ABSTRACT
This paper describes an approach for finding image descriptors or tags that are highly reliable and specific. Reliable, in this work, means that the tags are related to the image's visual content, which we verify by finding two or more real people who agree that the tag is applicable. Our work differs from prior work by mining the photographer’s (or web master’s) original words and seeking inter-subject agreement for images that we judge to be highly similar. By using the photographer’s words we gain specificity since the photographer knows that the image represents something specific, such as the Augsburg Cathedral; whereas random people from the web playing a labeling game might not have this knowledge. We describe our approach and demonstrate that we identify reliable tags with greater specificity than human annotators.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Human Factors

Keywords
tagging, reliability, specificity, image similarity

1. INTRODUCTION
As the volume of multimedia available on the web grows, so does the need for tools for searching, organizing, and exploring this immense resource. A variety of research efforts are currently showing great promise in a wide array of applications over this media, such as multimedia retrieval, automatic image and video annotation, and multimedia summarization.

A common aspect of many of these new systems for processing multimedia is that they rely heavily on the ability to solicit reliable annotations for a large number of example images. Methods for learning automatic classifiers for various visual objects rely on large sets of labeled images. Visual image search can be greatly improved if images are assigned reliable tags. Annotation presents a number of difficulties, however. The provided labels are often noisy and unreliable. Furthermore annotators may only have a cursory knowledge of the visual objects in the images and may not be able to provide any specific details.

A number of approaches have been proposed for increasing the reliability of image labels, ranging from utilizing the input from multiple annotators in a game scenario [10] to leveraging the tags of visually similar images to re-order or re-weight the labels associated with a given image [6, 7]. In this work, we propose a new framework for gathering reliable image labels that lies somewhere between these two approaches. We leverage a large database of tagged photographs and discover pairs of visually similar images. We
then make the assumption that, if there are one or more matching tags entered by separate people on each of these visually similar images, then those tags are likely to be related to the image content, and therefore reliable and useful for applications like training visual models or search.

We conduct a study using a database of over 19 million images collected from a photo sharing website. We find that the method can significantly increase the relevance of the tags associated with the images. We further find that photographers (the image creators) are more adept than random annotators at providing highly specific labels, meaning that photographers tend to have a deeper knowledge of the subjects of their photographs and can often provide useful details, such as the model of a car or the exact species of a bird. In Figure 1, we see some examples of actual image pairs that can be discovered with our proposed approach and the types of highly specific tags that can be extracted from them.

The primary contribution of this work is a framework wherein tags provided by two photographers on two highly-similar images can be leveraged to find highly specific and reliable textual annotations of the visual content of the image that would otherwise be unknown to layperson annotators. We demonstrate that our approach (and similar efforts) provide more specific tags than those found using human annotators in an ESP game.

The remainder of this paper is organized as follows. In the next section, we will review techniques for providing reliable image annotations and present our new approach. In Section 3, we will present the approach in depth and then evaluate its performance on a large-scale image collection in Section 4. We review related work in Section 5 and give conclusions and future work in Section 6.

2. RELIABLE IMAGE ANNOTATION

In this section, we review two recent approaches that aim to increase the reliability of labeling images and propose a new hybrid approach that introduces a level of expertise and specificity to the provided labels.

2.1 Games

The ESP game [10] is a system that uses a game between two users to gather image annotations. The game relies on the assumption that agreement between two independent human annotators is sufficient for determining the reliability of a given tag or annotation. In the game, two separate players are shown the same image and asked to type in terms for objects that they see in the image. The players are awarded points if they both enter matching terms. This game interface both entices users to participate in image labeling and ensures that the collected annotations are accurate. A key criticism of this approach is that the gathered annotations will be somewhat shallow. For example, in an image containing a car, any two individual players should be able to enter “car.” However, an expert might know the make and model of the car and even the year in which it was made. In the ESP game, there is little chance that this expertise will be present in both players, and this highly specific, expert knowledge will not make it into the set of trusted tags for the image.

1. All images used in this paper are licensed under Creative Commons. See Appendix A for a complete list of credits.
been there
tion, the photographer has most likely
personal context. If the photograph is a landmark or loca-
tions found on Flickr are infused with a certain amount of
photographer who shot the photo. Therefore, the annota-
tagged by the owner of the photograph, who is usually the
and specificity that are often found in the ESP game.
insight is that the methods applied for retrieval-based tag
selection can be leveraged to fill in the problems in expertise
based approaches that we discussed above. Our primary
work are learned to provide optimal reconstruction of im-
over a series of simple filters. The parameters of the net-
computer using a Map/Reduce framework [3] and we can
bors. We have implemented this approach on a large grid of
process thousands of query images per minute. Algorithms
such as locality-sensitive hashing could also be used to speed
up the search [8].

To find a set of candidate nearest-neighbor pairs for this
paper, we took images in our data set and issued each as a
query against the full image database. We exhaustively
calculate the Euclidean distance between the query image
and each image in the database to find its 20 nearest neigh-
bors. We have implemented this approach on a large grid of
computers using a Map/Reduce framework [3] and we can
process thousands of query images per minute. Algorithms
such as locality-sensitive hashing could also be used to speed
up the search [8].

3. ALGORITHM AND ANALYSIS

We have implemented an algorithm for finding reliable
tags by finding identical images taken by two or more differ-
ent photographers. In this section we describe the algorithm,
the image-similarity feature, the calculations we performed
for this paper, and the data we used to evaluate the quality
of the selected tags.

3.1 Algorithm

Given a set of images, we apply a time-shifted version the
ESP game. We look for image pairs that are: (1) highly
similar in feature space, (2) posted by different authors, and
(3) share a common tag. It is important to look for different
authors because people tend to apply the same tags to many
different photos (i.e. all photos from a photographer’s trip
to Tokyo are labeled with “tokyo.”) This approach is a time-
shifting of the tag decision. Two photographers at different
times have taken the same photo and labeled it with the
same tag.

To find a set of candidate nearest-neighbor pairs for this
paper, we took images in our data set and issued each as a
query against the full image database. We exhaustively
calculate the Euclidean distance between the query image
and each image in the database to find its 20 nearest neigh-
bors. We have implemented this approach on a large grid of
computers using a Map/Reduce framework [3] and we can
process thousands of query images per minute. Algorithms
such as locality-sensitive hashing could also be used to speed
up the search [8].

3.2 Features

The measure of image similarity can be based on many dif-
ferent kinds of features. In this work we use a low-dimensional
feature based on a convolutional neural network.

For each image in the database, we extract a set of low-
level features to encapsulate and represent the image con-
tent. The features, themselves, are learned from hundreds
of thousands of web images utilizing a feed-forward network
over a series of simple filters. The parameters of the net-
work are learned to provide optimal reconstruction of im-
ages from the resulting network outputs. In the end, we are
left with a 1,024-dimensional feature vector for each image,
which encapsulates some aspects of the distributions of col-
ors and textures throughout the image. Figure 3 shows a
block diagram of this approach. More details are available
elsewhere [4].

2http://flickr.com

Figure 3: Block diagram of feature extraction method.

2.2 Large-Scale Image Search

One can also leverage the vast amount of images that ex-
ist in social media sites (such as FlickrTM), as a source of
labeled image sets for learning visual models and retrieval.
It has been discovered that the labels in these resources are
often very noisy and not necessarily reflective of the visual
content of the image. By some estimates, as few as only 50%
of images with a particular tag may actually contain visual
content related to that tag [5].

To address the noisiness inherent in tagged media, a num-
ber of recent efforts have undertaken an approach based on
query-by-example image search [6, 7]. These methods find
the set of nearest-neighbors for an image in a low-level vi-

sual feature space and then rank or weight the tags that are
applied to the image based on their frequency in the set of
nearest neighbors. The assumption is that, if many visu-
ally similar image share common tags with the query image,
then it is likely that the given tag is highly related to the
visual content of the image. If the image contains tags that
are not found amongst its nearest-neighbors, then, perhaps
those tags are not related to the visual content and should,
therefore, be de-emphasized. The efforts to evaluate systems
like these, however, have only focused on fairly common or
generic objects and tags, like “beach,” “boat,” and “flower.”

2.3 Proposed Approach

In this work, we propose a method for gathering reliably
tagged images that lies between the two game- and retrieval-
based approaches that we discussed above. Our primary
insight is that the methods applied for retrieval-based tag
selection can be leveraged to fill in the problems in expertise
and specificity that are often found in the ESP game.

Specifically, photographs shared on Flickr are typically
tagged by the owner of the photograph, who is usually the
photographer who shot the photo. Therefore, the annota-
tions found on Flickr are infused with a certain amount of
personal context. If the photograph is a landmark or loca-
tion, the photographer is most likely been there and can
accurately name the exact spot at which he or she took the
photo. Similarly, if the photograph is of a flower, bird, car,
or anything else, the photographer has most likely had a
first-hand encounter with that object. Since he or she finds
the subject worthy of photographing, the photographer may
also have a deeper knowledge of the subject. What all of
this amounts to is that photographers are often more likely
to be able to identify the specifics of the subjects that they
photograph than random annotators. The experience of tak-
ing and sharing photographs endows the photographer with
some expertise about the subjects of the photographs.

Figure 3: Block diagram of feature extraction method.

Our proposal, then, is to examine image pairs that have
high visual similarity in low-level feature space. When such
pairs are found, it is similar to a case where both photo-
graphers are playing the ESP game with each other, only they
are annotating slightly different versions of highly similar im-
ages. We propose that when separate authors provide iden-
tical tags for visually similar images, it is highly likely that
these tags are related to the visual content of the images.
We further hypothesize that these authors will be able to
provide much more specific labels than other labelers, since
they have a deeper personal context for the photograph at
hand. In Figure 2, we show the similarities and differences
between our approach and the ESP game.
We note that our proposed approach is not reliant on these specific features. Indeed, any combination of features that yield a reasonable measure of image similarity should be sufficient.

3.3 Experimental Data and Features

We test our proposed method on a subset of images extracted from Flickr. The set contains every publicly available photograph posted by a random sampling of 104,670 users. This totals to over 19.6 million images. In addition to the images themselves, we also gather other pieces of information around the image, such as the list of tags that have been associated with the image and the identity its owner. We normalize the tags to remove capitalization and spacing such that “Golden Gate Bridge” and “goldengatebridge” are equivalent.

For this paper we used 1 million images as queries against the full database. In our data set, roughly 7% of the query images have a neighbor that meets all of the criteria mentioned in Section 3.1. Many of these images have several such neighbors, so in total, we find more than 160,000 visually similar image pairs with matching annotations from different authors.

4. EVALUATION

We evaluated our approach to find reliable tags using three different tests. We first measured the precision of the original (photographer-specified) tags versus the precision of our reliable tags. Then we describe the specificity of the tags and categorize the types of images for which we find specific tags. Finally, we compare the specificity of the tags found algorithmically by our proposed method against those provided by random annotators in and ESP-like scenario.

4.1 Precision of Discovered Terms

A first question to ask with a set of visually similar images with shared tags is: are these tags, indeed, accurate? Other works in this area [6, 7] have conducted evaluations on the precision of re-ordered or re-weighted tags by applying them in image search scenarios. In a baseline approach, we conduct a search for a term and gather a random set of images tagged with that term. To evaluate the relative improvement in tagging accuracy provided by our proposed approach, we conduct an additional search where we constrain the set of returned images to be only those that are both tagged with the search term and also have a nearest-neighbor that is also tagged with the search term, effectively limiting the search set to only those images for which we are most certain of the accuracy of the tag.

![Figure 4: Precision of user-supplied tags versus reliable tags as found using the algorithm in this paper.](image)

We conduct this evaluation over our collection of images using the 10 query terms evaluated by Li et al. [6]. The results of the evaluation are shown in Figure 4. For each query term, we calculate the precision of the top-ten returned results (the percentage of the top-ten results that are actually relevant). We see consistent improvement in search relevance across all of the search terms and a 37% average relative increase in precision. Even the false-positive images returned by our system are understandable. Many images tagged with “airplane” or “boat” were not photographs of airplanes or boats, but in fact photographs of the view taken from airplanes or boats. Similarly, many of the images tagged with “tiger” were actually of sports teams named “Tigers.”

4.2 Specificity of Annotations

Having seen that the tags shared between visually similar images are sufficiently accurate, we move on to evaluate the level of specificity in the tags that we have discovered. Specificity is difficult to measure. In this study, we simply use the frequency of terms in the overall database as a proxy for estimating their specificity. The intuition is that less-frequent terms contain more information than more-frequent ones: that “San Francisco” is more specific than “California” and that “Golden Gate Bridge” is even more specific. Rareness, of course, is an imperfect measure of specificity. We might also consider employing structured knowledgebases, such as WordNet [2], to directly encode specific / general relationships between terms; however, in systems like Flickr, where users employ a large vocabulary, which is often divergent with standard English, frequency might still be the best measure available.

Our collection of images contains roughly 2.6 tags per image and more than 1 million unique tags. Figure 5 shows the frequency of each tag compared to its rank and shows something similar to a power law distribution, which is typically expected.

To begin our investigation of the quality of specific tags discovered by our method, we sort the pairs of images by the frequency of the least-frequent tag that the two share
and inspect the image pairs discovered that share the least-frequent tags. Upon inspecting this set, we find that these specific tags fall into four primary categories:

- **Locations and Landmarks** account for more than 50% of the discovered pairs with infrequent tags. These include specific city names as well as specific sites, such as "san francisco" and "coit tower."

- **Plant-life** photographs account for approximately 25% of the discovered pairs. These are often photographs of flowers with correct names attached, such as “dahlia” or “orchid.”

- **Animal-life** accounts for about 10% of the discovered pairs and includes specific species of insects and animals, such as “crane fly” and “common kingfisher.”

- **Makes and Models** include tags related to specific products, such as “audi a3” and “zune.” These are found in about 15% of our examples.

Examples of each of these specific tag categories can be found in Figure 6.

4.3 Human vs. Algorithmic Specificity

To further evaluate the level of specificity of the tags that we have discovered, we compared the specificity of human and machine-generated tags. We conducted a simulation of the ESP game using some of these specifically-tagged image pairs. We select 100 image pairs, all with rare shared tags, where rare is defined as tags that occur in less than 0.005% of the images in our database. These contain locations, plants, animals, and makes/models in roughly the same proportions as discussed above. We remove some noisy pairs that were found due to non-English tags, or tags related to web applications used to make certain types of images or collages. We show one image from each pair to two subjects, both of whom are native English speakers, residents of San Francisco, and unfamiliar with the hypotheses and methods that we have employed in this work. The subjects are both shown the same image from the pair and are asked to provide a set of descriptive terms related to the image content, so they are effectively asynchronously playing the ESP game.

In Figure 7, we show the distributions of the specificity of the tags found algorithmically for the image pairs (the tags provided by the photographers) and the tags provided by the image annotators in our study. We see a stronger tendency in the human annotators to provide generic tags (those that are generally more frequently used), while the algorithmically discovered tags were more specific, overall.

Further analysis of the study results are shown in Table 1. For each image, each annotator provided, on average, around 3 tags. First, we counted how many times both annotators had at least one tag in common. This was a fairly common occurrence, with matches found on 78% of all the images, which reinforces the utility of the ESP game in general: it works and provides reasonable annotations. We then count the number of times that the human annotators had at least one specific tag in common. (Here, we counted any tags that referred to specific locations, species of plant or animals, and brands or models.) Specific matches occurred less frequently.

For animals and models, the human annotators had a reasonable degree of success, though many of these were due to identifying the brand of a car where the logo was clearly visible in the photograph or identifying somewhat common animals, such as bees and donkeys. In no cases, however, were the annotators able to identify the exact model of a car. More-obscure animals, such as the common kingfisher and the crane fly, also presented some difficulty.

The performance of the human annotators on the location images was more mixed. They were able to identify a number of well-known locations and landmarks, like the Liberty Bell and the Statue of Liberty. However, the annotators did not have enough knowledge for some more obscure locations, like the Harbour Bridge in Sydney or Monument Valley.

Plants were very difficult for the human annotators. These
Table 1: The quality of human-generated tags in an ESP-like game on the 100 evaluated image pairs for which this algorithm found highly specific reliable tags. For each category, we show the total number of images annotated (# Images), the percentage for which the two annotators provided a matching tag (% Agreement), and the percentage of pairs for which the annotators were able to provide highly specific tags (% Specific).

<table>
<thead>
<tr>
<th>Category</th>
<th># Images</th>
<th>% Agreement</th>
<th>% Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locations</td>
<td>54</td>
<td>67%</td>
<td>20%</td>
</tr>
<tr>
<td>Plants</td>
<td>24</td>
<td>92%</td>
<td>4%</td>
</tr>
<tr>
<td>Animals</td>
<td>10</td>
<td>80%</td>
<td>40%</td>
</tr>
<tr>
<td>Models</td>
<td>13</td>
<td>92%</td>
<td>46%</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>73%</td>
<td>22%</td>
</tr>
</tbody>
</table>

Table 6.6. CONCLUSIONS AND FUTURE WORK

Tags are inherently a noisy, user-generated signal describing the content of an image. We wish to find words that multiple people can agree apply to an image in hopes the process will yield tags that are reliable and specific.

In this work, we demonstrated a novel way to generate highly reliable tags that describe an image. Unlike the ESP game which asks two random users to find a tag they agree describes a photo, we look for highly similar images that are described with the same term by two different photographers. The most important benefit of this approach is that we often find highly specific tags, which give a greater level of detail about the subjects of the images. This specificity arises out of the photographers’ knowledge of the location of the object, or its exact description. In addition, recruiting new game players can be difficult and we get our tags from the words that a photographer has already supplied.

In the experiment described here, we found reliable tags for 1% of the images in our database. We tested the images for which we found highly-specific tags using our algorithm and found that only 22% of the same images were annotated in an ESP game by humans with specific tags. Furthermore, we saw a tendency for human annotators to provide more generic annotations than the photographers, who provided highly-specific annotations. In addition, we found an average increase in the precision of the tags of 37%.

Our approach is efficient because we capitalize on the labels already provided by users. In many cases the photographer supplies the labels as part of a submission to a photo-sharing site. But we can also apply the same approach to anchor text or other captions associated with a web page.

While we applied this approach to only 19 million images or less than 1% of the publicly available images on Flickr, the success of our approach will only grow as we expand the database to cover more of the photos available on the web. We do not expect to be able to find reliable tags with every image—some images are too unique to ever find a match. But with the wealth of photos on the web, we do not need to label each image, just find good images that are tagged with any particular word. Perhaps most importantly, our approach is not limited to finding English tags.

7. REFERENCES

relevance by neighbor voting for social image retrieval.

APPENDIX

A. PHOTO ATTRIBUTIONS

All photographs used in this paper are licensed under Creative Commons. Photographer credits are listed below.

Figure 1:
http://www.flickr.com/photos/hmorandell/130536654/
http://www.flickr.com/photos/thruhike98/248608444/
http://www.flickr.com/photos/jvverde/2298487209/
http://www.flickr.com/photos/16134053@N00/266023301/

Figure 2:
http://www.flickr.com/photos/redneck/2363234517/
http://www.flickr.com/photos/davidthibault/2449284848/

Figure 6:
Locations
http://www.flickr.com/photos/aranmanoth/350381473/
http://www.flickr.com/photos/plyn4lf/121479650/
http://www.flickr.com/photos/63269749@N00/2152878314/

Plants
http://www.flickr.com/photos/pdc/553336027/
http://www.flickr.com/photos/dickey113608130/
http://www.flickr.com/photos/ericinsf/52601149/

Animals
http://www.flickr.com/photos/vickispix/225669748/
http://www.flickr.com/photos/96619357@N00/201296878/
http://www.flickr.com/photos/georgehoffman/168099747/

Models
http://www.flickr.com/photos/rduffy/164891469/
http://www.flickr.com/photos/volodimer/405241836/
http://www.flickr.com/photos/deep-resonance/484983237/