∗ is a lower bound on the true optimum while the av-
erage of the MIP objective of all N candidate solutions is a (stochastic) upper
bound on the optimum (see [15] for more details). The above procedure is ap-
plied to both the upfront and split budget models. For our experiments we set
N = 100, k = 10, M1 = 1000, M2 = 5000.

In the split budget setting, it is quite pessimistic to assume that decision mak-
ers cannot adjust purchase decisions based on first stage observations. The true
objective evaluation of a split budget purchase plan needs to be more “dynamic”
in nature—at the second decision time step T2 one can observe the events of the
past time steps and accordingly re-plan how to spend b2. Given a set of purchase
decisions for T1, we describe how to evaluate the expected objective value under
re-planning, assuming that at the second decision point T2, one would again
apply the SAA solution method to select purchase decisions. The re-planning
evaluation of a candidate solution s, representing purchase decisions made at T1
in the split budget model, is done as follows. We generate a sample set of F “pre-
fix scenarios” over the years 0..T2 − 1. For each prefix scenario and considering
all nodes sets purchased in s as being available for free at T2, we perform an SAA
evaluation as if we are at time step T2 and are solving the upfront model for the
remaining years and with budget b2. The SAA here is performed for N = 20,
k = 10, M1 = 100 and M2 = 500, for each of F = 100 prefix scenarios. Finally,
the re-planning objective of s is reported as the average SAA objective over the
F = 100 prefix scenarios.

3 Experimental Results

We use a graph of nodes derived from a topology of 411 territories grouped into
146 parcels, representative of a region on the coast of North Carolina of interest
to The Conservation Fund for RCW preservation. The dispersion model used for
this study is based on a habitat suitability score (an integer in [0, 9]) for each ter-
ritory as well as known parameters about the ability of birds to disperse between
territories at various distances [12]. Suitability scores were estimated using GIS
data from the 2001 USGS National Land Cover Dataset (NLCD) [16]. Parcels
(corresponding to node sets) were constructed using the US Census Bureau’s
“census block” divisions [17]. Using the base topology, we created several ran-
domized instances of the problem by (a) perturbing the suitability value by ±1
and (b) selecting different sets of initially active territories by randomly choosing
clusters of territories with high suitability.

We used Yahoo!’s M45 cloud computing platform running Apache Hadoop
version 0.20.1 to perform independent parts of our solution methods massively
in parallel. IBM ILOG CPLEX v12.1 [9] was used to solve all MIPs involved.

Runtime Distributions and Objective Value of MIP. We study the runtime to solve
the SAA MIPs (with k = 10 scenarios over H = 20 years) under different budgets
expressed as a fraction of the total cost of all parcels in the instance. Results are
presented in Fig. 1. Each point in these plots corresponds to the average runtime
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Fig. 1. Runtime (y-axis) as a function of budget (x-axis) for various extinction rates.
Left: all budget available upfront. Right: budget split into two time steps.
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tion for instance map4-
30714 exhibits power-law
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Fig. 3. The high variation in runtime on some instances
(lower curve) and the corresponding average MIP objec-
tive values (higher curve)

over 100 different samples of k = 10 scenarios of each of 20 different variations of
the basic map described earlier. The left pane shows the results when all budget
is available upfront, while the right pane considers the split-budget case. These
curves demonstrate an easy-hard-easy pattern as the budget parameter is varied,
and also indicate that the problem becomes harder to solve for higher survival
rates. Comparing the left and right plots, we see that the split-budget variant of
the problem is roughly 10x harder to solve than when all budget is available up-
front (notice the scales on the y-axis).

We evaluate in more detail the performance with 70% survival rate. Fig. 2
shows the distribution of the runtime for one particular variation of the base
map, called map4-30714, for 10% budget. All budget is available upfront and the
plot is derived from 100,000 runs. This figure demonstrates the typical runtime
distribution seen on this suite of instances: a power-law decay, indicated by the
near-linear (or super-linear) drop in the probability of “failure” or timeout (y-
axis) as a function of the runtime (x-axis) when plotted in log-log scale.

We next consider the relation between the running time and the objective
value of the SAA MIP, for both the upfront and split budget cases. The lower
curves in the plots of Fig. 3 show the average runtime and standard deviation
over 100 runs of each of 20 variations of the base map, where the 20 instances
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Fig. 5. Objective value of re-planning,
compared to upfront and split budgets

are ordered from low to high runtime. The upper curves show the corresponding
average objective value achieved for each instance (the variation in the objective
value was small). These plots indicate that for our test suite, instances that are
hard to solve often have a significantly higher runtime variation than instances
that are easy to solve. Moreover, the harder to solve instances typically result in
a lower objective value.

Evaluation of Sample Average Approximation and Re-Planning. We evaluate the
solution quality of the SAA approach as a function of the budget fraction. Fig. 4
presents results for both the upfront and split budget problems where the budget
is divided evenly between T1 = 1 and T2 = 10. The curves marked Upfront MIP
and Split MIP present the average MIP objective over the N = 100 candidate
solutions and are hence a stochastic upper bound on the true optimum. The
curves marked Upfront Test and Split Test are the estimated true quality of
the solution chosen (and hence provide a lower bound on the quality of the
true optimum). The difference between Upfront Test and Split Test measures
the penalty of not having all funds available in the first stage. The relatively
small gap between the upper and lower bounds confirms that our choice of SAA
parameters is good and that the solutions provided are very close to optimal.

Finally, we evaluate the advantage of re-planning in the stochastic setting of
our problem. Recall that we would like to understand the tradeoff between spend-
ing all available budget upfront vs. re-planning with a portion of investments at
a later stage after making stochastic observations. The balance is, in fact, quite
delicate. By spending too much money upfront, we leave little room for “adjust-
ing” to the stochastic outcome of the first stage. On the other hand investing too
little upfront limits the amount of possible variation in dispersion, thus limiting
the worth of stochastic observations. When splitting the budget evenly, making
second stage decisions at T2 = 10, re-planning often did not yield as good a re-
sult as investing all money upfront. Nonetheless, for other parameters such as a
30-70 split with T2 = 5, we found that re-planning begins to pay off, as is shown
in Fig. 5. The top curve in the plot corresponds to re-planning and shows that it
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can result in the occupation of more territories in our bird conservation example
than spending all budget upfront (the middle curve) or splitting the budget but
providing a single-stage style solution that commits to a certain set of purchase
decisions at the outset (the lowest curve).

In summary, our experiments have examined the complexity of optimizing
stochastic diffusion processes and the value of different planning methodologies.
Our results show the considerable benefits of making decisions upfront (e.g. in a
single-stage), and the benefits that re-planning based on stochastic observations
can have when decisions must be made in multiple stages.
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